AL Muthanna University, College of Engineering, Dep. Of Civil Eng. Mathematics, 2" Year

Polar Coordinates

Consider the rectangular coordinate system.

We want to find another way to get to the point (X, y). One way to do this is to use an angle 0 and a

distance r. It will look like this

0 = directed angle
Polar
axis

e To form the polar coordinate system in the plane, fix a point O, called the pole (or origin),
and construct from O an initial ray called the polar axis, as shown in the above figure. Then,
each point (P) in the plane can be assigned polar coordinates (r, 0).

Where

r = directed distance from O to P

0 = directed angle, counter clockwise from polar axis to OP.

P(r, 6)

/N

Directed distance Directed angle from
from O to P initial ray to OP

e The 0 coordinate in (r, 0) is this angle, in degree or radian measure. The angle 0 is positive if

the rotation is counterclockwise and negative if the rotation is clockwise.
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e The r coordinate in (r, 0) is the directed distance from the pole to the point P. It is positive if

measured from the pole along the terminal side of 6 and negative if measured along the
terminal side extended through the pole.
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With rectangular coordinates, each point (x.») has a unique representation. This is not true with
polar coordinates. For instance, the coordinates (r.6) and (r,27+ &) represent the same point.

Also because ris a directed distance, the coordinates (.6) and (—r.7+6) represent the same

point.

Sign conversion

0:+ve when measured counter clockwise

0:-ve when measured clockwise

r:+ in the direction of 0

r:- in the opposite direction of 6

e Three are infinite pairs of polar coordinates of each point
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EXAMPLE 1 Find all the polar coordinates of the point P(2, 7 /6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of 77 /6 radians with the initial ray, and mark the point (2, 7/6)

(Figure 11.22). We then find the angles for the other coordinate pairs of P in which r = 2
and r = —2.

For r = 2, the complete list of angles is

mm 4 T4 (LS
G 6_2'n', 6_411', 6_677,.

For r = —2, the angles are
S S S5 S5
== == + —=2 + =27 4
6" 6_217, 6_477, 6_677,

The corresponding coordinate pairs of P are

(2,%+2nﬂ'), n=0+1,+2. ...

and
(—2,—%’7 + 2nﬂ'), n=0,+1, +2. ...,

When n = 0, the formulas give (2, 7/6) and (—2,—57/6). When n = 1, they give
(2, 137 /6) and (—2, 77 /6), and so on. [ |
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—57/6

Coordinates conversion
To establish the relationship between polar and rectangular (Cartesian) coordinates, let the polar

axis to coincide with the positive x-axis and the pole with the origin.

" (r, 6)
(‘v .) 3
o tan (&) .
.
ik cos(é))zﬁ, and sin(ﬁ)zl

\6 = — X

’ Polar axis
(x-axis)

Pole

= 4

(Origin)

The polar coordinates (r, 6) of a point are related to the rectangular coordinates
(x, y) of the point as follows.

1. x=rcos 0 2. tan @ =

y=rsinf r
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Example 2: Convert each of the following points into the given coordinate system.

27
a) —4,? into Cartesian coordinates

b) (—l,—l) into Polar coordinates

Solution

a) r=-4,0=2n73

X =-4 cos (2n/3) =4 cos (n/3) =2

= =-4 sin (2n/3) = =-4 sin (1/3) = -2+/3

The point is (2, -2v3)

b) (-1, -1) is on the Il quadrant, and tan(6) =1, ==) 0 =5m/4
r2=2 mm) r=12
The point is (V2, 51/4).
EXAMPLE 3 Plotting Points in a Polar Coordinate System

Plot the following points in a polar coordinate system:

(A) A(3, 30°), B(—8, 180°), (5, —135°), D(—10, —45°)
(B) A(5, w/3), B(—6, 57/6), C(7, —w/2), D(—4, —w/6)

Solutions  (A) (B)

NIE]

Mathematics, 2™ Year

270°
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Note: From the signs of x and y the quadrant for 0 can determined.

EXAMPLE 4 Converting from Polar to Rectangular Form, and Vice Versa

(A) Convert the polar coordinates (—4, 1.077) to rectangular coordinates to three
decimal places.

(B) Convert the rectangular coordinates (—3.207, —5.719) to polar coordinates with
0 in degree measure, —180° << 8 =< 180° and r = 0.

Solution (A) Use a calculator set in radian mode.

(r, ) = (—4, 1.077)
x=rcos9 =(—4)cos 1.077 = —1.896

y=rsmb=(—4) smn 1.077 = -3

522
Rectangular coordinates are (—1. 896. —3.522)

(B) Use a calculator set in degree mode.

(x, ) = (—3.207, —5.719)

r=Vx>+3y* = V(—3207) + (—5.719)> = 6.557

y —5.719
fang == =—""—-
X —3.207

0 1s a third-quadrant angle and 1s to be chosen so that

—5.719
0= —180° + tan ! ——— = —119.28°
—3.207

Polar coordinates are (6.557, —119.28°).
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EXAMPLE 5 Converting an Equation from Rectangular Form to Polar Form
Change x? + 3? — 4y = 0 to polar form.
Solution Use r* = x> + y*>and y = r sin 0.

Z+y —4=0
2 —4rsinh =0
{r—4sin@) =20

=20 or r—4smO =0

The graph of » = 0 1s the pole. Because the pole i1s included in the graph of
r —4smb =0 (let 8 = 0). we can discard » = 0 and keep only

r—4sm =0
or

r=4sm0 The polar form of x? + y? — 4y = C

EXAMPLE 6 Converting an Equation from Polar Form to Rectangular Form
Change » = —3 cos 0 to rectangular form.
Solution  The transformation of this equation as it stands into rectangular form is fairly diffi-

cult. With a little trick, however, it becomes easy. We multiply both sides by r, which
simply adds the pole to the graph. But the pole is already part of the graph of

r = —3cos 0 (let 6 = w/2), so we haven’t actually changed anything.
»= —3cosH
r?= —3rcos® Multiply both sides by r.
£ +}-‘2 = —3x 2= x4 y* and reos @ = x
P+ +3x=0
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GRAPHS IN POLAR COORDINATES

| ; ! A |-"
| 'U‘.-ﬁ'}jlﬁ_[]r (ii"g) (’\Tj

of the form r = £ i

S Licns ;
grdll'hmg equal e examples of such e-qumim

W ‘onsh n of :
We will now consider the probler Ain radians: S

& {2 5 e
coordinates, where f is assumed to be measur
anc

r=

4
fe R e, e = TR
— Asin ; — f(x) consists of all pei
. y = f(x) consi Poin
I a rectangular coordinate system the gr&l_ph of an cquai.loz oolar coordinate system, pq'mh
whose coordinates (x, v) satisfy the equation. H“wj?::[;: ﬁlha[ a given point may hm:l:
 Fa it r coordinaits, '
have infinitely many different pairs of pola ; = f(#) and others that do not. Takjp,

some polir coordinates that satisfy the equation : i S et
e : = f(#) in polar coordinates St of a))
this into account, we define the graph of r =/ tsfy the equation.

HERRY . § : ey . @) that 5a
points with ar least one pair of coordinites (r : . : inates i
The most elementary way to graph an equation r = f(9) n polar coordinates is to ploy

points. The idea is to choose some typical va!ues hichig calcull-‘:ll'ﬂ o Pl-({mdmg Valuey
of r, and then plot the resulting pairs (r. ) in a polar coordinate system. Here are som,

examples.
Example 3 Sketch the graph of the equation r = sin# in polar coordinates by plotiing
points.

Solution. Table 11.1.1 shows the coordinates of points on the graph at increments of
/6 (= 307).

Table 11.1.1
= u sx Tn 4n i Sm lx
2 3 ® x 6 3 Z 3 5 =
1’3__ 1 i = “_1_'3: _.ﬁ 1
2 2 2 2 = 2 - i

———— - 1
DEHDETEHer GH EY D) DG e

Y=

tafx [

Figure 11.1.8

- r = sin# in a rectangular 6r-coordinate

_ These points are plotted in Figure 11.1.7. Note, however, that there are 13 points listed
in the table but only 6 distinet plotted points. This is because the pairs from # =  on yield

duplicates of the preceding points. For example, (—1/2, 77/6) and (1/2, 7/6) represent
the same point. « |

: G{hservc that the points in Figure 11.1.7 appear to
this is s0 by expressing the polar equation r = sing
multiply the equation through by r to obtain

? = rsing

F
which now allows us to apply Formulas (l} !
=y ¥
Rewriting this equation as +% 4 y2 — y =0
Pal=)=14
wh;&h ii: circle of radius § centered at the
s (b gapied o o
graphed in 4 reatangutarmmdmamsystm

how the polar graph in Figure 11.1.7 {
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a four-g
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harp 1
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MUMETRY TESTS

ssssasenrssr  Oheerve that the polar graph of
axis and the y-axis. This symmetry
which is suggeste

cos 26 in Figure 11110 1s symmetric about the x-

could have been predicted from the following theorem,
d by Figure | 1.1.11 (we omit the proof).

| 11.1.1 THEOREM (Symmetry Tests ).
(a) Acurvein polar coo

|
bhout the x-axis if réplacing 8 by =8 |
quarion (Figure 1Lk ak .
(b) Acurve in palar coordinates is symmetric about th

¢ y-axis if replacing 8 by m =8
' ' igur Alb)
' wation produces an equivalent equaton (Figure 11.1.115]
in its equd

1 At SFET he
ve in polar coordinares is SYMmetric about i
- {E’ .fpfm':'.ug ¢ by —r In ils equanon produces
ar by r E :
ure 11.1.11ek

e

rdinates is symmetric d
fis [fquu!r'rm ;H'm.!'m‘f.\' it frqun'u.!'e*m £

origin if replacing #byé+m
an equivalent equation (Fig-

72
(v, =) tr 4 (r, 8)
5 /.-' n
all
{r, 8+ 7}
or
{~£. )
{¢)
(B)
()

Figure 11.1.11
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hof r = cos 260 inFigure 1y |
Example 5 Use Theorem 11.1.1 10 confirm that the grap S

is symmetric about the y-axis and y-axis. W
o replace @ by —#. This yields

Solution. To test for symmetry about the e-iEKisy W
ro= cos{—21) = gos 29

Thus, replacing @ by —# does not alter the equation-
To test for symmetry about the y-axis, we replace
P =008 21t — §) = cos(2pr — 20) = cos(=26) = et

Thus. replacing @ by 7 — ¢ does not alter the equation.

| ]
FOR THEREADER. A gtaph that is symmetric both about the f—e}:;:tﬁahoutlhe-}-m.. 515
also symmetric about the origin. (se Theorem 11.1.1e) to verify Lurve ﬁfﬁﬂl@ le:
5 i also symmetric about the origin.

Example 6 Sketch the graph of # = a(1 — cos@) in polar coordinates, assuming g 1o b,
@ positive constant,
Solution. Obscrve first that replacing f by —# does not alter the equation. 5o we know i
advance that the graph is symmetric about the polar axis. Thus, if we graph the upper hyjs
of the curve, then we can obtain the lower half by reflection about the polar axis; i
As inour preyious examples. we will first graph the equation in mgnhmm
This graph, which is shown in Figure 11.1.12a, can be obtained by rewriting the givey
equation as.r = g —a cosd, from which we S&ﬁ' that the g_raph in mmgahmm
can be obtained by first reflecting the graph of r = @ cos@ about the x-axis to obiain the
graph of ¥ = —a cos#. and then translating that graph up @ units to obtain the graph of
r = a — acosfl. Now we can see that:

dbyw— . This yields

-

« As 0 varies from 0 to /3, r increases from 0 to a/2.

o As @ varies from 7/3 to /2, r increases from a/2 o a.

e Asf varies from 7/2 to 27/3, r increases from a to 3a/2.
« As @ varies from 27/3 to 7, r increases from 3a/(2 to 2a.

This produces the polar curve shown in Figure 11.1.12b. The rest of the curve can be
obtained by continuing the preceding analysis from 7 to 27 or, as noted above, by refiecting
the portion already graphed about the x-axis (Figure 11.1.12¢). This heart-shaped curve s
called a cardivid (from the Greek word “kardia” for heart). <

o g BE R

Figure 11.1.12
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"Clution (a). Fo
: . T {'L” ‘Iﬂlu{{‘,& . :
graph is the circle of radiye I O A, the paint (1, #) 15 | unit away from the pole. Thus, the

e niered at the pole {Figure 11.1.13a)
olution (M), For S
on (7). For all values of r

o

! a1 - . the i : i -
JT."II4 with 1l E\;ﬂm‘ anis ”.‘“Igun_. 'y Pt [J.IJ'.rJ-".rl_] lies on a line that makss an angle of
E 4 30), Positive values of » cor respond to points on the

line in the § .
i 1.1 ul Lllld!.jil’i'll'ﬂ. amd negative values of 5 ;
WS 1 absenee of any restriction onr. : T Il! points on the line in the third quadrant,
« the graph is the entire line, Observe, however, that

had we 1mpose

sed the restriction
A iction r = (0, the granih would hive hee : .
quadrant. praph would hinve been just the fay in the first

Solution i

. {'f}. Observe that as 8 increases, so doe < ¥ s o

spirals out from the pole as ¢ inc | *-.. : %0 does r; thus, the graph i5 @ curve thal
: : rEnses. A reasonably s cloteh of the spiral

be obtained b ' f Bonably aceurale sketeh of e spardl can

mulaples of H ?hi:hng l]1E.IE1IE.rﬁEE1i““‘ with the x- and v-axes for values of £ that are
: wid, Keeping in mind that the value of r is always equal to the value of #

{Figure 11.1.13¢) -
i
r\ /‘_ .:'.._- ..I
—0 ) = T e i .
k) LL\ 4_:: /':I
’ | \1’?;;'7
(PR | ot o —
g;zm |_.L‘I] | 8= 4 | =
| o (et} () G
Sl i Figure 11.1.13

¢ pEMARK.  The spiral in Figure | 1.1.13¢. which belongs to the family of Archimedean
: Jockwise around the pole bee

. spirals r = atl, coils counterc ause of the restriction # = 0.
Had we made the restriction & = {). the spiral would have coiled clockwise, and had we
aﬂﬂwgdbnﬁ; -pusi[_'we and the clockwise and counterclockwise spirals
o R . =l

: mm been su'pt:[impl‘rsﬁd 1o form a double Archimedean spiral (Figure 111 4y
~ gketch the graph of % — Acos 26 in polar coordinates.

equation dogs notexpress rasd funetivon
functions:
and F= —24/cps 20

2 — 4cos 20 we will have o

negative values of

of @, since solving for r in €nNs

araph the two functions separately

guation r
. SET:- Er::?:;-‘ = 3 “os 34 Observe fiest that this equx'mn is not
o by —0 or if we replace € by ™ — ¢, Thus, the gm’ph is syn1mnc
the y-axis. This means that the enuire graph can be “b[“lm"f-} by gmphmz
st quadrant, ceflecting that portion about the y-axis to obtain the portion
- and then reflecting thase two portions about the x-axis to obtain the

3 uadrants.
and fourth g r = 24/cos 26 in rectangular co-

s, we will graph the equation r = g _.
. 11.1.15a). Note that there are gaps that graph over the intervals
spfa < < /4 because cos 20 18 negative for those values of .

1 see that:

L
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A< ¢ varies from O ta /4, r decraases from 2 10 0.
from /4 to /2. no points are generated on the polar graph

. DB VaATIES
Yivis l1|‘:H|l|"-'l'-" ihe pﬁrl'tf_i:n of Er.“: graph shown in‘ﬁgum 11.1.158, kﬂﬂ-ﬁ!'l:d Hhﬂ'ﬁ"a W s
complete the graph by a reflection about the y-axis followed by a reflection about II;u _: A
(11.1.05¢) The resulting propeller-shaped graph 1s called a femni (From the é::s
word “lemniscos™ for a looped tibbon resembling the number 8). We leave it for :
verify that the equation r = 2/cos 20 has the same graphas r = — 2/ cos 20 bm{:m o
in a diagonally opposite manner. Thus, the graph of the equation r* = 4 ¢os Eﬁfcms‘ s
twir identical superimposed lemniscates; - ' il

il il

r:im

Lt} (B {c)

Figure 11.1,15
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FAMILIES OF LINES AND RAYS
THROUGH THE POLE

BEREGRsRERREREREREREEE GERdaRbamaEREEEny

FAMILIES OF CIRCLES

If &, is a fixed angle, then for all values of r the point (r. &) lies on the line that makes
an angle of @ = # with the polar axis; and, conversely, every point on this line has a pair
of polar coordinates of the form (r, 8;). Thus, the equation # = &y represents the ling tha
passes through the pole and makes an angle of € with the polar axis (Figure 11.1.16q) [f+
is restricted to be nonnegative, then the graph of the equation & = #; is the ray Memm
from the pole and makes an angle of #; with the polar axis (Figure 11.1.1668). Thus. aa-.ﬂu
varies, the equation 8 = #, produces either a family of lines through the pole or & family of
riys through the pole, depending on the restrictions on r.

2 w2
By 0 % g
o=t ';&:&utrzu}_l
L) (F.4%

Figure 11.1.15

We will consider three families of circles in w
=g r=2acosd

The equation r = a represents a circle of 1
Thus, as a varies, this equation produces a
(4) and (5), recall from plane geometry the
diameter of the circle for aside mustbe a
and 11.1.17¢, the equation r = 2acosfl :
and tangent to the y-axis at l_hﬂ.wigiﬁi;{ai nila
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of radius o, centered on the yv-axis and Liigen! to the c-akis at the origm. Thus. &5 o vares,
gualions e i e Sk > , : =ty
E-QUr..Iuhh (e (5) produce the families tHusteated in Fieguees 11,1174 and |

i&,

Observe that replacing ¢/ by —0 does not change the eguation r = 2a cos#
ii!'IL-'l replacing # hy 1 — 8 does o chiunge the equation r = 2a sin & This explamns why the
circles in Figure 11.1.174 are svmmetric about the x-axis and those in Figure 11.1.17=are
symmeiric about the y-nxis.

EEEmEEsREAESSERESSSsEEEATERSSEE

o In polar coordinates, equations of the form

r =asinnf r = acosnd H-=T)

in which @ = 0 and n is a positive integer represent families of flower-shaped curves called
roses (Figure 11.1.18). The rose consists of n equally spaced petals of radius a i m 15 odd
and 2n equally spaced petals of radius a if n is even. It can be shown that a rose with an gven
number of petals is traced out exactly once as # varies over the interval 0 < # < Zx and a
rose with an odd number of petals is traced out exactly once as & varies over the interval
() < 8 = x (Exercise 73). A four-petal rose of radius 1 was graphed in Example 4.

ROSE CLRVES

do the graphs of the one-petal roses look like?

e four forms

r=uaxbcosf (8-9)









Steps for finding points of intersection of two polar
curves

To find the points of intersection of two polar curves,
solve both curves for r,
set the two curves equal to each other
solve for 6

Using these steps, we might get more intersection points than actually
exist, or fewer intersection points than actually exist. To verify that we’ve
found all of the intersection points, and only real intersection points, we
graph our curves and visually confirm the intersection points.

We can also convert our polar equations to rectangular equations, solve
for the points of intersection of the rectangular curves, and then convert
the rectangular points of intersection back into polar coordinates. Even
though it’s extra work to convert everything from polar to rectangular,
using this method guarantees that we’ll find all of the points of
intersection, and only the real points of intersection

How to find the points of intersection of polar curves

Two examples of finding intersection points of the
polar curves

Example
Find the points of intersection of the polar curves.

1. r=sin©O
2. r=1-sind

To find the points of intersection of these polar curves, we’ll set them
equal to each other and solve for 6.

Sin 0=1—sin0



2sin 0=1
Sin 6=1/2
0=n/6, 57/6

To find the values of r that are associated with these values of 0, we’ll
plug the 6 values back into either of the original polar curves; we’ll
choose r=Sin®.

For 6=n/6
r=sinmn/6
r=1/2
For 6=5n/6
r=sin5n/6
r=1/2
Putting these values together, the points of intersection are
(1/2,n/6) and (1/2,57/6)

To confirm that these are the points of intersection, we can graph both
curves.

-4.8 -4 -3.2 24 -1.6 -0.8 0 0.8 1.6 24 3.2 4 48
08T




Looking at the graph, we see that (0,0) is also a point of intersection, so in
total, the graphs intersect each other at

(1/2,7/6) and (1/2,57/6) and (0,0)

In the previous example, we had to graph the polar curves in order to find
all of the points of intersection. That’s because we left everything in polar
form.

Let’s try another example where we convert our polar curves into
rectangular coordinates.

Example

Find the points of intersection of the polar curves.
r=cos0
r=2—cos0

We’ll convert the polar curves to rectangular coordinates using the
conversion formula

x=rcosd
cosO=x/r
Plugging x/r into the given polar equations for cosf, we get
r=cos6
r=x/r
x=r?> and r=2—cos0

=2—x/r



r2 =2r-x
X=2r—12

We’ve gotten rid of 0, but now we need to get rid of r, which we’ll
do using the conversion formula

P=x2+y?
r=.,x2+y2

Plugging x?+y?into the given polar equations for r?, and /x2 + y2 in for
r, we get

X=I?

X=x2+y2

x=2./x2 + y2—(x*+y?)
X=2,/x2 + y2—x2-y?

X2+y? -2, [x2 + y2+X=0---------- 2

Since both of our rectangular equations are equal to 0, we can set them
equal to each other.

X24+y? —x=x2+y? 2. /x2 + y2 + X
—Xx=—2,/x2 + y2+X
~2./x2 + y2=-2x

x2 +y2=X



Since we found that x2+y?=x when we were converting r=cos0
to rectangular coordinates, we can say

Vx=x
X=X2
X>—x=0
x(x—1)=0
X(x-1)=0
x=0, 1

To find the y values associated with these x-values, we’ll plug them into
X2+y?—x=0

For x=0
(0)+y*~(0)=0
y=0

For x=1
(1)+y?~(1)=0
y=0

Putting our values together, we know that the points of intersection are
(0,0) and (1,0)

We need to convert these rectangular coordinate points back into polar
coordinates, which we’ll do using the conversion formulas

=/x2 +y2

0=tan—1(y/X)



Plugging the rectangular coordinate points into these formulas, we get

For (0,0)

r=/(0)2 + (0)2 sor=0

Since the equation for \theta is undefined, the rectangular
point (0,0) can’t be defined in polar coordinates and
therefore isn’t a polar point of intersection.

For (1,0)

r=J/(1)2 + (0)2 sor=1
f=tan—1(0/1) so 6=0

The only point of intersection of the given polar curves is the polar point
(1,0).1f we want to double-check ourselves, we can sketch the polar
curves and confirm this point of intersection.

® v

-4.8 -3.2 2.4 24 3.2

24T
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