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Lecture 1 
 
 
 

 

Stress 
 

Stress is the internal resistance offered by the body to the external load applied to it 

per unit cross sectional area. Stresses are normal to the plane to which they act and 

are tensile or compressive in nature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As we know that in mechanics of deformable solids, externally applied forces acts on 

a body and body suffers a deformation. From equilibrium point of view, this action 

should be opposed or reacted by internal forces which are set up within the particles 

of material due to cohesion. These internal forces give rise to a concept of stress. 

Consider a rectangular rod subjected to axial pull P. Let us imagine that the same 

rectangular bar is assumed to be cut into two halves at section XX. The each portion 

of this rectangular bar is in equilibrium under the action of load P and the internal 

forces acting at the section XX has been shown. 

Now stress is defined as the force intensity or force per unit area. Here we use 

a symbol to represent the stress. 

 

P
A  

 

Where A is the area of the X –X section 
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Here we are using an assumption that the total force or total load carried by the 

rectangular bar is uniformly distributed over its cross – section. But the stress 

distributions may be for from uniform, with local regions of high stress known as 

stress concentrations. If the force carried by a component is not uniformly distributed 

over its cross – sectional area, A, we must consider a small area, ‘δA’ which carries 

a small load ‘δP’, of the total force ‘P', Then definition of stress is  
 
 
 
 
 
 

 

As a particular stress generally holds true only at a point, therefore it is defined 

mathematically as 
 
 
 
 
 
 

 

Units : 
 

The basic units of stress in S.I units i.e. (International system) are N / m2 (or Pa) 
 

MPa = 106 Pa 
 

GPa = 109 Pa 
 

KPa = 103 Pa 
 

Sometimes N / mm2 units are also used, because this is an equivalent to MPa. While 

US customary unit is pound per square inch psi. 

 

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) 

shear stress. Other stresses either are similar to these basic stresses or are a 

combination of this e.g. bending stress is a combination tensile, compressive and 

shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing 

stress. Let us define the normal stresses and shear stresses in the following sections. 
 

Normal stresses : We have defined stress as force per unit area. If the stresses are 

normal to the areas concerned, then these are termed as normal stresses. The normal 

stresses are generally denoted by a Greek letter (σ) 
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This is also known as uniaxial state of stress, because the stresses acts only in one 

direction however, such a state rarely exists, therefore we have biaxial and triaxial 

state of stresses where either the two mutually perpendicular normal stresses acts or 

three mutually perpendicular normal stresses acts as shown in the figures below : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tensile or compressive Stresses: 
 

The normal stresses can be either tensile or compressive whether the stresses acts 

out of the area or into the area 
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Bearing Stress: When one object presses against another, it is referred to a 

bearing stress ( They are in fact the compressive stresses ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sign convections for Normal stress 
 
Direct stresses or normal stresses 
 
- tensile +ve 
 
- compressive –ve 
 
 

Shear Stresses: 
 

Let us consider now the situation, where the cross – sectional area of a block of 

material is subject to a distribution of forces which are parallel, rather than normal, to 

the area concerned. Such forces are associated with a shearing of the material, and 

are referred to as shear forces. The resulting stress is known as shear stress. 
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The resulting force intensities are known as shear stresses, the mean shear stress 

being equal to 
 
 

 

Where P is the total force and A the area over which it acts. As we know that the 

particular stress generally holds good only at a point therefore we can define shear 

stress at a point as 
 
 

 

The Greek symbol (tau, suggesting tangential) is used to denote shear stress. 
 
 
 
 

Complementary shear stresses: 
 

The existence of shear stresses on any two sides of the element induces 

complementary shear stresses on the other two sides of the element to maintain 

equilibrium. As shown in the figure the shear stress in sides AB and CD induces a 

complimentary shear stress ' in sides AD and BC. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Sign convections for shear stresses: 

 

- tending to turn the element C.W +ve. 
 
- tending to turn the element C.C.W – ve. 
 

Deformation of a Body due to Self Weight 
 

Consider a bar AB hanging freely under its own weight as shown in the figure. 
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Let  

L= length of the bar  

A= cross-sectional area of the bar  

E= Young’s modulus of the bar material  

w= specific weight of the bar material  

Then deformation due to the self-weight of the bar is L  
WL 

 2E  
 
 

Members in Uni – axial state of stress 
 

Introduction: [For members subjected to uniaxial state of stress] 
 

For a prismatic bar loaded in tension by an axial force P, the elongation of the 

bar can be determined as 
 
 
 
 
 
 
 
 

 

Suppose the bar is loaded at one or more intermediate positions, then equation 
 
(1) can be readily adapted to handle this situation, i.e. we can determine the axial 

force in each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or 

shortening of each part separately, finally, these changes in lengths can be added 

algebraically to obtain the total charge in length of the entire bar. 
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When either the axial force or the cross – sectional area varies continuosly along 

the axis of the bar, then equation (1) is no longer suitable. Instead, the elongation can be 

found by considering a deferential element of a bar and then the equation (1) becomes 
 
 
 
 
 
 

 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as 

functions of x. If the expressions for Pxand Ax are not too complicated, the integral can be 

evaluated analytically, otherwise Numerical methods or techniques can be used to 

evaluate these integrals. 

 

 

Principle of Superposition 
 

The principle of superposition states that when there are numbers of loads are acting 

together on an elastic material, the resultant strain will be the sum of individual strains 

caused by each load acting separately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Lecture 2: Numerical Problems on stress, shear stress in axially loaded members. 
 

Example 1: Now let us for example take a case when the bar tapers uniformly 

from d at x = 0 to D at x = l 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to compute the value of diameter of a bar at a chosen location let us 

determine the value of dimension k, from similar triangles 
 
 
 
 
 

 

therefore, the diameter 'y' at the X-section 

is or = d + 2k 
 
 
 
 

Hence the cross –section area at section X- X will be 
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hence the total extension of the bar will be given by expression  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

An interesting problem is to determine the shape of a bar which would have a 

uniform stress in it under the action of its own weight and a load P. 
 

Example 2: stresses in Non – Uniform bars 
 

Consider a bar of varying cross section subjected to a tensile force P as shown 

below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let 
 

a = cross sectional area of the bar at a chosen section XX 

then 

Stress = p / a 
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If E = Young's modulus of bar then the strain at the section XX can be 

calculated 

= / E 
 

Then the extension of the short element x. =   .original length = / E. x 
 
 
 
 
 
 
 
 
 
 
 
 
 

let us consider such a bar as shown in the figure below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The weight of the bar being supported under section XX is 
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Example 1: Calculate the overall change in length of the tapered rod as shown in 

figure below. It carries a tensile load of 10kN at the free end and at the step change in 

section a compressive load of 2 MN/m evenly distributed around a circle of 30 mm 

diameter take the value of E = 208 GN / m2. 
 

This problem may be solved using the procedure as discussed earlier in this 

section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 2: A round bar, of length L, tapers uniformly from radius r1 at one end to 

radius r2at the other. Show that the extension produced by a tensile axial load P 
 

is  
 

If r2 = 2r1 , compare this extension with that of a uniform cylindrical bar having a 

radius equal to the mean radius of the tapered bar. 
 

Solution:  
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consider the above figure let r1 be the radius at the smaller end. Then at a X 

crosssection XX located at a distance x from the smaller end, the value of radius is 

equal to 
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Comparing of extensions 
 

For the case when r2 = 2.r1, the value of computed extension as above 
 

becomes equal to  
 

The mean radius of taper bar 
 

= 1 / 2( r1 + r2 ) 
 

= 1 / 2( r1 +2 r2 ) 
 

= 3 / 2 .r1 
 

Therefore, the extension of uniform bar 
 

= Orginal length . strain  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Strain: 
 
When a single force or a system force acts on a body, it undergoes some 

deformation. This deformation per unit length is known as strain. Mathematically 

strain may be defined as deformation per unit length. So, 

 

Strain=Elongation/Original length 
 

Or, l
l 

 
 
 

Elasticity; 
 

The property of material by virtue of which it returns to its original shape and size upon 

removal of load is known as elasticity. 
 
Hooks Law 
 

It states that within elastic limit stress is proportional to strain. Mathematically 
 

E= Strain
Stress 

 

Where E = Young’s Modulus 
 

Hooks law holds good equally for tension and compression. 
 

Poisson’s Ratio; 
 

The ratio lateral strain to longitudinal strain produced by a single stress is known as 

Poisson’s ratio. Symbol used for poisson’s ratio is or 1 / m . 

 
Modulus of Elasticity (or Young’s Modulus) 
 

Young’s modulus is defined as the ratio of stress to strain within elastic limit. 
 

Deformation of a body due to load acting on it 
 

We know that young’s modulus E= Strain
Stress

 , 

 

Or, strain, E AE
P 
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Now, strain, 
l    

l 
  

   

So, deformation 
  

l 
Pl  

  
AE     
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Module 1 
 

Lecture  4: Numerical  problems  on  Stress-strain  relationship,  Hooke’s  law, 
 
Poisson’s ratio, shear stress 
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Module 1 
 

Lecture 5: Shear strain, modulus of rigidity, bulk modulus. Relationship between 

material properties of isotropic materials. 
 
Shear Strain 
 

The distortion produced by shear stress on an element or rectangular block is shown 

in the figure. The shear strain or ‘slide’ is expressed by angle ϕ and it can be defined 

as the change in the right angle. It is measured in radians and is dimensionless in 

nature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modulus of Rigidity 
 

For elastic materials it is found that shear stress is proportional to the shear strain 

within elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ 

or ‘C’. 
 

G= shear
shear

 strain
stress

 N/mm
2 

 
 

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric 

strain. It is denoted by the symbol K. 
 

K stress intensity   

 volumetric strain  v 
 
Relation between elastic constants: 
 

Elastic constants: These are the relations which determine the deformations 

produced by a given stress system acting on a particular material. These factors are 

constant within elastic limit, and known as modulus of elasticity E, modulus of rigidity 

G, Bulk modulus K and Poisson’s ratio μ. 
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Relationship between modulus of elasticity (E) and bulk modulus (K):  
 

 

E 3K(1  2  ) 
 
 
 
 

Relationship between modulus of elasticity (E) and modulus of rigidity (G):  
 

 

E 2G(1    ) 
 
 
 
 

Relation among three elastic constants:  
 

 

E 

G 3K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Stress-strain diagram for uniaxial loading of ductile and brittle materials. 
 

Stress – Strain Relationship 
 

Stress – strain diagram for mild steel 
 
 

Standard specimen are used for the tension test. 
 
 

There are two types of standard specimen's which are generally used for this purpose, 

which have been shown below: 

 

Specimen I: 
 
 

This specimen utilizes a circular X-section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Specimen II: 
 
 

This specimen utilizes a rectangular X-section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

lg = gauge length i.e. length of the specimen on which we want to determine the 

mechanical properties.The uniaxial tension test is carried out on tensile testing 

machine and the following steps are performed to conduct this test. 
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(i) The ends of the specimen are secured in the grips of the testing machine. 
 
 
(ii) There is a unit for applying a load to the specimen with a hydraulic or mechanical 

drive. 

 
(iii) There must be some recording device by which you should be able to measure 

the final output in the form of Load or stress. So the testing machines are often 

equipped with the pendulum type lever, pressure gauge and hydraulic capsule and 

the stress Vs strain diagram is plotted which has the following shape. 

 

A typical tensile test curve for the mild steel has been shown below  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SALIENT POINTS OF THE GRAPH: 
 

(A) So it is evident form the graph that the strain is proportional to strain or elongation 

is proportional to the load giving a st.line relationship. This law of proportionality is 

valid upto a point A. 

or we can say that point A is some ultimate point when the linear nature of the graph 

ceases or there is a deviation from the linear nature. This point is known as the limit 

of proportionality or the proportionality limit. 
 
(B) For a short period beyond the point A, the material may still be elastic in the sense 

that the deformations are completely recovered when the load is removed. The limiting 

point B is termed as Elastic Limit . 
 
(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not 

totally recoverable. There will be thus permanent deformation or permanent set 
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when load is removed. These two points are termed as upper and lower yield points 

respectively. The stress at the yield point is called the yield strength. 

A study a stress – strain diagrams shows that the yield point is so near the proportional 

limit that for most purpose the two may be taken as one. However, it is much easier to 

locate the former. For material which do not posses a well define yield points, In order 

to find the yield point or yield strength, an offset method is applied. 

In this method a line is drawn parallel to the straight line portion of initial stress diagram 

by off setting this by an amount equal to 0.2% of the strain as shown as below and 

this happens especially for the low carbon steel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(E) A further increase in the load will cause marked deformation in the whole volume 

of the metal. The maximum load which the specimen can with stand without failure is 

called the load at the ultimate strength. 
 
The highest point ‘E' of the diagram corresponds to the ultimate strength of a 

material. 

su = Stress which the specimen can with stand without failure & is known as Ultimate 

Strength or Tensile Strength. 

su is equal to load at E divided by the original cross-sectional area of the bar. 
 
(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum 

until fracture occurs at F. Beyond point E, the cross-sectional area of the specimen 

begins to reduce rapidly over a relatively small length of bar and the bar is said to form 

a neck. This necking takes place whilst the load reduces, and fracture of the bar finally 

occurs at point F. 
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Nominal stress – Strain OR Conventional Stress – Strain diagrams: 
 
Stresses are usually computed on the basis of the original area of the specimen; such 

stresses are often referred to as conventional or nominal stresses. 
 
True stress – Strain Diagram: 
 

Since when a material is subjected to a uniaxial load, some contraction or expansion 

always takes place. Thus, dividing the applied force by the corresponding actual area 

of the specimen at the same instant gives the so called true stress. 
 
Percentage Elongation: 'd ': 
 
The ductility of a material in tension can be characterized by its elongation and by the 

reduction in area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial gauge 

length, expressed in percentage. 
 
 
 

 

lI = gauge length of specimen after fracture(or the distance between the gage marks 

at fracture) 

lg= gauge length before fracture(i.e. initial gauge length) 
 
For 50 mm gage length, steel may here a % elongation d of the order of 10% to 40%. 
 
Ductile and Brittle Materials: 
 

Based on this behaviour, the materials may be classified as ductile or brittle materials 
 
Ductile Materials: 
 

It we just examine the earlier tension curve one can notice that the extension of the 

materials over the plastic range is considerably in excess of that associated with 

elastic loading. The Capacity of materials to allow these large deformations or large 

extensions without failure is termed as ductility. The materials with high ductility are 

termed as ductile materials. 
 
Brittle Materials: 
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A brittle material is one which exhibits a relatively small extensions or deformations to 

fracture, so that the partially plastic region of the tensile test graph is much reduced. 
 
This type of graph is shown by the cast iron or steels with high carbon contents or 

concrete. 
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Module 1: 
 

Lecture 8: Introduction to mechanical properties of metals-hardness, impact 
 

Mechanical Properties of material: 
 

Elasticity: Property of material by virtue of which it can regain its shape after removal 

of external load 
 
Plasticity: Property of material by virtue of which, it will be in a state of permanent 

deformation even after removal of external load. 
 
Ductility: Property of material by virtue of which, the material can be drawn into wires. 
 
Hardness: Property of material by virtue of which the material will offer resistance to 

penetration or indentation. 
 

Ball indentation Tests: 
 

iThis method consists in pressing a hardened steel ball under a constant load P 

into a specially prepared flat surface on the test specimen as indicated in the figures 

below : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After removing the load an indentation remains on the surface of the test 

specimen. If area of the spherical surface in the indentation is denoted as F sq. mm. 

Brinell Hardness number is defined as : 

BHN=P/F 
 

F is expressed in terms of D and d 
 

D = ball diameter 
 

d = diametric of indentation and Brinell Hardness number is given by 
 

BHN 
2P 

D (D   D 
2
    d 

2
 )    
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Then is there is also Vicker's Hardness Number in which the ball is of conical 

shape. 
 

IMPACT STRENGTH 
 

Static tension tests of the unnotched specimen's do not always reveal the 

susceptibility of metal to brittle fracture. This important factor is determined in impact 

tests. In impact tests we use the notched specimen's 
 
 
 

 

this specimen is placed on its supports on anvil so that blow of the striker is 

opposite to the notch the impact strength is defined as the energy A, required to 

rupture the specimen, 

Impact Strength = A / f 
 

Where f = It is the cross – section area of the specimen in cm2 at fracture & 

obviously at notch. 
 

The impact strength is a complex characteristic which takes into account both 

toughness and strength of a material. The main purpose of notched – bar tests is to 

study the simultaneous effect of stress concentration and high velocity load application 

Impact test are of the severest type and facilitate brittle friction. Impact strength 

values can not be as yet be used for design calculations but these tests as rule 

provided for in specifications for carbon & alloy steels.Futher, it may be noted that in 

impact tests fracture may be either brittle or ductile. In the case of brittle fracture, 

fracture occurs by separation and is not accompanied by noticeable plastic 

deformation as occurs in the case of ductile fracture. 

 

 

Impact loads: 
 

Considering a weight falling from a height h, on to a collar attached at the end as 

shown in the figure. 
 
Let P= equivalent static or gradually applied load which will produce the same 

extension x as that of the impact load W 
 
Neglecting loss of energy due to impact, we can have: 
 

Loss of potential energy= gain of strain energy of the bar 
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W ( h x ) 1
2 Px 

 

 

Now we have extension x = AE
Pl 

 
 

Substituting the value of x in the above equation we have: 
 

W (h AE
Pl )   12 (P 2 l AE)  

 
 
 

Solving the above equation we can have the following relation: 

 

P W [1 1 2 hAE Wl ]  
 

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W, i.e. 

the stress produced by a suddenly applied load is twice that of the static stress. 
 
Numerical examples: 
 
 

 

1. Referring to the following figure let a mass of 100 kg fall 4cm on to a collar attached 

to a bar of steel 2cm diameter, 3m long. Find the maximum stress set up. Take E= 

205,000 N/mm2. 
 
Applying the relation: 
 

P
A 

 
W [1   1  2hAE Wl ] / A   

 981 1 1  2  40100  205,000  
   

 

  

     

981  3  1000  100    

134 M/mm2 

 
 
 
 
 
 
 
 
 
 



Composite Bars In Tension & Compression:-Temperature stresses in composite 

rods statically indeterminate problem. 

 

Thermal stresses, Bars subjected to tension and Compression 
 

Compound bar: In certain application it is necessary to use a combination of 

elements or bars made from different materials, each material performing a different 

function. In over head electric cables or Transmission Lines for example it is often 

convenient to carry the current in a set of copper wires surrounding steel wires. The 

later being designed to support the weight of the cable over large spans. Such a 

combination of materials is generally termed compound bars. 
 

Consider therefore, a compound bar consisting of n members, each having a 

different length and cross sectional area and each being of a different material. Let all 

member have a common extension ‘x' i.e. the load is positioned to produce the same 

extension in each member.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where Fn is the force in the nth member and An and Ln are its cross - sectional 

area and length. 
 

Let W be the total load, the total load carried will be the sum of all loads for all 

the members. 
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Therefore, each member carries a portion of the total load W proportional of EA 

/ L value. 
 

The above expression may be writen as  
 

if the length of each individual member in same then, we may write  
 

Thus, the stress in member '1' may be determined as 1 = F1 / A1 

 

Determination of common extension of compound bars: In order to 

determine the common extension of a compound bar it is convenient to consider it as 

a single bar of an imaginary material with an equivalent or combined modulus Ec. 
 

Assumption: Here it is necessary to assume that both the extension and original 

lengths of the individual members of the compound bar are the same, the strains in all 

members will than be equal. 
 

Total load on compound bar = F1 + F2+ F3 +………+ Fn 

 

where F1 , F 2 ,….,etc are the loads in members 1,2 etc 
 

But force = stress . area,therefore 
 

(A 1 + A 2 + ……+ A n ) =  1 A1 +  2 A2 + ........+  n An 

 

Where is the stress in the equivalent single bar 
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Dividing throughout by the common strain   .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The extension of any Length L is given by L t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general, changes in lengths due to thermal strains may be calculated form 

equation t = Lt, provided that the members are able to expand or contract freely, a 

situation that exists in statically determinates structures. As a consequence no 
stresses are generated in a statically determinate structure when one or more 

members undergo a uniform temperature change. If in a structure (or a compound 
bar), the free expansion or contraction is not allowed then the member becomes s 

statically indeterminate, which is just being discussed as an example of the compound 
bar and thermal stresses would be generated. 
 

If the two materials are now rigidly joined as a compound bar and subjected to 
the same temp. rise, each materials will attempt to expand to its free length position 
but each will be affected by the movement of the other. The higher coefficient of 
expansion material (brass) will therefore, seek to pull the steel up to its free length 
position and conversely, the lower coefficient of expansion martial (steel) will try to 
hold the brass back. In practice a compromised is reached, the compound bar 
extending to the position shown in fig (c), resulting in an effective compression of the 



brass from its free length position and an effective extension of steel from its free 
length position. 
 
 
 
 
 
 

Two Dimensional State of Stress and Strain: Principal stresses. Numerical 

examples 
 
Stresses on oblique plane: Till now we have dealt with either pure normal direct 

stress or pure shear stress. In many instances, however both direct and shear stresses 

acts and the resultant stress across any section will be neither normal nor tangential 

to the plane. A plane stse of stress is a 2 dimensional stae of stress in a sense that 

the stress components in one direction are all zero i.e 
 
z =  yz =  zx = 0 
 

Examples of plane state of stress include plates and shells. Consider the general 

case of a bar under direct load F giving rise to a stress y vertically 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The stress acting at a point is represented by the stresses acting on the faces of the 

element enclosing the point. The stresses change with the inclination of the planes 

passing through that point i.e. the stress on the faces of the element vary as the 

angular position of the element changes. Let the block be of unit depth now 

considering the equilibrium of forces on the triangle portion ABC. Resolving forces 

perpendicular to BC, gives 
 
.BC.1 =  y sin  . AB.1 

 

but AB/BC = sin or AB = BC sin 
 

Substituting this value in the above equation, we get 
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.BC.1 =  y sin  . BC sin  . 1 ory sin
2 2 (1) 

 
Now resolving the forces parallel to BC 
 
.BC.1 =  y cos  . AB sin. 1 

 

again AB = BC cos 
 
.BC.1 =  y cos  . BC sin  .1 or   =  y sin  cos 

 

  

1 
.  y sin 2 (2) 2 

     

If = 900 the BC will be parallel to AB and = 0, i.e. there will be only direct stress or 

normal stress. 
 
By examining the equations (1) and (2), the following conclusions may be drawn 
 

(i) The value of direct stress   is maximum and is equal to  y when v= 900. 
 

(ii) The shear stress   has a maximum value of 0.5  y when  = 450 
 

Material subjected to pure shear: 
 

Consider the element shown to which shear stresses have been applied to the 

sides AB and DC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Complementary shear stresses of equal value but of opposite effect are then set 

up on the sides AD and BC in order to prevent the rotation of the element. Since the 

applied and complementary shear stresses are of equal value on the x and y planes. 

Therefore, they are both represented by the symbol xy. 
 

Now consider the equilibrium of portion of PBC 
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Assuming unit depth and resolving normal to PC or in the direction of 
 

.PC.1 = xy .PB.cos  .1+ xy .BC.sin  .1 
 

= xy .PB.cos +  xy .BC.sin 
 

Now writing PB and BC in terms of PC so that it cancels out from the two 

sides PB/PC = sin BC/PC = cos 
 

.PC.1 =  xy .cos  sin  PC+ xy .cos  .sin  .PC 
 

= 2 xy sin  cos 
 

Or,2 xy sin 2 (1) 
 

Now resolving forces parallel to PC or in the direction of .then xy PC.1 = xy 

. PB sin - xy BC cos 
 
-ve sign has been put because this component is in the same direction as that of . 

again converting the various quantities in terms of PC we have 
 

xy PC. 1 = xy . PB.sin2     xy - xy PCcos2 

 

= - xy [cos2  - sin2  ] 
 

= - xy cos2 (2) 
 
the negative sign means that the sense of is opposite to that of assumed one. Let 

us examine the equations (1) and (2) respectively 

 

=  xy sin2 
 

The equation (1) represents that the maximum value of is xy when = 450.Let us take 

into consideration the equation (2) which states that 
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= -  xy cos2 
 

It indicates that the maximum value of is xy when = 00 or 900. it has a value zero when = 

450. 
 
From equation (1) it may be noticed that the normal component has maximum and 

minimum values of + xy (tension) and xy(compression) on plane at ± 450 to the applied 

shear and on these planes the tangential component is zero. 

Hence the system of pure shear stresses produces and equivalent direct stress system, 

one set compressive and one tensile each located at 450 to the original shear directions 

as depicted in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Thin cylinder and thin spherical shells under internal pressure and 
 
numerical examples. Wire winding of thin cylinders. Numerical examples. 
 
 

Cylindrical Vessel with Hemispherical Ends: 
 

Let us now consider the vessel with hemispherical ends. The wall thickness of the 

cylindrical and hemispherical portion is different. While the internal diameter of both 

the portions is assumed to be equal 
 

Let the cylindrical vassal is subjected to an internal pressure p.  
 
 
 
 
 
 
 
 
 
 
 

 

For the Cylindrical Portion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For The Hemispherical Ends:  
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Because of the symmetry of the sphere the stresses set up owing to internal pressure 

will be two mutually perpendicular hoops or circumferential stresses of equal values. 

Again the radial stresses are neglected in comparison to the hoop stresses as with 

this cylinder having thickness to diametre less than1:20. 
 

Consider the equilibrium of the half – sphere 
 

Force on half-sphere owing to internal pressure = pressure x projected Area 
 

= p.  d2/4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and 

the spherical ends to expand by a different amount under the action of internal 
pressure. So owing to difference in stress, the two portions (i.e. cylindrical and 
spherical ends) expand by a different amount. This incompatibly of deformations 

causes a local bending and sheering stresses in the neighborhood of the joint. Since 
there must be physical continuity between the ends and the cylindrical portion, for this 
reason, properly curved ends must be used for pressure vessels. 
 

Thus equating the two strains in order that there shall be no distortion of the junction  
 
 
 
 

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

t2 / t1 = 0.7/1.7 or 

 

t1 2.4t2 

 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the 

hemispheroid ends for no distortion of the junction to occur. 
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SUMMARY OF THE RESULTS : Let us summarise the derived results 
 

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p 

are : 
 

(i) Circumferential or loop stress 
 

H = pd/2t 

 

(ii) Longitudinal or axial stress 
 

L = pd/4t 

 

Where d is the internal diametre and t is the wall thickness of the cylinder. 

then 

 
Longitudinal strain L = 1 / E [ L− H] 

 

Hoop stain H = 1 / E [ H − ν L ] 

 

(B) Change of internal volume of cylinder under pressure 
 
 
 
 

 

(C) Fro thin spheres circumferential or loop stress  
 
 
 
 

 

Thin rotating ring or cylinder 
 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal 

pressure p caused by the centrifugal effect of its own mass when rotating. The 

centrifugal effect on a unit length of the circumference is 
 

p = m ω2 r  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 19.1: Thin ring rotating with constant angular velocity 
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Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal 

effect if its own mass when rotating. 
 

Thus considering the equilibrium of half the ring shown in the figure, 
 

2F = p x 2r (assuming unit length), as 2r is the projected area 
 

F = pr 
 

Where F is the hoop tension set up owing to rotation. 
 

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed 

constant across the wall thickness. 
 

F = mass x acceleration = m ω
2
 r x r 

 

This tension is transmitted through the complete circumference and therefore is resisted 

by the complete cross – sectional area. 
 

hoop stress = F/A = m ω
2
 r

2
 / A 

 

Where A is the cross – sectional area of the ring. 
 

Now with unit length assumed m/A is the mass of the material per unit volume, i.e.  
the density . 

 

hoop stress H = ω2 r2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Torsion of solid circular shafts 
 
Torsion of circular shafts 

 
Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = 

F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion.  
 
 
 
 
 
 
 
 
 
 
 

 
Effects of Torsion: The effects of a torsional load applied to a bar are 
 
(i) To impart an angular displacement of one end cross – section with respect to the other end. 
 
(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

 
Assumption: 

 
(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material. 
 
(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain. 
 
(iii) The stress does not exceed the elastic limit. 
 
(iv) The circular section remains circular 
 
(v) Cross section remain plane. 
 
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. 
 
Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end being fixed 

Under the action of this torque a radial line at the free end of the shaft twists through an angle , point A moves to 

B, and AB subtends an angle ‘ ' at the fixed end. This is then the angle of distortion of the shaft i.e the shear strain. 
 
Since angle in radius = arc / Radius 
 
arc AB = R 
 

= L [since L and also constitute the arc AB] 
 
Thus, = R  / L (1) 
 
From the definition of Modulus of rigidity or Modulus of elasticity in shear 
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Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress '.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The force set up on each element 
 
= stress x area 
 
= ' x 2  r dr (approximately) 
 
 
= ' . 2  r dr . r 
 

= 2   ' . r2. dr 
 

The total torque T on the section, will be the sum of all the contributions.  
 
Since ' is a function of r, because it varies with radius so writing down ' in terms of r from the equation (1). 
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Where 
 
T = applied external Torque, which is constant over Length L; 

J = Polar moment of Inertia 
 

[ D = Outside diameter ; d = inside diameter ] 

G = Modules of rigidity (or Modulus of elasticity in shear) 
 
= It is the angle of twist in radians on a length L. 
 
Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist 

i.e, k = T / = GJ / L 

Power Transmitted by a shaft : If T is the applied Torque and is the angular velocity of the shaft, then the 

power transmitted by the shaft is 
 
 
 
 

 

TORSION OF HOLLOW SHAFTS: 
 
From the torsion of solid shafts of circular x – section , it is seen that only the 

material at the outer surface of the shaft can be stressed to the limit assigned as an 
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allowable working stresses. All of the material within the shaft will work at a lower 

stress and is not being used to full capacity. Thus, in these cases where the weight 

reduction is important, it is advantageous to use hollow shafts. In discussing the 

torsion of hollow shafts the same assumptions will be made as in the case of a solid 

shaft. The general torsion equation as we have applied in the case of torsion of solid 

shaft will hold good 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hence by examining the equation (1) and (2) it may be seen that the max
m in the case 

of hollow shaft is 6.6% larger than in the case of a solid shaft having the same outside 

diameter. 
 
Reduction in weight: 
 
Considering a solid and hollow shafts of the same length 'l' and density ' ' with di = 1/2 

Do 
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Hence the reduction in weight would be just 25%. 
 
Illustrative Examples : 
 
Problem 1 
 
A stepped solid circular shaft is built in at its ends and subjected to an externally applied 

torque. T0 at the shoulder as shown in the figure. Determine the angle of rotation 0 of the 

shoulder section where T0 is applied ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Shear Force and Bending Moment 
 

Concept of Shear Force and Bending moment in beams: 
 
When the beam is loaded in some arbitrarily manner, the internal forces and moments 

are developed and the terms shear force and bending moments come into pictures 

which are helpful to analyze the beams further. Let us define these terms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1 
 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, 

P2, P3 and is simply supported at two points creating the reactions R1 and R2 

respectively. Now let us assume that the beam is to divided into or imagined to be cut 

into two portions at a section AA. Now let us assume that the resultant of loads and 

reactions to the left of AA is ‘F' vertically upwards, and since the entire beam is to 

remain in equilibrium, thus the resultant of forces to the right of AA must also be F, 

acting downwards. This forces ‘F' is as a shear force. The shearing force at any x-

section of a beam represents the tendency for the portion of the beam to one side of 

the section to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force ‘F' to as follows: 
 
At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral 

components of the forces acting on either side of the x-section. 
 
Sign Convention for Shear Force: 
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The usual sign conventions to be followed for the shear forces have been illustrated 

in figures 2 and 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 2: Positive Shear Force  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3: Negative Shear Force 
 
Bending Moment: 
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Fig 4 
 

Let us again consider the beam which is simply supported at the two prints, carrying 

loads P1, P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let 

us imagine that the beam is cut into two potions at the x-section AA. In a similar 

manner, as done for the case of shear force, if we say that the resultant moment about 

the section AA of all the loads and reactions to the left of the x-section at AA is M in 

C.W direction, then moment of forces to the right of x-section AA must be ‘M' in C.C.W. 

Then ‘M' is called as the Bending moment and is abbreviated as B.M. Now one can 

define the bending moment to be simply as the algebraic sum of the moments about 

an x-section of all the forces acting on either side of the section 
 
Sign Conventions for the Bending Moment: 
 
For the bending moment, following sign conventions may be adopted as indicated in 

Fig 5 and Fig 6. 
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Fig 5: Positive Bending Moment  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Negative Bending Moment 
 
Some times, the terms ‘Sagging' and Hogging are generally used for the positive and 

negative bending moments respectively. 
 
Bending Moment and Shear Force Diagrams: 
 

The diagrams which illustrate the variations in B.M and S.F values along the length of 

the beam for any fixed loading conditions would be helpful to analyze the beam further. 
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear 

force ‘F' varies along the length of beam. If x dentotes the length of the beam, then F 

is function x i.e. F(x). 

Similarly a bending moment diagram is a graphical plot which depicts how the internal 

bending moment ‘M' varies along the length of the beam. Again M is a function x i.e. 

M(x). 
 
Basic Relationship Between The Rate of Loading, Shear Force and Bending 

Moment: 
 
The construction of the shear force diagram and bending moment diagrams is greatly 

simplified if the relationship among load, shear force and bending moment is 

established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load 

w/length. Let us imagine to cut a short slice of length dx cut out from this loaded beam 

at distance ‘x' from the origin ‘0'. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us detach this portion of the beam and draw its free body diagram.  
 
 
 
 
 
 
 
 
 
 
 
 

The forces acting on the free body diagram of the detached portion of this loaded 

beam are the following 
 
• The shearing force F and F+ δF at the section x and x + δx respectively. 
 
• The bending moment at the sections x and x + δx be M and M + dM respectively. 
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• Force due to external loading, if ‘w' is the mean rate of loading per unit length then 

the total loading on this slice of length δx is w. δx, which is approximately acting 

through the centre ‘c'. If the loading is assumed to be uniformly distributed then it would 

pass exactly through the centre ‘c'. 

This small element must be in equilibrium under the action of these forces and 

couples. 

Now let us take the moments at the point ‘c'. Such that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions: From the above relations,the following important conclusions may be 

drawn 
 
• From Equation (1), the area of the shear force diagram between any two points, 

from the basic calculus is the bending moment diagram 

 
 
• The slope of bending moment diagram is the shear force, thus  
 
 
 
 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending 

moment is therefore constant.' 
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• The maximum or minimum Bending moment occurs where  
 
The slope of the shear force diagram is equal to the magnitude of the intensity of the 

distributed loading at any position along the beam. The –ve sign is as a consequence 

of our particular choice of sign conventions 

 
 
 
 

 

Procedure for drawing shear force and bending moment diagram: 
 
Preamble: 
 

The advantage of plotting a variation of shear force F and bending moment M in a 

beam as a function of ‘x' measured from one end of the beam is that it becomes easier 

to determine the maximum absolute value of shear force and bending moment. 

Further, the determination of value of M as a function of ‘x' becomes of paramount 

importance so as to determine the value of deflection of beam subjected to a given 

loading. 
 
Construction of shear force and bending moment diagrams: 
 

A shear force diagram can be constructed from the loading diagram of the beam. In 

order to draw this, first the reactions must be determined always. Then the vertical 

components of forces and reactions are successively summed from the left end of the 

beam to preserve the mathematical sign conventions adopted. The shear at a section 

is simply equal to the sum of all the vertical forces to the left of the section. 

When the successive summation process is used, the shear force diagram should end 

up with the previously calculated shear (reaction at right end of the beam. No shear 

force acts through the beam just beyond the last vertical force or reaction. If the shear 

force diagram closes in this fashion, then it gives an important check on mathematical 

calculations. 
 
The bending moment diagram is obtained by proceeding continuously along the length 

of beam from the left hand end and summing up the areas of shear force diagrams 

giving due regard to sign. The process of obtaining the moment diagram from the 

shear force diagram by summation is exactly the same as that for drawing shear force 

diagram from load diagram. 
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It may also be observed that a constant shear force produces a uniform change in the 

bending moment, resulting in straight line in the moment diagram. If no shear force 

exists along a certain portion of a beam, then it indicates that there is no change in 

moment takes place. It may also further observe that dm/dx= F therefore, from the 

fundamental theorem of calculus the maximum or minimum moment occurs where the 

shear is zero. In order to check the validity of the bending moment diagram, the 

terminal conditions for the moment must be satisfied. If the end is free or pinned, the 

computed sum must be equal to zero. If the end is built in, the moment computed by 

the summation must be equal to the one calculated initially for the reaction. These 

conditions must always be satisfied. 
 
Illustrative problems: 
 
In the following sections some illustrative problems have been discussed so as to 

illustrate the procedure for drawing the shear force and bending moment diagrams 
 
1. A cantilever of length carries a concentrated load ‘W' at its free 

end. Draw shear force and bending moment. 

Solution: 
 
At a section a distance x from free end consider the forces to the left, then F = -W (for 

all values of x) -ve sign means the shear force to the left of the x-section are in 

downward direction and therefore negative 
 
Taking moments about the section gives (obviously to the left of the section) 
 
M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as –ve according to the sign convention) 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 
 
From equilibrium consideration, the fixing moment applied at the fixed end is Wl and 

the reaction is W. the shear force and bending moment are shown as, 
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2. Simply supported beam subjected to a central load (i.e. load acting at the mid-

way) 
 
 
 
 
 
 

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider 

any section X-X from the left end then, the beam is under the action of following forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

If we consider another section Y-Y which is beyond l/2 then 
 

 for all values greater = 

l/2 Hence S.F diagram can be plotted as, 
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.For B.M diagram: 
 
If we just take the moments to the left of the cross-section,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Which when plotted will give a straight relation i.e.  
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It may be observed that at the point of application of load there is an abrupt change 

in the shear force, at this point the B.M is maximum. 
 
3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.  
 
 
 
 
 
 
 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity 

is given w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just 

take the resultant of all the forces on the left of the X-section, then 
 
S.Fxx = -Wx for all values of ‘x'. ---------- (1) 
 
S.Fxx = 0 
 
S.Fxx at x=1 = -Wl 
 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 

Moment at X-X is obtained by treating the load to the left of X-X as a concentrated 

load of the same value acting through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is  
 
 
 
 
 

 

The above equation is a quadratic in x, when B.M is plotted against x this will produces 

a parabolic variation. 

The extreme values of this would be at x = 0 and x = l  
 
 
 
 
 

 

Hence S.F and B.M diagram can be plotted as follows: 
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4. Simply supported beam subjected to a uniformly distributed load [U.D.L].  
 
 
 
 
 
 
 
 
 
 
 

 

The total load carried by the span would be 
 
= intensity of loading x length 
 
= w x l 
 
By symmetry the reactions at the end supports are each wl/2 
 
If x is the distance of the section considered from the left hand end of the beam. 

S.F at any X-section X-X is 
 
 
 
 
 

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of 

the loading. 
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The bending moment at the section x is found by treating the distributed load as acting at 

its centre of gravity, which at a distance of x/2 from the section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear 

force and bending moment can be drawn in the following way will appear as follows: 
 



Bending 
 

 

Loading restrictions: 
 
As we are aware of the fact internal reactions developed on any cross-section of a 

beam may consists of a resultant normal force, a resultant shear force and a resultant 

couple. In order to ensure that the bending effects alone are investigated, we shall put 

a constraint on the loading such that the resultant normal and the resultant shear 

forces are zero on any cross-section perpendicular to the longitudinal axis of the 

member, 

That means F = 0 
 

since  or M = constant. 
 
Thus, the zero shear force means that the bending moment is constant or the bending 

is same at every cross-section of the beam. Such a situation may be visualized or 

envisaged when the beam or some portion of the beam, as been loaded only by pure 

couples at its ends. It must be recalled that the couples are assumed to be loaded in 

the plane of symmetry. 
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When a member is loaded in such a fashion it is said to be in pure bending. The 

examples of pure bending have been indicated in EX 1and EX 2 as shown below : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When a beam is subjected to pure bending are loaded by the couples at the ends, 

certain cross-section gets deformed and we shall have to make out the conclusion 

that, 

1. Plane sections originally perpendicular to longitudinal axis of the beam remain 

plane and perpendicular to the longitudinal axis even after bending , i.e. the cross-

section A'E', B'F' ( refer Fig 1(a) ) do not get warped or curved. 

2. In the deformed section, the planes of this cross-section have a common 

intersection i.e. any time originally parallel to the longitudinal axis of the beam 

becomes an arc of circle. 
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We know that when a beam is under bending the fibres at the top will be lengthened 

while at the bottom will be shortened provided the bending moment M acts at the ends. 

In between these there are some fibres which remain unchanged in length that is they 

are not strained, that is they do not carry any stress. The plane containing such fibres 

is called neutral surface. 

The line of intersection between the neutral surface and the transverse exploratory 

section is called the neutral axisNeutral axis (N A) . 
 
Bending Stresses in Beams or Derivation of Elastic Flexural formula : 
 

In order to compute the value of bending stresses developed in a loaded beam, let us 

consider the two cross-sections of a beamHE and GF , originally parallel as shown in 

fig 1(a).when the beam is to bend it is assumed that these sections remain parallel 

i.e.H'E' and G'F' , the final position of the sections, are still straight lines, they then 

subtend some angle  . 
 
Consider now fiber AB in the material, at adistance y from the N.A, when the beam 

bends this will stretch to A'B' 
 
 
 
 
 
 
 
 
 
 
 

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the 

neutral axis zero. Therefore, there won't be any strain on the neutral axis 
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a 

fibre at a distance ‘y' from the N.A, is given by the expression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now the term is the property of the material and is called as a second moment 

of area of the cross-section and is denoted by a symbol I. 
 
Therefore  
 
 
 
 
 
 
 
 

This equation is known as the Bending Theory Equation.The above proof has 

involved the assumption of pure bending without any shear force being present. 
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Therefore this termed as the pure bending equation. This equation gives distribution 

of stresses which are normal to cross-section i.e. in x-direction. 
 
Section Modulus: 
 
From simple bending theory equation, the maximum stress obtained in any cross-

section is given as 
 
 

 

For any given allowable stress the maximum moment which can be accepted by a 

particular shape of cross-section is therefore 
 
 
 

 

For ready comparison of the strength of various beam cross-section this relationship 

is some times written in the form 
 

 Is termed as section modulus 
 
The higher value of Z for a particular cross-section, the higher the bending moment 

which it can withstand for a given maximum stress. 
 
Theorems to determine second moment of area: There are two theorems which 

are helpful to determine the value of second moment of area, which is required to be 

used while solving the simple bending theory equation. 
 
Second Moment of Area : 
 
Taking an analogy from the mass moment of inertia, the second moment of area is 

defined as the summation of areas times the distance squared from a fixed axis. (This 

property arised while we were driving bending theory equation). This is also known as 

the moment of inertia. An alternative name given to this is second moment of area, 

because the first moment being the sum of areas times their distance from a 
 

given axis and the second moment being the square of the distance or  . 
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Consider any cross-section having small element of area d A then by the definition 
 

Ix(Mass Moment of Inertia about x-axis) =  and Iy(Mass Moment of Inertia about 

y-axis) =  
 
Now the moment of inertia about an axis through ‘O' and perpendicular to the plane 
 
of figure is called the polar moment of inertia. (The polar moment of inertia is also the 
 
area moment of inertia). 
 
i.e, 
 

J = polar moment of inertia  
 
 
 
 
 
 
 
 
 
 

The relation (1) is known as the perpendicular axis theorem and may be stated as 

follows: 
 
The sum of the Moment of Inertia about any two axes in the plane is equal to the 

moment of inertia about an axis perpendicular to the plane, the three axes being 

concurrent, i.e, the three axes exist together. 
 
CIRCULAR SECTION : 
 
For a circular x-section, the polar moment of inertia may be computed in the 

following manner 
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Consider any circular strip of thickness  r located at a radius 'r'. 
 
Than the area of the circular strip would be dA = 2 r.  r  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thus 
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Parallel Axis Theorem: 
 
The moment of inertia about any axis is equal to the moment of inertia about a parallel 

axis through the centroid plus the area times the square of the distance between the 

axes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the 

centroid G, of the cross-section, then 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rectangular Section: 
 
For a rectangular x-section of the beam, the second moment of area may be computed 

as below : 
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Consider the rectangular beam cross-section as shown above and an element of area 

dA , thickness dy , breadth B located at a distance y from the neutral axis, which by 

symmetry passes through the centre of section. The second moment of area I as 

defined earlier would be 
 
 
 

Thus, for the rectangular section the second moment of area about the neutral axis 

i.e., an axis through the centre is given by 
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Similarly, the second moment of area of the rectangular section about an axis through 

the lower edge of the section would be found using the same procedure but with 

integral limits of 0 to D . 
 

Therefore  
 
These standards formulas prove very convenient in the determination of INA for build 

up sections which can be conveniently divided into rectangles. For instance if we just 

want to find out the Moment of Inertia of an I - section, then we can use the above 

relation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Use of Flexure Formula: 
 
Illustrative Problems: 
 

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 

20 mm is used as simply supported beam for a span of 7 m. The girder carries a 

distributed load of 5 KN /m and a concentrated load of 20 KN at mid-span. 

Determine the 

(i). The second moment of area of the cross-section of the girder 
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(ii). The maximum stress set up. 
 
Solution: 
 
The second moment of area of the cross-section can be determained as follows : For 

sections with symmetry about the neutral axis, use can be made of standard I value 

for a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be 

divided into convenient rectangles for each of which the neutral axis passes through 

the centroid. Example in the case enclosing the girder by a rectangle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computation of Bending Moment: 
 
In this case the loading of the beam is of two types 
 
(a) Uniformly distributed load 
 
(b) Concentrated Load 
 
In order to obtain the maximum bending moment the technique will be to consider 

each loading on the beam separately and get the bending moment due to it as if no 

other forces acting on the structure and then superimpose the two results. 
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Hence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Shearing Stresses in Beams 
 
All the theory which has been discussed earlier, while we discussed the bending stresses 

in beams was for the case of pure bending i.e. constant bending moment acts along the 

entire length of the beam. 

 
 
 
 
 
 
 
 
 
 
 



 

 
  



Deflection of Beams 
 

Deflection of Beams 
 
Introduction: 
 

In all practical engineering applications, when we use the different components, 

normally we have to operate them within the certain limits i.e. the constraints are 

placed on the performance and behavior of the components. For instance we say that 

the particular component is supposed to operate within this value of stress and the 

deflection of the component should not exceed beyond a particular value. 
 
In some problems the maximum stress however, may not be a strict or severe 

condition but there may be the deflection which is the more rigid condition under 

operation. It is obvious therefore to study the methods by which we can predict the 

deflection of members under lateral loads or transverse loads, since it is this form of 

loading which will generally produce the greatest deflection of beams. 
 
Assumption: The following assumptions are undertaken in order to derive a 

differential equation of elastic curve for the loaded beam 
 
1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid 

only for beams that are not stressed beyond the elastic limit. 

2. The curvature is always small. 
 
3. Any deflection resulting from the shear deformation of the material or shear 

stresses is neglected. 

It can be shown that the deflections due to shear deformations are usually small and 

hence can be ignored. 
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Consider a beam AB which is initially straight and horizontal when unloaded. If under 

the action of loads the beam deflect to a position A'B' under load or infact we say that 

the axis of the beam bends to a shape A'B'. It is customary to call A'B' the curved axis 

of the beam as the elastic line or deflection curve. 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the 

bending moment M varies along the length of the beam and we represent the variation 

of bending moment in B.M diagram. Futher, it is assumed that the simple bending 

theory equation holds good. 
 
 
 

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature 

at every point is different; hence the slope is different at different points. 

To express the deflected shape of the beam in rectangular co-ordinates let us take 

two axes x and y, x-axis coincide with the original straight axis of the beam and the y 

– axis shows the deflection. 
 
Futher,let us consider an element ds of the deflected beam. At the ends of this element 

let us construct the normal which intersect at point O denoting the angle between these 

two normal be di 

But for the deflected shape of the beam the slope i at any point C is defined,  
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This is the differential equation of the elastic line for a beam subjected to bending in 

the plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the 

deflection curve as it is frequently called. 
 
Relationship between shear force, bending moment and deflection: The 

relationship among shear force,bending moment and deflection of the beam may be 

obtained as 
 
Differentiating the equation as derived  
 
 
 
 
 
 
 

 

Therefore, the above expression represents the shear force whereas rate of intensity 

of loading can also be found out by differentiating the expression for shear force 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Methods for finding the deflection: The deflection of the loaded beam can be 

obtained various methods.The one of the method for finding the deflection of the beam 

is the direct integration method, i.e. the method using the differential equation which 

we have derived. 
 
Direct integration method: The governing differential equation is defined as 
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Where A and B are constants of integration to be evaluated from the known conditions 

of slope and deflections for the particular value of x. 
 
Illustrative examples : let us consider few illustrative examples to have a familiarty 

with the direct integration method 

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is 

subjected to a concentrated load W at the free end, it is required to determine the 

deflection of the beam 
 
 
 
 
 
 
 
 
 
 
 

 

In order to solve this problem, consider any X-section X-X located at a distance x from 

the left end or the reference, and write down the expressions for the shear force abd 

the bending moment 
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The constants A and B are required to be found out by utilizing the boundary 
 

conditions as defined below  

i.e at x= L ; y= 0-------------------- (1) 

at x = L ; dy/dx = 0   -------------------- (2) 
 
Utilizing the second condition, the value of constant A is obtained as 
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Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever 

beam is subjected to U.d.l with rate of intensity varying w / length.The same procedure 

can also be adopted in this case 
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Boundary conditions relevant to the problem are as follows: 
 
1. At x = L; y = 0 
 
2. At x= L; dy/dx = 0 
 
The second boundary conditions yields  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a 

simply supported beam is subjected to a uniformly distributed load whose rate of 

intensity varies as w / length. 
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In order to write down the expression for bending moment consider any cross-

section at distance of x metre from left end support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Boundary conditions which are relevant in this case are that the deflection at each 

support must be zero. 

i.e. at x = 0; y = 0 : at x = l; y = 0 
 
let us apply these two boundary conditions on equation (1) because the boundary 

conditions are on y, This yields B = 0. 
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Futher  
 
In this case the maximum deflection will occur at the centre of the beam where x = L/2 

[ i.e. at the position where the load is being applied ].So if we substitute the value of x 

= L/2 
 
 
 
 
 
 

 

Conclusions 
 
(i) The value of the slope at the position where the deflection is maximum would be 

zero. 

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2. 
 
The final equation which is governs the deflection of the loaded beam in this case is  
 
 
 

 

By successive differentiation one can find the relations for slope, bending moment, 

shear force and rate of loading. 
 
 
 
 

Deflection (y)  
 
 
 
 
 
 
 
 

 

Slope (dy/dx)  
 
 
 
 

 

Bending Moment So the bending moment diagram would 
 

105 



 
be  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shear Force 
 
Shear force is obtained by 
 
taking 
 
third derivative.  
 
 
 

 

Rate of intensity of 
 
loading  
 
 
 

 

Case 4: The direct integration method may become more involved if the expression 

for entire beam is not valid for the entire beam.Let us consider a deflection of a simply 

supported beam which is subjected to a concentrated load W acting at a distance 'a' 

from the left end. 
 
 
 
 
 
 
 
 
 

 

Let R1 & R2 be the reactions then,  
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These two equations can be integrated in the usual way to find ‘y' but this will result in 

four constants of integration two for each equation. To evaluate the four constants of 

integration, four independent boundary conditions will be needed since the deflection 

of each support must be zero, hence the boundary conditions (a) and (b) can be 

realized. 

Further, since the deflection curve is smooth, the deflection equations for the same 

slope and deflection at the point of application of load i.e. at x = a. Therefore four 

conditions required to evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 
 
(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 
 
(c) at x = a; dy/dx, the slope is same for both portion 
 
(d) at x = a; y, the deflection is same for both 

portion By symmetry, the reaction R1 is obtained as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using condition (c) in equation (3) and (4) shows that these constants should be 

equal, hence letting 

K1=K2=K 
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Hence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the 

condition (d) is that, 

At x = a; y; the deflection is the same for both portion 
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 

more simpler way. Let us considering the origin at the point of application of the load, 
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Boundary conditions relevant for this case are as follows 
 

(i) at x = 0; dy/dx= 

0 hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we 

have taken the origin at the centre) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hence the integration method may be bit cumbersome in some of the case. Another 

limitation of the method would be that if the beam is of non uniform cross section, 
 
 
 
 
 

i.e. it is having different cross-section then this method also fails. 
 
So there are other methods by which we find the deflection like 
 
1. Macaulay's method in which we can write the different equation for bending 

moment for different sections. 
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2. Area moment methods  


