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= Stress

- Introduction

Mechanics of materials is a branch of mechanics that studies the internal effects of stress and strain in a
solid body that is subjected to an external loading. Stress is associated with the strength of the material
from which the body is made, while strain is a measure of the deformation of the body. In addition to
this, mechanics of materials includes the study of the body’s stability when a body such as a column is
subjected to compressive Loading. A thorough understanding of the fundamentals of this subject is of
vital importance because many of the formulas and rules of design cited in engineering codes are based

upon the principles of this subject.

- Equilibrium of a Deformable Body

Since statics has an important role in both the development and application of mechanics of materials, it
is very important to have a good grasp of its fundamentals. For this reason we will review some of the

main principles of statics that will be used throughout the text.

External Loads. A body is subjected to only two types of external loads; namely, Surface forces and

body forces, Fig. 1-1.
Concentrated force
idealization

Surface Forces. Surface forces are caused by the direct contact
of one body with the surface of another. In all cases these

forces are distributed over the area of contact between the

Surface

bodies. If this area is small in comparison with the total P

surface area of the body, then the surface force can be
idealized as a single concentrated force, which is applied to a Fr

point on the body. For example, the force of the ground on the ' S 5ody

Linear distributed force

wheels of a bicycle can be considered as a concentrated force. e

If the surface loading is applied along a narrow strip of area, Fig. 1-1
the loading can be idealized as a linear distributed load, w(s).
Here the loading is measured as having an intensity of force/length along the strip and is represented

graphically by a series of arrows along the lines. The resultant force Fr of w(s) is equivalent to the area
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under the distributed loading curve and this resultant acts through the centroid C or geometric center
of this area. The loading along the length of a beam is a typical example of where this idealization is

often applied.

Body Forces. A both’ force is developed when one body exerts a force on another body without direct
physical contact between the bodies. Examples include the effects caused by the earth’s gravitation or
its electromagnetic field. Although body forces affect each of the particles composing the body, these
forces are normally represented by a single concentrated force acting on the body. In the case of

gravitation this force is called the weight of the body and acts through the body’s center of gravity.

Internal Resultant Loadings. In mechanics of materials, statics is primarily used to determine the
resultant loadings that act within a body. For example, consider the body shown in Fig. 1-2a, which is
held in equilibrium by the four external forces.* In order to obtain the internal loadings acting on a
specific region within the body, it is necessary to pass an imaginary section or “cut” through the region
where the internal loadings are to be determined. The two parts of the body are then separated, and a
free-body diagram of one of the parts is drawn, Fig. 1-2b. Notice that there is actually a distribution of
internal force acting on the “exposed” area of the section. These forces represent the effects of the
material of the top part of the body acting on the adjacent material of the bottom part.

Although the exact distribution of this internal loading may he unknown, we can use the equations of
equilibrium to relate the external forces on the bottom part of the body to the distribution’s resultant
force And moment, Fr and Mg, at anyispednt O on the sectioned area, Fig. 1 -2c¢. It will be shown
in later portions of the text that point O is most often chosen at the centroid of the sectioned area, and
so we will always choose this location for O, unless otherwise stated. Also, if a member is long and
slender, as in the case of a rod or beam, the section to be considered is generally taken perpendicular to
the longitudinal axis of The member. This section is referred to as the cross section.
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Example: 20N

Determine the resultant internal loadings acting on the cross l T

section at C of the cantilevered beam shown in Fig. 1-4a. l

NRe T

<
3im | 6m |

Solution:

Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is
shown in Fig. 1-4b. It is important to keep the distributed loading on
the segment until after the section is made. Only then should this
loading be replaced by a single resultant force. Notice that the intensity
of the distributed loading at C is found by proportion, i.e., from Fig. 1-4a,
w/6m = (270N/m)/9m, w = 180N/m. The magnitude of the
resultant of the distributed load is equal to the area under the loading
curve (triangle) and acts through the centroid of this area. Thus,
F = 3(180 N/m)(6 m) = 540 N, which acts {6 m) = 2m from C as

shown in Fig. 1-4b. (b)
Equations of Equilibrium. Applying the equations of equilibrium
we have
HIE =0 “Ne=0
Ne=0 Ans.
+13F, = 0; Ve — 540N =0
Ve = 540N Ans.
C+3Mc=0; ~Mc — 540N(2m) = 0
Ms= —1080N-m Ans.

NOTE: The negative sign indicates that M acts in the opposite
direction to that shown on the free-body diagram. Try solving this
problem using segment AC, by first obtaining the support reactions
at A, which are given in Fig. 1-4c.




Al-Muthanna University
College of Engineering
Civil Engineering Department

Lecturer/ Alaa Al-Najjar

Strength Of Materials - Second Year

i 2019-2020

Example:

The 500-kg engine is suspended from the crane boom in Fig. 1-5a.

Determine the resultant internal loadings acting on the cross
section of the boom at point E.

Solution:
Support Reactions. We will consider segment AE of the boom, so
we must first determine the pin reactions at A. Notice that member CD
is a two-force member. The free-body diagram of the boom is shown
in Fig. 1-5b. Applying the equations of equilibrium,
C+3IM, =0; Fep(3)(2 m) — [500(9.81) N](3m) = 0

F(‘D = 122625 N

HIF, =0 A, — (122625N)(3) =0
A, = 9810 N

+13F, = —Ay + (122625 N)(3) — 50009.81)N = 0
A, = 24525 N

Free-Body Diagram. The free-body diagram of segment AE is

shown in Fig. 1-5¢.

Equations of Equilibrium.

LHIF, =0; Np + 9810 N =0

Nz = —9810 N = —9.81 kN Ans.
+13F, = 0; —Vg—24525N =0

Ve = —2452.5 N = —2.45 kN Ans.
C+3IMg = 0; Mg + (2452.5N) (1 m) = 0

Mp = —24525 N-m = —245kN-m Ans.

SOO(9.81)N

(b)

9810 N

(c)
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= Stress

- Introduction

Mechanics of materials is a branch of mechanics that studies the internal effects of stress and strain in a
solid body that is subjected to an external loading. Stress is associated with the strength of the material
from which the body is made, while strain is a measure of the deformation of the body. In addition to
this, mechanics of materials includes the study of the body’s stability when a body such as a column is
subjected to compressive Loading. A thorough understanding of the fundamentals of this sub ject is of
vital importance because many of the formulas and rules of design cited in engineering codes are based

upon the principles of this subject.

- Equilibrium of a Deformable Body

Since statics has an important role in both the development and application of mechanics of materials, it
is very important to have a good grasp of its fundamentals. For this reason we will review some of the

main principles of statics that will be used throughout the text.

External Loads. Abody is subjected to only two types of external loads; namely, Surface forces and body

forces, Fig. 1-1.

Concentrated force

Surface Forces. Surface forces are caused by the direct contact Kealuntion,

of one body with the surface of another. In all cases these

forces are distributed over the area of contact between the

Surface

bodies. If this area is small in comparison with the total =y

surface area of the body, then the surface force can be

idealized as a single concentrated force, which is applied to a Fy

point on the body. For example, the force of the ground on the ' ,,: : I B(jd}'
wheels of a bicycle can be considered as a concentrated force. Li"earlg;%ribm“d e
If the surface loading is applied along a narrow strip of area, Fio. 1-1

the loading can be idealized as a linear distributed load, w(s).
Here the loading is measured as having an intensity of force/length along the strip and is represented

graphically by a series of arrows along the lines. The resultant force Fr of w(s) is equivalent to the area
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under the distributed loading curve« and this resultant acts through the centroid C or geometric center
of this area. The loading along the length of a beam is a typical example of where this idealization is

often applied.

Body Forces. A both’ force is developed when one body exerts a force on another body without direct
physical contact between the bodies. Examples include the effects caused by the earth’s gravitation or
its electromagnetic field. Although body forces affect each of the particles composing the body, these
forces are normally represented by a single concentrated force acting on the body. In the case of

gravitation this force is called the weight of the body and acts through the body’s center of gravity.

Internal Resultant Loadings. In mechanics of materials, statics is primarily used to determine the
resultant loadings that act within a body. For example, consider the body shown in Fig. 1-2a, which is
held in equilibrium by the four external forces.* In order to obtain the internal loadings acting on a
specific region within the body, it is necessary to pass an imaginary section or “cut” through the region
where the internal loadings are to be determined. The two parts of the body are then separated, and a
free-body diagram of one of the parts is drawn, Fig. 1-2b. Notice that there is actually a distribution of
internal force acting on the “exposed” area of the section. These forces represent the effects of the
material of the top part of the body acting on the adjacent material of the bottom part.

Although the exact distribution of this internal loading may he unknown, we can use the equations of
equilibrium to relate the external forces on the bottom part of the body to the distribution’s resultant
force And moment, Fr and Mro, at any specific point O on the sectioned area, Fig. 1-2c. It will be shown
in later portions of the text that point O is most often chosen at the centroid of the sectioned area, and
so we will always choose this location for O, unless otherwise stated. Also, if a member is long and
slender, as in the case of arod or beam, the section to be considered is generally taken perpendicular to
the longitudinal axis of The member. This section is referred to as the cross section.
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Example:
270N/m

Determine the resultantinternal loadings acting on the cross T o .
section at C of the cantilevered beam shown in Fig. 1-4a. l ¢ l L W o

| (
=—3m 6m |

(a)

Fig. 1-4

Solution:

Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is
shown in Fig. 1-4b. It is important to keep the distributed loading on
the segment until after the section is made. Only then should this 0N
loading be replaced by a single resultant force. Notice that the intensity 180 N/m
of the distributed loading at C is found by proportion, i.e., from Fig. 1-4a, s
w/6m = (270N/m)/9m, w = I180N/m. The magnitude of the
resultant of the distributed load is equal to the area under the loading
curve (triangle) and acts through the centroid of this arca. Thus
F = 3(180N/m)(6 m) = 540 N, which acts ¥6m) = 2m from C as

shown in Fig. 1-4b. (b)
Equations of Equilibrium. Applying the equations of equilibrium
we have
i’. E"} = 0: _N(‘ = 0
Ne=0 Ans.
+13K =0 Ve ~ S40N = 0
Ve = 540N Ans.
C+IMc=0; ~M¢ ~ S40N2m) = 0
Me= ~1080N'm Ans.
NOTE: The negative sign indicates that Mg acts in the opposite wn-mat
direction to that shown on the free-body diagram. Try solving this h m'l'{’l"‘s m-l"c
problem using segment AC, by first obtaining the support reactions 05Sm
at A, which are given in Fig. 1-4c¢. (c)
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Example:

The 500-kg engine is suspended from the crane boom in Fig. 1-5a.
Determine the resultantinternal loadings acting on the cross
section of the boom at point E.

Solution:

Support Reactions. We will consider segment AE of the boom, so
we must first determine the pin reactions at A. Notice that member CD
is a two-force member. The free-body diagram of the boom is shown
in Fig. 1-5b. Applying the equations of equilibrium,

C+IM, = 0; Fep(3)2m) — [500(9.81) N3 m) = 0

Fop = 122625 N

L3F, = 0; A, (12262.5N)(3) = 0
A, = 9810 N
+13F, = 0; ~A, + (12262.5 N)(3) — S00(9.81)N = 0
SOO.ST)N
A, = 24525 N (b)

Free-Body Diagram. The free-body diagram of segment AE is
shown in Fig. 1-5c¢.

9810 N
Equations of Equilibrium.
N,
HIF =0 Ni + 9810N =0
24525 N
Ng = ~9810 N = 981 kN Ans.
. (c)
+1XF, = 0: ~Vg — 24525 N =0
Fig. 1-5

Vg = —-24525 N = -2.45 kN Ans

C+IMe=0; Mg + (24525N) 1 m) = 0

My = ~24525 N-m = ~245kN'm Ans.
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- Average Normal Stress in an Axially Loaded Bar

zIn this section we will determine the average stress distribution
acting on the cross-sectional area of an axially loaded bar such as

the one shown in Fig. 1-12a. This bar is prismatic since all cross

-

sections are the same throughout its length. When the load P is

applied to the bar through the centroid of its cross-sectional area, Rision of

uniform
deformation
of bar

then the bar will deform uniformly throughout the central region of

its length, as shown in Fig. 1-12b, provided the material of the bar is

both homogeneous and isotropic. Homogeneous material has the

same physical and mechanical properties throughout its volume,

and isotropic material has these same properties in all directions.

~ 4-—_-_ )
P e e — e et ek

Many engineering materials may be approximated as being both (8)
homogeneous and isotropic as assumed here. Steel, for example,

contains thousands of randomly oriented crystals in each cubic millimeter of its volume, and since most
problems involving this material have a physical size that is very much larger than a single crystal, the
above assumption regarding its material composition is quite realistic. Note that anisotropic materials

such as wood have different properties in different directions, and although this is the case, if the

&

anisotropy is oriented along the bar’s axis (as for

instance in a typical wood rod), then the bar will also

deform uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass

Internal force

—»

a section through the bar, and separate it into two

— Cross-sectional

parts, then equilibrium requires the resultant normal i

—

force at the section to be P, Fig. 1-12c. Due to the

uniform deformation of the material, it is necessary Etenll farce

~ -

that the cross section be subjected to a constant

normal stress distribution, Fig. 1-12d. Fig. 1-12
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As a result, each small area AA on the cross section is subjected to a
force AF = o AA, and the sum of these forces acting over the entire
cross-sectional area must be equivalent to the internal resultant force P

at the section. If we let AA —dA and therefore AF—dF. then,
recognizing o is constant, we have

+1 Fp, = 3F; /dF= o dA
A
P=ocA
P
===
A
Here

o = average normal stress at any point on the cross-sectional area

P = internal resultant normal force, which acts through the centroid of
the cross-sectional area. P is determined using the method of
sections and the equations of equilibrium

A = cross-sectional area of the bar where o i1s determined
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Example:

The bar in Fig. 1-15a has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum

average normal stress in the bar when it is subjected to the loading shown.

A B O kN ( 4 kN D
12 kN . M =~ 22 kN
! YkN 4 kN
IS mm
(a)
Solution: =
12 KN e — P = 12kN
9 kN
12 kN €—=C) |5 W T —p, = 30kN
9 kN
Pipi=22 kN ¢—f 8 S—3 22kN
b)
Example: ® z
The casting shown in Fig. 1-17a is made of steel having a specific 0.75 1t ) —_—
weight of y, = 490 Ib/ft*. Determine the average compressive stress ‘

acting at points A and B.

2751
Solution:
041
} I.\_[ = (): P W, =0 0750 8 B
P (490 1b/f)2.75 ) m0.75 107 ] = 0 i i
P = 2381 Ib :

Average Compressive Stress. The cross-sectional area at the section
isA = 7(0.75 ft), and so the average compressive stress becomes

tal

o = 1347.5 Ib/ft* (1 ft>/144 in®) = 9.36 psi Ans.
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- Average Shear stress

Shear stress has been defined as the stress component that acts in the plane of the sectioned area. To
show how this stress can develop, consider the effect of applying a force F to the bar in Fig. 1-19a. If the
supports are considered rigid, and F is large enough, it will cause the material of the bar to deform and
fail along the planes identified by AB and CD. A free-body diagram of the unsupported center segment of
the bar, Fig. 1-19b, indicates that the shear force V = F/2 must be applied at each section to hold the
segment in equilibrium. The average shear stress distributed over each sectioned area that develops

this shear force is defined by;

T =

> <

Here

T = average shear stress at the section, which is assumed to be

the same ateach point located on the section

V = internal resultant shear force on the section determined l
from the equations of equilibrium |”’T > J
A = area atthe section il /f
!
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Example: / 600 1b

The inclined member in Fig. 1-23 a is subjected to a compressive

force of 600 Ib. Determine the average compressive stress along
the smooth areas of contact defined by AB and BC , and the

average shear stress along the horizontal plane defined by DB
lin. L

Solution: 1.5in.-

Internal Loadings. The free-body diagram of the inclined member
is shown in Fig. 1-23b. The compressive forces acting on the areas of
contact are

HIF,=0; Fuy—-600(3) =0 Fu=3601b
+13F, = 0;  Fpe = 600Ib(3) =0  Fpc = 4801b
Also, from the free-body diagram of the top segment ABD of the

bottom member, Fig. 1-23c, the shear force acting on the sectioned
horizontal plane DB is

= 3F. =0 V-360Ib=0 V = 360 b

Average Stress. The average compressive stresses along the
horizontal and vertical planes of the inclined member are

360 b

OIN) D

_Fa _ 360 1b - _ |
e i A a (1im.)(1.5in.) = 240 psi Ans.
_ Fac _ 480 Ib - _ |
e Apc (2in.)(15in) e Ans.

These stress distributions are shown in Fig. 1-234.

The average shear stress acting on the horizontal plane defined
by DB is

S
™ (3in.)(15in.)

This stress is shown uniformly distributed over the sectioned area in -
Fig. 1-23e. -

80 psi Ans. 360 1b

o~ 80 psi
(¢)
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- STRESSON AN OBLIQUE PLANE UNDER AXIALLOADING

In the preceding sections, axial forces exerted on a two-

force member (Fig. 1 .26a) were found to cause normal . —l
stresses in that member (Fig. 1 .26b), while transverse e . 1
forces exerted on bolts and pins (Fig. 1 .27a) were fo und to »
cause shearing stresses in those connections (Fig. 1.27b). (a)

The reason such a relation was observed between axial

forces and normal stresses on one hand, and trans verse 4_‘/ N

forces and shearing stresses on the other, was because S— "

stresses were being determined only on planes

perpendicular to the axis of the member or connection. As P ————
. B =
you will see in this section, axial forces cause both normal — —4— b
and shearing stresses on planes which are not | )
perpendicular to the axis of the member. Similarly, Fig. 1.26 Axial forces.

transverse forces exerted on a bolt or a pin cause both

«normal and shearing stresses on planes which are not perpendicular to the axis of the bolt or pin.

g
4
[

(

(b)

Fig. 1.27 Transverse forces.

10
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P © ] | Consider the two-force member of Fig. 1.26, which is
| J subjected to axial forces P and P'. If we pass a section forming

an angle u with a normal plane (Fig. 1.28a) and draw the

(@) free-body diagram of the portion of member located to the

» e left of that section (Fig. 1.285), we find from the equilibrium
Sm—-

conditions of the free body that the distributed forces acting

(b) on the section must be equivalent to the force P.
Resolving P into components F and V, respectively normal

and tangential to the section (Fig. 1.28c), we have

F=Pcosb V = Psin @

The force F represents the resultant of normal forces

R o distributed over the section, and the force V the resultant of

”

shearing forces (Fig. 1.28d). The average values of the

() corresponding normal and shearing stresses are obtained by

1.28 dividing, respectively, Fand I/ by the area 4@ of the section:
F \'%
— — T ="—
A, Ag

Substituting for Fand Vfrom (1.12) into (1.13), and observing from Fig. 1.28 cthat Ao = A48 cos 0, or

Fig.

o

AB = Ao/cos 0, where A0 denotes the area of a section perpendicular to the axis of the member, we

obtain.
P cos 0 Psin @
(]‘ —— T -_——_—
Ag/cos B Ay/cos B
P 5
o = —Cos T =—sinf cos @

219 430

11
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Example:
Determine the resultant internal normal and shear

stresses in the member at (a) section a-a

(b) section b-b, each of which passes through point A.

g4
The 500-1b load is applied along the centroid of the  sgam g

a b

: ~ @ B 500 b
member. Take cross-sec. of a-a sec. = 64in2 Yt aerid, ’ Bt
77 8
b

Solution:
Section a-a ?

Fx = 0,' '
. 500" "
Na-500=0; Na=500Ib | *_. Ny
YFy=0; Va=0 =
oca =P/Aa= 500/64="7.811b/in2 I

a

Section b-b i V
YFx=0; Nb - 500 Cos 30 = 0; Nb =4331b m b
YFy=0; Vb -500Sin30=0; Vb =250Ib b
Ab =Aa/ Cos 30 =(64/ Cos 30) = 73.9 in2 30‘ { N‘

6a = Nb /Ab = (433/73.9) = 5.85 Ib/in?
= Vb /A= (250/73.9) = 3.38 1b/in?

12
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- BEARING STRESS IN CONNECTIONS

Bolts, pins, and rivets create stresses in the members they
connect, along the bearing surface, or surface of contact.
For example, consider again the two plates A and B
connected by a bolt CD that we have discussed in the
preceding section (Fig. 1.16). The bolt exerts on plate A a
force P equal and opposite to the force F exerted by the
plate on the bolt (Fig. 1.20). The force P represents the
resultant of elementary forces distributed on the inside
surface of a half-cylinder of diameter d and of length t
equal to the thickness of the plate. Since the distribution
of these forces and of the corresponding stresses is quite
complicated, one uses in practice an average nominal
value b of the stress, called the bearing stress, obtained by
dividing the load P by the area of the rectangle
representing the projection of the bolt on the plate section
(Fig. 1 .21). Since this area is equal to td, where t is the

plate thickness and d the diameter of the bolt, we have.

oy,

S
D

Fig. 1.16 Bolt subject to single shear.

Fig. 1.20

Fig. 1.21
F_7P
A td

13
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Example:

A

In Fig. 1-12, assume that a 20-mm- ¢ P

diameter rivet joins the plates that are each 110 ¢ ‘ © e <

4

mm wide. The allowable stresses are 120 MPa for

20-mm

bearing in the plate material and 60 MPa for

VN '
shearing of rivet. Determine (a) the minimum < 3 ety fsesesd - >

thickness of each plate; and (b) the largest Figure 1-12

average tensile stress in the plates.
Solution:

Part (a):
From shearing of rivet:

P =7 T“‘rnxls
P = 60 37(20°) ]
P = 60007 text N
From bearing of plate material:
P= Ub.‘lb
60007 = 120(20t)
answert = 7.85 mm —

Part (b): Largest average tensile stress in the plate:

P=0cA
6000 = o[ 7.85(110 — 20) ]

answerc = 26.67 NPa —

14
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- Thin-Walled Pressure Vessels

A tank or pipe carrying a fluid or gas under a pressure is subjected to tensile forces, which resist
bursting, developed across longitudinal and transverse sections.

TANGENTIAL STRESS

Consider the tank shown being subjected to an internal pressure p. The length of the tank is L and the
wall thickness is t. Isolating the right half of the tank:

F=pA=pDL
T=GtAwa =Gt tL
[ ZF}; =0 ]

F=2T

pDL = 2(c: tL)

Gt = %

If there exist an external pressure po and an internal pressure pi, the formula may be expressed as:

(p, —p,)D

2t

I

Gt

15
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- LONGITUDINAL STRESS, oL

The total force acting at the rear of the tank F must equal to the total longitudinal stress on the wall

PT = oL Awan. Since tis so small compared to D, the area of the wall is close to Dt

R >
F=pA=p-D-
P P4
PT_O';T[Df
[Z.F,l.’=0]
r=F
G zth‘=:JE l
" |
_PD :
Sadale

If there existan external pressure po and an internal pressure pi, the formula may be expressed as:

(p: —p.)D

OL=
4t

It can be observed that the tangential stress is twice that of the longitudinal stress.

o, = 20,

16
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Example:

A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm, is subjected to
an internal pressure of 4.5 MN/m2. (a) Calculate the tangential and longitudinal stresses in the steel.
(b) To what value may the internal pressure be increased if the stress in the steel is limited to 120
MN/m2? (c) If the internal pressure were increased until the vessel burst, sketch the type of fracture
that would occur.

(a) Tangential stress (longitudinal section):
F=2T

pDL =2(c: L)

pD _ 4.5(400)
2t 2(20)

o, = 45 MPa

Solution:

'-

Longitudinal Stress (tansverse section)::
Longitudinal Section F=P
4 =D% = c; (aD¥)
LD - 4.5(400)
4(20)

G =22.5 MPa

G =

(b) From (a), o: = % and o = % thus, o = 2q,,

thus shows that tangential stress is the critical.
Py L
2t

120 = .Lm.
2(20)

P =12 MPa

() The bursting force will cause a stress on the:
longitudinal section that is twice to that of the:
transverse section. Thus, fracture is expected asi

shown. Expected fracture

when internal
pressure is
increased untl
the wessel burst

400 mm
intarnal
diameter

17
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Example:
p Longitudinal Joint

The strength of longitudinal joint in Fig. 1-17 is 33
kips/ft, whereas for the girth is 16 kips/ft. Calculate the
maximum diameter of the cylinder tank if the internal

pressure is 150 psi. Girth Joint

Solution: Figure 1-17
Internal pressure, p

= 150 poi = 101012 in )’

in® | ft |
p =21 600 1b/ft*

For longitudinal joint (tangential stress]:

Consider 1 ft length
F=2T
pD =2ayt
pDd
G: —_— el —
2t
33000 21600D
i 2t

D =3.06 ft = 36.67 in

For gu‘tl’t joint (longitudinal stress):

F=P
p (§ mD9) = o; (=Dt)
_FD
o=
P 4t
F 15000 _ 21500 D
i 4t

D=296ft=3556in

Usze the smaller diameter, D = 35.50 in.

18
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HWs

Problem 126

The lap joint shown in Fig. P-126 is fastened by four 34-in.-diameter rivets. Calculate
the maximum safe load P that can be applied if the shearing stress in the rivets is
limited to 14 ksi and the bearing stress in the plates is limited to 18 ksi. Assume the

applied load is uniformly distributed among the four rivets.

- -~
* 3 @ p

I

* L
7[‘8 in = 7/8 "
=3 I W 3 o
p ) ! T = »

*1-68. The pedestal in the shape of a frustum of a cone is
made of concrete having a specific weight of 150 Ib/ft’.
Determine the average normal stress acting in the pedestal
at its midheight, z = 4 ft. Hint: The volume of a cone of
radius r and height / is V = {mr’h.

*1-64. A vertical force of P = 1500 N is applied to the
bell crank. Determine the average normal stress developed
in the 10-mm diamater rod CD. and the average shear stress
developed in the 6-mm diameter pin B that is subjected to
double shear.

&

1-65. Determine the maximum vertical force P that can
be applied to the bell crank so that the average normal
stress developed in the 10-mm diameter rod CD, and the
average shear strees developed in the 6-mm diameter
double sheared pin B not exceed 175 MPa and 75 MPa
respectively.

Probs. 1-64/65

Probs. 1-67/68
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1. 12-inches square steel bearing plate lies between an 8-inches Bin o \ 0
diameter wooden post and a concrete footing as shown in Fig. P- Bewting
110. Determine the maximum value of the load P if the stress in Plats 7

wood is limited to 1800 psi and that in concrete to 650 psi.

*1-80. The thrust bearing consists of a circular collar A
fixed to the shaft B. Determine the maximum axial force P

that can be applied to the shaft so that it does not cause the
shear stress along a cylindrical surface a or b to exceed an
allowable shear stress of 7, = 170 MPa.

*1-60. If the shaft is subjected to an axial force of 5 kN,
determine the bearing stress acting on the collar A.

1-61. If the 60-mm diameter shaft is subjected to an axial
force of 5 kN, determine the average shear stress developed
in the shear plane where the collar A and shaft are
connected.

mm

Prob. 1-80

Probs. 1-60/61

2. Determine the largest weight W that
can be supported by two wires shown S e
in Fig. P-109. The stress in either wire :
is not to exceed 30 ksi. The cross-
sectional areas of wires AB and AC
are 0.4 in2 and 0.5 in2, respectively.

vy
o

Figure P-109

20
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- Average Normal Stress in an Axially Loaded Bar

zIn this section we will determine the average stress distribution P
acting on the cross-sectional area of an axially loaded bar such as
the one shown in Fig. 1-12a. This bar is prismatic since all cross

sections are the same throughout its length. When the load P is

uniform
deformation
of bar

then the bar will deform uniformly throughout the central region of

its length, as shown in Fig. 1-12b, provided the material of the bar is

both homogeneous and isotropic. Homogeneous material has the

LN L L S 8 P
| {

same physical and mechanical properties throughout its volume,

l

P
(a) (b)

P
applied to the bar through the centroid of its cross-sectional area, | N Rk of
and isotropic material has these same properties in all directions. l
Many engineering materials may be approximated as being both ;
homogeneous and isotropic as assumed here. Steel, for example,
contains thousands of randomly oriented crystals in each cubic millimeter of its volume, and since most
problems involving this material have a physical size that is very much larger than a single crystal, the
above assumption regarding its material composition is quite realistic. Note that anisotropic materials

such as wood have different properties in different directions, and although this is the case, if the

anisotropy is oriented along the bar’s axis (as for z

instance in a typical wood rod), then the bar will also

deform uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass

P
T Internal force

parts, then equilibrium requires the resultant normal Caipsaschons

arca

a section through the bar, and separate it into two

force at the section to be P, Fig. 1-12c. Due to the

uniform deformation of the material, it is necessary Fascrad fowoe

that the cross section be subjected to a constant |P
c)

normal stress distribution, Fig. 1-12d.
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As a result, each small area AA on the cross section is subjected to a
force AF = o AA, and the sum of these forces acting over the entire
cross-sectional area must be equivalent to the internal resultant force P
at the section. If we let AA —dA and therefore AF—dF. then,
recognizing o s constant, we have

+1 Fp, = 3F;; /dF=/a-dA
A
P

= oA

0:

P
A

Here

o = average normal stress at any point on the cross-sectional area

P = internal resultant normal force, which acts through the centroid of
the cross-sectional area. P is determined using the method of
sections and the equations of equilibrium

A = cross-sectional area of the bar where o i1s determined
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Example:

The bar in Fig. 1-15a has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum

average normal stress in the bar when it is subjected to the loading shown.

A B 9kN C 4kN

2k J -« D 2k
9OkN

35 mm i

(a)

Solution: =
12 kN ) | — P, = 12 kN
kN
12 kN —) W F—> Py = 30kN
' 9 kN
PL_.FJ =22 kN '1___
b
Example: &)
The casting shown in Fig. 1-17a is made of steel having a specific 0.75 ft £ .

weight of y, = 490 Ib/ft’. Determine the average compressive stress
acting at points 4 and B.

Solution:

+TE!‘} =0 P—Wyg=0 075t
P — (490 Ib/ft)(2.75 f) [ #(0.75 fU*] = 0 A
P =23811b

Average Compressive Stress. The cross-sectional area at the section
isA = #(0.75 ft), and so the average compressive stress becomes

(a)

P 2381 Ib : ;
o=—=———=13475b/ft

A w075 ft)?
o = 1347.5 Ib/ft* (1 ft*/144 in®) = 9.36 psi Ans.
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= Strain
- Simple strain
Bl = ‘ B
Strain is the ratio of the change in length caused by the applied force, to
the original length.
L
0
E = —
L
Y !
/2 c
Where § is the deformation and L is the original length, thus ¢ is A ! l
dimensionless. .

- Stress-Strain Diagram

Suppose that a metal specimen be placed in tension-compression testing
machine. As the axial load is gradually increased in increments, the total
elongation over the gage length is measured at each increment of the load and
this is continued until failure of the specimen takes place. Knowing the original
cross-sectional area and length of the specimen, the normal stress ¢ and the
strain € can be obtained. The graph of these quantities with the stress o along

the y-axis and the strain € along the x-axis is called the stress-strain diagram.

The stress-strain diagram differs in form for various materials. The diagram I.o

shown below is that for a medium carbon structural steel.

Metallic engineering materials are classified as either ductile or brittle !
materials. A ductile material is one having relatively large tensile strains up to
the point of rupture like structural steel and aluminum, whereas brittle
materials has a relatively small strain up to the point of rupture like cast iron
and concrete. An arbitrary strain of 0.05 mm/mm is frequently taken as the

dividing line between these two classes.
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If the corresponding values of s and P are plotted so thatthe vertical axis is the stress and the horizontal
axis is the strain, the resulting curve is called a conventional stress-strain diagram. Realize, however,
that two stress-strain diagrams for a particular material will be quite similar, but will never be exactly
the same. This is because the results actually depend on variables such as the material’s composition,
microscopic imperfections, the way it is manufactured, the rate of loading, and the temperature during

the time of the test.

(a)
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We will now discuss the characteristics of the conventional stress-strain curve as it pertains to steel, a
commonly used material for fabricating both structural members and mechanical elements. Using the
method described above, the characteristic stress-strain diagram for a steel specimen is shown in
Fig. 3-4. From this curve we can identify four different ways in which the material behaves, depending

on the amount of strain induced in the material.

o

: true fracture stress -
a f )

ultimate
Tu stress fracture
1 / stress
a f =
elastic limit

oy 1eld stre '
a pl

L L .
elastic yielaing strain necking
region hardening
elastic plastic behavior
behavior

Conventional and true stress-strain diagrams




Al-Muthanna University
College of Engineering
Civil Engineering Department

Lecturer/ Alaa Al-Najjar

Strength Of Materials - Second Year ‘ 2019-2020

Elastic Behavior. Elastic behavior of the material occurs when the strains in the specimen are within the
light orange region shown in Fig. 3-4. Here the curve is actually a straight line throughout most of this
region, so that the stress is proportional to the strain. The material in this region is said to be linear
elastic. The upper stress limit to this linear relationship is called the proportional limit, o’p1. If the stress
slightly exceeds the proportional limit, the curve tends to bend and flatten out as shown. This continues
until the stress reaches the elastic limit. Upon reaching this point, if the load is removed the specimen
will still return back to its original shape. Normally for steel, however, the elastic limit is seldom

determined, since it is very close to the proportional limit and therefore rather difficult to detect.

Yielding. A slightincrease in stress above the elastic limit will result in a breakdown of the material and
cause it to deform permanently. This behavior is called yielding, and it is indicated by the rectangular
dark orange region of the curve. The stress that causes yielding is called the yield stress or yield point,
Oy ,and the deformation that occurs is called plastic deformation . Although not shown in Fig. 3-4 for
low-carbon steels or those that are hotrolled, the yield point is often distinguished by two values. The
upper yield point occurs first¢ followed by a sudden decrease in load-carrying capacity to a lower yield
point. Notice that once the yield point is reached, then as shown in Fig. 3-4, the specimen will continue
to elongate (strain) without any increase in load . When the material is in this state, it is often referred

to as being perfectly plastic.

Strain Hardening. When yielding has ended, an increase in load can be supported by the specimen,
resulting in a curve that rises continuously but becomes flatter until it reaches a maximum stress
referred to as the ultimate stress, 0. The rise in the curve in this manner is called strain hardening, and

it is identified in Fig. 3-4 as the region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its cross-sectional area will decrease.
This decrease is fairly uniform over the specimen’s entire gauge length; however, just after, at the
ultimate stress, the cross-sectional area will begin to decrease in a localized region of the specimen. As a
result, a constriction or “neck” tends to form in this region as the specimen elongates further, Fig. 3-5a.

This region of the curve due to necking is indicated in dark green in Fig. 3-4. Here the stress-strain

diagram tends to curve downward until the specimen breaks at the fracture stress, a7, Fig. 3-5 b.
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- Hooke’s Law

As noted in the previous section, the stress-strain diagrams for most engineering materials exhibit a
linear relationship between stress and strain within the elastic region. Consequently, an increase in
stress causes a proportionate increase in strain. This fact was discovered by Robert Hooke in 1676

using springs and is known as Hooke's law . [t may be expressed mathematically as
o = Ee

Here E represents the constant of proportionality, which is called the modulus of elasticity or Young’s

modulus, named after Thomas Young« who published an account of it in 1807.
- AXIAL DEFORMATION

In the linear portion of the stress-strain diagram, the tress is proportional to strain and is given by

o = Eeg
Sincec=P/Aand ee=6/L,thenP /A=E &/ L.Solving for §,
._PL cL
o: =
AE E

To use this formula, the load must be axial, the bar must have a uniform cross-sectional area, and the
stress must not exceed the proportional limit. If however, the cross-sectional area is not uniform, the

axial deformation can be determined by considering a differential length and applying integration.
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If however, the cross-sectional area is not uniform, the axial deformation can be determined by

considering a differential length and applying integration.

L »
7
A
.{///: . - P
P
dx ¥
e——r X —
dx t

= P"ia’x
O:—
EJo A

Where A =ty and y and t, if variable, must be expressed in terms of x.

For arod of unit mass p suspended vertically from one end, the total elongation due to its own weight is

pel” _ MeL

2E 2AF

Where p is in kg/m3, L is the length of the rod in mm, M is the total mass of the rod in kg, A is the cross-
sectional area of the rod in mm2, and g = 9.81 m/s2.

- STIFFNESS, k

Stiffness is the ratio of the steady force acting on an elastic body to the resulting displacement. It has the
unit of N/mm.

k=P/§
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Solved problems:

1. A steel rod having a cross-sectional area of 300 mm2 and a length of 150 m is suspended
vertically from one end. It supports a tensile load of 20 kN at the lower end. If the unit mass

of steel is 7850 kg/m3 and E = 200 X 103 MN/mZ2, find the total elongation of the rod.

Solution:

Let & = total elongation
&1 = elongation due to its own weight
I &; = elongation due to applied load

. 5=35+35,

3 5]=£

AE
W .l Where: P =W = 7850{1/1000)3{%.51)[200{ 150){1000]]
P = 34653825 N
L= ?5(1(}{3{11 = 75 000 mm
A = 300 mm
E = 200 000 MPa
| 34653825 (75000) _, .
300 (200 000)

ST

. 5 L
AE
Whera: P=20kN=20000N

L = 150 m = 150 000 mm

|l ]

w T
=
1
g
=
=
[

20000(150000)
== S'GDTIJJ.‘I.
300(200000)

&

AL

zaml

Total elongation:
&5 =433 +50=5433 mm
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2. Analuminum bar having a cross-sectional area of 0.5 in2 carries the axial loads applied at the

positions shown below Compute the total change in length of the bar if E = 10 X 106 psi.

Assume the bar is suitably braced to prevent lateral buckling.

7000 b 5000 Ib
6000 [ | 4000 &

Solution: | J |
L 5 ft T
6000 |b Ij Py = 000 b
7000 I |
6000 Ib L2 e, = 1000 b
<—| 7000 |6 |——b (——|5|m K —>
6000 |b g Py = 4000 |b
Py~ 1000 I compressi 8=~ 5+
2~ COmpression 6000(3x12)  1000(5x12)  4000(4x12)
F: = 4000 1b tension = - -~ r o T
PL 0.5(10«10%) 0.3(10x10")  0.5(10:=10")
5=F 5 = 0.0696 in (lengthening)
3. The rigid bar AB, attached to two vertical rods as shown below, T
is horizontal before the load P is applied. Determine the vertical Stazl
Alurminum L=4m
movement of P if its magnitude is 50 kN. L=3m & = 300 mm?
A = 500 mm* E = 200 GPa
E =70 GPa
Solution: A 8 c
[= o]
Free body diagram: ke — 35m 1<  3Em
P
Py Py For steel:
T A C BT M =0] 6Fa = 3.5(30)
E Ll F,=2017 kN
T A —
= w »
|:5 _PLT _ 29.17(4)1000°
. N AE, " 300(200000)
or aluminum: t
[EM: = 0] 6Py = 2.5(50) 8: =194 mm
Py=2083kN
|:a _PL] N 20.83(3)1000° Movement diagram:
AE 1y  500(70000) A 15 B 2.5 c
o =1.78 E l -
_*_*————__Lw_______ 4
¥y 194-178
35 o
y =009 mm

& = vertical movement of P
dp=178 +y=175+009

Gp = 1L.87 mum
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4. The following data were recorded during the tensile test of a 14-mm-diameter mild steel rod.

The gage length was 50 mm. - :
Load Elongation Load Elongation

] . ; . (M) T () (T
Plot the stress-strain diagram and determine the following : 0 EE ) ibzm 11 2:'5
mechanical properties: (a) proportional limits; (b) modulus of  &310 0010 52400 250
elasticity; (c) yield point; (d) ultimate strength; and (e) rupture 12600 0.020 58500 4.50
t}}: ( ) y p ( ) & ( ) p 15800 0.030 23000 7.50
strength. 25100 0.040 50000 1250
31300 0.030 67800 15.50
37900 0.0a0 25000 20.00
40100 01683 51500  Fracture

Solution: 41600 0.433

Area, A= 3 i14)* = 4% mum?; Length, L = 50 mm
Strain = Elongation/Length; Stress = Load/Area

RS (Failurs, 353.51)
US (0,15, 441,74) \ Load Elongation — Strain Stress

| () {mmm) (mm/mm)  (MPa)
0 0 0 0
° 6310 0010 0.0002 4099
§ vP(0.0087, 270.24) 12600  0.020 0.0004 8185
3 EL (0.0033, 260.45)  jganQ 0.030 0.0006 12213
PL (0.0012, 246.20)  757Qp 0.040 0.0008 163.05
P 31300 0.050 0.001 203.33
Stress-Strain Diagram 37900 0060 0.0012 246.20
(not drawn to scale) 40100 0163 0.0033 260.49
o 41600 0433 0.0087 270.24
PL = Proportional Limit 46200 1250 0025 30012
YP = Yield Point 52400 25300 0.05 34040
US = Ulgmate Strength 58500 4500 0.09 380,02
RS = Rupture Strengtn 68000 7500 015 44174
50000  12.500 0325 38327
67800 15300 031 44044
65000  20.000 04 42275
61500  Failure 39951

From stress-strain diagram:
(a) Proportional Limit = 246.20 MPa
() Modulus of Elasticity
E = slope of stress-strain diagram
within proportional limit
E= 24620 _ 205 166.67 MFPa
0.0012
E=2052GFa
() Yield Point = 270.24 MPa
(d) Ultimate Strength = 441.74 MFPa
(e} Fupture Strength = 399.51 MPa
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5. The column is constructed from high-strength concrete and four A-36 steel 800 kN
reinforcing rods. If it is subjected to an axial force of 800 kN, determine the
required diameter of each rod so that one-fourth of the load is carried by the
steel and three-fourths by the concrete. Est = 200 GPa, Ec = 25 GPa.

300 mm 300 mm
. q

Solution:

Equilibrium: Require Py = %(80()) = 200 kN and

3
Poon = 2(800) = 600 kN.

Compatibility:

Ocon = O

st

Poool I
(0.3 — A)(25.0)(10%)  A,(200)(10%)

0P,
- SPCOD + PSI

i (:) 11] ~ 0.09(200)
1\2/“ ] ~ 3(600) + 200

d =0.03385m = 339 mm

10
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6. A vertical load P is applied at the center A of the upper section of a

homogeneous frustum of a circular cone of height 4, minimum radius a, and
maximum radius b. Denoting by £ the modulus of elasticity of the material
and neglecting the effect of its weight, determine the deflection of point A4.

Solution:

Extend the slant sides of the cone to meet at a point O and place the origin of the

coordinate system there.

a
From geometry, tan ¢ = ——
N

a b
ay = . b= . r=ytana
fan o rano

At coordinate point y, A =1’

Deformation of element of height dv:  dd = {:{{‘
p-bdr P
Exy rxEtn o v
Total deformation.
s P qpad P (1" P (1 1
4 rEtan’a’a vy’ rgEtan’el v rEtn’ala b
&
— P b—a _Pb-a) 5. = Ph
rEtan’ o ab wEab 4" zEab

11
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HWs.

B.] 2.30

Ahomogeneous cable of length Zand uniform cross section is suspended from one end. (a) Denoting by
p the density (mass per unit volume) of the cable and by £ its modulus of elasticity, determine the
elongation of the cable due to its own weight. () Show that the same elongation would be obtained if

the cable were horizontal and if a force equal to half of its weight were applied at each end.

25 mm
AR _- Brusy core

B. 2.34 I " 2~ 105 GPa

The length of the assembly shown decreases by 0.40 mm when an axial force is

applied by means of rigid end plates. Determine (a) the magnitude of the

300 mim

applied force, (b) the corresponding stress in the brass core. e shel

L =T70GPa

H4"6 l-ﬁ()llllll—|

The bar has a cross-sectional area of 3 in2, and E = 35 (103) Ksi.

—x——~  w=500x""Ib/in.
Determine the displacement of its end A when it is subjected to I,/
the distributed loading. Al
Aft }
H.3-28.

If P= 150 kN, determine the elastic elongation of rod BC and the
decrease in its diameter. Rod BC is made of A-36 streel and has a

diameter of 40 mm.

12
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- Thermal Stress

Temperature changes cause the body to expand or contract. The amount &7, is given by

or = aL(Tf- T;) = aL AT

Where a is the coefficient of thermal expansion in m/m°C, L is the length in meter, and T;

and Trare the initial and final temperatures, respectively in °C.

If temperature deformation is permitted to occur freely, no load or stress will be induced
in the structure. In some cases where temperature deformation is not permitted, an

internal stress is created. The internal stress created is termed as thermal stress.

For a homogeneous rod mounted between unyielding supports as shown, the thermal

stress is computed as:

Deformation due to temperature changes;

or=al AT
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Deformation due to equivalent axial stress;

PL cL
SP = =
AE E
or = Op
GL

oL AT = —
E

c=EaAT
Where o is the thermal stress in MPa and E is the modulus of elasticity of the rod in MPa.

If the wall yields a distance of x as shown, the following calculations will be made:

or=x+ 0Op

aL AT =x G—L
E

Where o is represents the thermal stress.

Take note that as the temperature rises above the normal, the rod will be in
compression, and if the temperature drops below the normal, the rod is in tension.
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Solved Problems in Thermal Stress

Q1. A steel rod with a cross-sectional area of 0.25 in2 is stretched between two fixed points. The
tensile load at 70°F is 1200 lb. What will be the stress at 0°F? At what temperature will the stress be
zero? Assume a = 6.5 X 10-6 in / (in-°F) and E = 29 X 106 psi.

Solution

For the stress at 0°C:
0=0r+ 0x
ok Pi,
—_— = AT) + —
E (ﬂ‘( N AE

P
G = aE(AT) + —
A

G = (6.5 x 1079)(29 x 109)(70) + %

o =17 995 psi = 18 ksi

For the temperature that causes zero stress:

By
o1 = Ot
PY,
AT)= —
WD ZF
(65 x 109)(T = 70) = — 20 ___
0.25(29x10°)

T =95.46°C
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Q2. A bronze bar 3 m long with a cross sectional area of 320 mm?2 is placed between two rigid walls
as shown in Fig. P-265. At a temperature of -20°C, the gap A = 25 mm. Find the temperature at which
the compressive stress in the bar will be 35 MPa. Use a = 18.0 X 10-6 m/(m-°C) and E = 80 GPa.

L=3m
Figure P-265
—l-|ﬂ.

Solution
EI =&+ A
LiAT) = oL 25
5 aL(AT) = + 2.
5 -
C—am ’(’I_*:' L (18X 107)(3000)(AT) = % +25
=
AT =70.6°C
A= 20smm T=70.6-20
T =50.6"C
Q3. The A-36 steel bar shown below is constrained to just fit between two fixed 0.5in.
supports when T 1 = 60°F. If the temperature is raised to T 2 = 120°F, determine the I_i-IIOS "
average normal thermal stress developed in the bar.
= -
Solution
SA/B=0=6T_6F 21t
FL
0 = aATL — ——
AE B S
F = aATAE
= [6.60(107)/°FK120°F — 60°F)(0.5 in.)% [2%(10%) kip/in?]
= 2.871 kip
F 2.871 kip ,
o= = = 11.5 ksi

A (0.5in.)?2
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Q4. The bronze C86100 pipe has an inner
radius of 0.5 in. and a wall thickness of 0.2 in. If
the gas flowing through it changes the

temperature of the pipe uniformly from T A =

/
o
:IJ[

IQI

200°F at A to T B = 60°F at B, determine the axial LA

force it exerts on the walls. The pipe was fitted
between the walls when T = 60°F.

Solution

8§ —x
8

T(x) = 60 + ( )140 =200 — 17.5x

0= 6r — o Where or = J aATdx
F(8)

8ft
0 = 9.60(107) / [(200 — 17.5x) — 60] dx —
0

F(8)

2(1.4% — 1H)15.010%)

8 ft
0 =9.60(10"° 0-175 =
) = 9.60(1 )A (140 — 17.5x) dx Z(1.42 — 1) 15.0(10%)

F = 7.60 kip

wor] [ g

........ e

\

Jeo*
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HW

1. The concrete post (Ec = 3.6 x 106 psi and a. = 5.5 x 10/ OF) is
reinforced with six steel bars, each of 78 -in diameter (Es = 29 x 106 psi
and as = 6.5 x 106/ OF). Determine the normal stresses induced in the
steel and in the concrete by a temperature rise of 65°F.

2. The assembly shown consists of an aluminum shell (E. = 10.6 x 106
psi, a@a = 12.9 x 10-6/ OF) fully bonded to a steel core (Es =29x10° psi,
as = 6.5 x 109/ OF) and is unstressed. Determine a) the largest
allowable change in temperature if the stress in the aluminum shell is
not to exceed 6 ksi, (b) the corresponding change in length of the
assembly.

Aluminum shell Steel

core

1.25in.
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- Torsion

When an external torque is applied to a shaft, it creates a corresponding internal torque
within the shaft. In this section, we will develop an equation that relates this internal
torque to the shear stress distribution on the cross section of a circular shaft or tube.
If the material is linear-elastic, then Hooke's law applies,
T =Gy, and consequently a linear variation in shear
strain, as noted in the previous section, leads to a
corresponding linear variation in shear stress along any
radial line on the cross section. Hence, t will vary from
zero at the shaft's longitudinal axis to a maximum value,
T, at its outer surface .This variation is shown in Fig. 5-5

on the front faces of a selected number of elements,

Shear stress varies linearly along

located at an intermediate radial position p and at the Bt g w72

Fig. 5-5

outer radius c. Due to the proportionality of triangles, we

can write

Equation expresses the shear-stress distribution over the cross section in terms of the
radial position p of the element. Using it, we can now apply the condition that requires
the torque produced by the stress distribution over the entire cross section to be
equivalent to the resultant internal torque T at the section, which holds the shaft in
equilibrium, Fig. 5-5.

Specifically, each element of area dA, located at p, is subjected to a force of dF= 1t dA. The
torque produced by this force is dT =(t dA). We therefore have for the entire cross

section




Al-Muthanna University
College of Engineering
Civil Engineering Department

Lecturer/ Alaa Al-Najjar

Strength Of Materials - Second Year ‘ 2019-2020

T = /p(f dA) = fp(%)rmdﬂ (54) Since 7, /c is constant,
A A
TJ'I'.IEL"( ¥
T = / p?dA (5-5)
€ Ja

The integral depends only on the geometry of the shaft. It represents the polar moment
of inertia of the shaft's cross-sectional area about the shaft's longitudinal axis. We will
symbolize its value as ], and therefore the above equation can be rearranged and written

in a more compact form, namely

Tmax — 1 (5_6}

Here

Tmax — the maximum shear stress in the shaft, which occurs at the
outer surface

T = the resultant internal torque acting at the cross section. Its value is
determined from the method of sections and the equation of
moment equilibrium applied about the shaft’s longitudinal axis

J = the polar moment of inertia of the cross-sectional area
¢ = the outer radius of the shaft

Combining Eqgs. 5-3 and 5-6, the shear stress at the intermediate
distance p can be determined from

I'p

= (5-7)
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Solid Shaft

If the shaft has a solid circular cross section, the polar moment of inertia
J can be determined using an area element in the form of a differential
ring or annulus having a thickness dp and circumference 2mp, Fig. 5-6.

For this ring, dA = 2npdp, and so

) s ‘ 1
J= /p*rm = /p'(ﬂﬂpdp) = Eﬂf prdp = 271'(-).:]4
A 0 0 4

(5-8)

Fig. 5-6

D
16T
Tmax = D° __L
- For hollow cylindrical shaft:
n 4 44
- —[D"=d
I 32( ) |

161D

fmax = (D —dY) y— |
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- Angle of Twist

The angle 6 through which the bar length L will
twist is

B=%jﬂrad:ians T

Where T is the torque in N-mm, L is the length of shaft in mm, G is shear modulus in MPa,
J is the polar moment of inertia in mm4, D and d are diameter in mm, and r is the radius
in mm.

Pr. 01 A steel shaft 3 ft long that has a diameter of 4 in. is subjected to a torque of 15 Kkip-ft.
Determine the maximum shearing stress and the angle of twist. Use G = 12 x 106 psi.

Solution:
— 16T _ 16(15)(1000)(12) |
aD? n(4%)
Tmax = 14 324 psi
Tmax = 14.3 ksi

_ TL _ 15(3)(1000)(12%)
JG  &mn(4*)(12x10°)
6 = 0.0215 rad
6 =1.23°
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Pr.02 Whatis the minimum diameter of a solid steel shaft that will not twist through more than 3°

in a 6-m length when subjected to a torque of 12 kN-m? What maximum shearing stress is developed?
Use G = 83 GPa.

Solution: oo IL
JG
30( n | _ 12(6)(1000°)
180°) 4 md*(83000)
d=113.98 mm

_ 16T _ 16(12)(1000%)
nd’ n(113.98%)
Tmax = 41.27 MPa

Tmax

Pr.03 An aluminum shaft with a constant diameter of 50 mm is loaded by torques applied to gears
attached to it as shown in Fig. P-311. Using G = 28 GPa, determine
the relative angle of twist of gear D relative to gear A. Figure P-311

600 N-m

Solution:

800 N-m 1100 N-m 900 N-m 600 N-m

— fe— | Jee—
D 2m C 3m B 2m A

LLLLLLLLLL

800 N-m |||""""“”|

ey

N
=300 N-m

Rotation of D relative to A:
Op/a = ILG TL

1
4-7(50*)(28000)
ep/A =(0.1106 rad
OD,A = 6.34°

Op/a = [800(2) - 300(3) + 600(2)] (100?)
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Pr. 04 The solid rod BC has a diameter of 30 mm and is made of an aluminum for which the
allowable shearing stress is 25 MPa. Rod AB is hollow and has an outer diameter of 25 mm; it is made of
a brass for which the allowable shearing stress is 50 MPa.

Determine (a) the largest inner diameter of rod AB for Aluminum

which the factor of safety is the same for each rod, (b) the
largest torque that can be applied at A.

Solution
Solid rod BC: coLe ;74
J
o =25 %105Pa
é = %d =0.015m
Ty = %Hrau . %(0.015)3(25 x10%) = 132.536 N - m
Hollow rod AB: Ty = 50X 10°Pa
Ty =132536 N-m
oA %dz & %(0.025) =0.0125m
Cl = ?
Ty=20 = T ) ha
Cy - Cy
A
(,14 _ g all2
T
2)(132.536)(0.0125 y
= 0.0125* - DU233OOND) _ ;5 5503410 m?*
7(50 x 10%)
(a) ¢ =7.59%107m = 7.59 mm dy =2¢ =15.18 mm <«

(b)  Allowable torque. T,=1325N-m 4
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- Plane-Stress Transformation

the general state of stress at a point is characterized by six independent normal and
shear stress components¢< which act on the faces of an element of material located at the
point¢ Fig. 9-1 a . This state of stress, however, is not often encountered in engineering
practice. Instead, engineers frequently make approximations or simplifications of the
loadings on a body in order that the stress produced in a structural member or
mechanical element can be analyzed in a single plane. When this is the case, the material
is said to be subjected to plane stress, Fig. 9-1 b. For example, if there is no load on the
surface of a body, then the normal and shear stress components will be zero on the face of
an element that lies on this surface. Consequently, the corresponding stress components
on the opposite face will also be zero« and so the material at the point will be subjected to

plane stress.

General state of stress Plane stress

(a) (b)

Fig. 9-1
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The general state of plane stress at a point is therefore represented -‘

by a combination of two normal-stress components, gx, gy, and one

shear stress component, 7xy, which act on four faces of the element. ‘_,

For convenience, in this text we will view this state of stress in the

x-y plane, with the x, y axes as shown in Fig. 9-2 a. If this state of
stress is defined on an element having a different orientation u as
in Fig. 9-2 b, then it will be subjected to three different stress
components defined as oy, gy Txy, relative to the X', y', axes. In
other words, the state of plane stress at the point is uniquely
represented by two normal stress components and one shear stress
component acting on an element. These three Components will be

different for each specific orientation U of the element at the point.

- General Equations of Plane-Stress Transformation

The method of transforming the normal and shear stress components from the x, y

to the x', y' coordinate axes, as discussed in the previous section, can be developed in

a general manner and expressed as a set of stress-transformation equations.

Sign Convention. First we must establish a sign convention for the stress component.
To do this the +x and +x' axes are used to define the outward normal from a side of the
element. Then oy, and ox Are positive when they act in the positive x and x' directions, and
Txy and Tyy are positive when they act in the positive y and y' directions, Fig. 9-5 The
orientation of the plane on which the normal and shear stress components are to be
determined will be defined by the angle 8, which is measured from the +x axis to the +x'
axis, Fig. 9-5 b . Notice that the unprimed and primed sets of axes in this figure both form

right-handed coordinate systems; that is, the positive z (or z') axis is established by the

Y
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right-hand rule. Curling the fingers from x (or x') toward y (or y') gives the direction for
the positive z (or z') axis that points outward, along the thumb. The angle @will be positive
provided it follows the curl of the right-hand fingers, i.e., counterclockwise as shown in
Fig. 9-5b.

Normal and Shear Stress components.

Using the established sign convention, the element in Fig. 9-6 a is sectioned along the
inclined plane and the segment shown in Fig. 9-6 b is isolated. Assuming the sectioned
area is AA, then the horizontal and vertical faces of the segment have an area of AA Sin 0

and AA Cos 0, respectively.

Ty
-f F §

(b)

Positive Sign Convention
Fig. 9-5
The resulting free-body diagram of the segment is shown in Fig. 9-6 c. Applying the
equations of equilibrium to determine the unknown normal and shear stress components
ox and '), we have
YF'=0; o0xAA-(txyAAsinO)cosB - (0,AAsin ) sin O
- (txyAAcos @) sin O - (cxAAcos B) cos 0 =0

0x = 0xC0S2 0 + g,sin? 0 + 7,(2 sin O cos 0)
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YFy' = 0; Tx'y AA + (Txy AA sin ) sin @ - (oy AA sin @) cos @
-Txy AA cos 0) cos 0 + (ox AA cos @) sin 8 =0

Tx'y = (gy - 0x) sin @ cos O + 1« 0 (cos? O - sin2 )

These two equations may be simplified by using the trigonometric identities

sin (20) = 2 sin 0 cos 0, sin? @ = (1 - cos 2 0)/2, and cos? 8 = (1 + cos 2 0)/2, in which

case,
oy t+ oy Oy — Oy . (9-1)
gy = > 4 2 cos 26 + 7,y sin 26 :
(9-2)
Oy — O'y .
Tyy = — T—snn 20 + 7, cos 20

If the normal stress acting in the y' direction is needed, it can be obtained by simply
substituting 8 + 90¢ for 0 into Eq. 9-1, Fig. 9-6 d. This yield

o, to, Oy — 0y
oy = 5 = : cos 26 — 7,y sin 26 (9-3)

If g, is calculated as a positive quantity, it indicates that it acts in the
Positive y' direction as shown in Fig. 9-6 d .

y ¥

\ Ty AA

F o AA
1 9
o, AAcos b - ~ 9 X
i 0y ’
X
Ty AA COs O

7 0N TyAAsing
AAsind ; 0
———— \

o, AAsin @ (d)

(b) (©)

Fig. 9-6
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Example: The state of plane stress at a point is represented by the

element shown in Fig. 9-7 a. Determine the state of stress at the
point on another element oriented 30° clockwise from the position
shown.

SOLUTION

Ox = '80 MPa ) O-_y= 50 MPa, Txy=25 MPa

o, + o, o, — O

50 MPa
3

-

jL

-

o= 5 + 5 Y cos 20 + Tyy Sin 20
—_ + - -
_ 802 50 802 20 cos 2(—30°) + (~25) sin 2(~30°)
= —25.8 MPa At
g, — 0'). .
Ty = — T sin 20 + Tyy COS 20
—80 — 50
= — Tsin 2(—30°) + (—25) cos 2(—30°
= —68.8 MPa
4.15 MPa

68.8 MPa

25.8 MPa

-‘7 80 MPa

25MPa
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Problem 01: Determine the normal stress and shear stress §
acting on the inclined plane AB. Solve the problem using the stress o
transformation equations. Show the results on the sectional — 75
element. l /{ \
Wau
SOLUTION — 1 6k

Stress Transformation Equations:

6 = +150° (Fig. a) o, =0 o, = —15ksi Tyy = —6Kksi
oy +o, o0,—o0,
Oy = > + > cos 20 + 7, sin 20

0+ (-15) 0 - (-15)

= > + 5 cos 300° + (—6) sin 300°
= 1.45 ksi
oy =0y
Tyy = — 5 sin 26 + 7., cos 26
0 - (=15 .
= B — sin 300° 4+ (—6) cos 300°
= 3.50 ksi
6390f60 ['Bzﬂ-

=/50"

bksi

t Brei
(2 (b)
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Problem 02:

element if it is oriented 50° counterclockwise from the element
shown. Use the stress-transformation equations.

SOLUTION

Stress Transformation Equations:

Determine the equivalent state of stress on an

v‘; 10 ksi

——» 16ksi

o, = —10ksi o, =0 Tyy = —16 ksi 6 = +50°

y

oy + oy Ty — 0y )
Ty = > + > cos 260 + 7,,s1n 26

-10+0 -10-0
+

> cos 100° + (—16)sin 100° = —19.9 ksi

Ty — Oy
Tyy = — T) sin 20 + 7,,cos 26

—-10 -0
= _(T) sin 100° + (—=16)cos 100° = 7.70 ksi

oy, to, o,—-0,
Ty = ) - ) cos 260 — 7,,sin 26
-10 + 0 —-10 — 0 . .
= 5 - ( > )cos 100° — (—16)sin 100° = 9.89 ksi

90 i
19-9 &sf

7% Kst
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HW.

9-3. The state of stress at a point in a member is shown on
the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

A 400 psi
# 650 psi
B

9-6. Determine the normal stress and shear stress acting
on the inclined plane AB. Solve the problem using the
method of equilibrium described in Sec. 9.1.

9-7. Determine the normal stress and shear stress acting
on the inclined plane AB. Solve the problem using the
stress transformation equations. Show the result on the
sectioned element.

Probs. 9-6/7

*9-8. Determine the equivalent state of stress on an
element at the same point oriented 30° clockwise with respect
to the element shown. Sketch the results on the element.

9-9. Determine the equivalent state of stress on an element
at the same point oriented 30° counterclockwise with respect
to the element shown. Sketch the results on the element.

75 MPa
100 MPa
[P N

Probs. 9-8/9

9-14. The state of stress at a point is shown on the element.
Determine (a) the principal stress and (b) the maximum
in-plane shear stress and average normal stress at the point.
Specify the orientation of the element in each case. Show
the results on each element.

30 ksi

— 172 ksi

Prob. 9-14
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- Principal Stresses & Maximum in Plane shear Stress

From Egs. 9-1 and 9-2, it can be seen that the magnitudes of ox and 7xy depend on the
angle of inclination 0 of the planes on which these stresses act. In engineering practice it
is often important to determine the orientation of the element that causes the normal
stress to be a maximum and a minimum and the orientation that causes the shear stress to

be a maximum. In this section each of these problems will be considered.

In-Plane Principal Stresses. To determine the maximum and minimum normal
stress, we must differentiate Eq. 9-1 with respect to 8 and set the result equal to zero.

This gives

dor oy —
:ITHx — —%(2 sin 20) + 27,, cos 20 = 0

Solving this equation we obtain the orientation @ = @p of the planes of maximum and

minimum normal stress.

Txy

(o = @3))2

tan 29,, =

The solution has two roots, 8,1, and 0. Specifically, the values of 20,1 and 20, are 180°
apart, so Op1 and Op; will be 90° apart. The values of 8,1 and 8,2 must be substituted into

Eq. 9-1 if we are to obtain the required normal stresses. To do this we can obtain the
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necessary sine and cosine of 20,1 and 20, from the shaded triangles shown in Fig. 9-8.

The construction of these triangles is based on Eq. 9- 4, assuming that 7xy and (ox - gy) are

either positive or both negative quantities.

( Pl
=32 | .

R > (tr,r - ay)
_ 2

Fig. 9-8

The cracks in this concrete beam were caused
by tension stress, even though the beam was
subjected to both an internal moment and
shear. The stress transformation equations
can be used to predict the direction of the
cracks, and the principal normal stresses that

caused them.
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Substituting these trigonometric values into Eq. 9-1 and simplifying, we obtain

2
o, to, oy — 0Oy
— 2
Thg —TF—p— \/( 2 e

Depending upon the sign chosen, this result gives the maximum or minimum in-

plane normal stress acting at a point, where g1 A o02. These particular sets of values are
called the in-plane principal stresses, and the corresponding planes on which they act are
called the principal planes of stress, Fig. 9-9. Furthermore, if the trigonometric relations
for 8,1 or @, are substituted into Eq. 9-2, it can be seen that 7y, = 0; in other words, no

shear stress acts on the principal planes.

In-plane principal stresses

Fig. 9-9
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Maximum In-Plane Shear Stress. The orientation of an element that is subjected
to maximum shear stress on its sides can be determined by taking the derivative of
Eq. 9-2 with respect to u and setting the result equal to zero. This gives

—(oy — 01’.)/2
tan 260, = - (9-6)

Tx.‘r

=Y

The two roots of this equation, 8s1 and 05, can be

determined from the shaded triangles shown in Fig. 9-

T 20,‘ (‘Tx - ‘Ty)
10. By comparison with Eg. 9-4, tan 20; is the negative | ™ 2
y p q 8 l ‘—"
reciprocal of tan 20, and so each root 260; is 90° from 26,\_| [
20,, and the roots 8 and 0, are 45° apart. Therefore, an —(‘L;i) _lx_v

element subjected to maximum shear stress will be 45°

from the position of an element that is subjected to Fig. 9-10

the principal stress. Using either one of the roots ;1 or 85z, the maximum shear stress
can be found by taking the trigonometric values of sin 20 and Cos 20; from Fig. 9-10 and

substituting them into Eq. 9-2. The result is

Ty — 0", - )
U— = —2 - + Txy (9-7)

The value of Tmax/in-plane as calculated from this equation is referred to as the maximum in-
plane shear stress because it acts on the element in the x - y plane.
Substituting the values for sin 26; and Cos 260; into Eq. 9-1, we see that there is also an

average normal stress on the planes of maximum in-plane shear stress. We get

o, + o,
Tavg = % (9-8)
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Example: The state of stress at a point is shown on the element. —
Determine (a) the principal stress and (b) the maximum in-plane
shear stress and average normal stress at the point. Specify the kst
orientation of the element in each case. Show the results on each
element. 12 kst
SOLUTION
o, = —30Kksi o, =0 Tey = —12 ksi
a)
g+ 0, /ax—cryz “30+0 (=30 -0\
SN (A B R E
op = 4.21 ksi
oy = —34.2 ksi

Orientation of principal stress:

Txy -12

e = e — a2 (=30-0)2

0.8

Op = 19.33° and -70.67°
Use Eq. 9-1 to determine the principal plane of oy and o».

oyt o, Oy — 0y

oy = 5 - 5 cos 26 + 7, sin 26
0 = 19.33°
-30+0 -30-0 ’ 3 e A : .
oy = > - > cos 2(19.33°) + (—12)sin 2(19.33°) = —34.2 ksi

Therefore 6p, = 19.3°

and 6p = —70.7°
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b)
Ty~ ay\? /—30—02 | o
Tmaxiy plane \/(T) + Txyz = \ (T) + (=12)?> = 19.2 ksi
o, T O =30 + 0
Tavg = D) > = 3 = —15ksi

Orientation of max, in - plane shear stress:

—(ox —ay)/2  —(=30 - 0)/2

tan 260, =
an s Ty -12

0, = —25.7° and 64.3°

AL
9% Ksi
2 Z57°
\ 'Sks
B garnsi - :
Prob. 01: Determine the equivalent state of stress on

an element at the point which represents (a) the principal
Stresses and (b) the maximum in-plane shear stress and the
associated average normal stress. Also, for each case,
determine the corresponding orientation of the element with

respect to the element shown and sketch the results on the
element.

= —-1.25

50 MPa

—> 15MPa
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SOLUTION

Normal and Shear Stress:
o, = 50 MPa o = 1) Tyy = —15 MPa

In-Plane Principal Stresses:

o t+ ay Oy — U'y 2 »
(lezT:t\/(T) +Txy
50+0 50 — 0)\2
— + - A 2

= 25 +\V/850

oy = 542 MPa oy = —4.15 MPa Ans.

Orientation of Principal Plane:

Txy —15
tan 26, = = = —06
Po(oy—oy)/2 (50 - 0)/2

6, = —15.48° and 74.52°

Substitute # = —15.48° into

oytoy, oy—0C

oy = 5 + 5 > cos26 + T,y SIN 26
50+0  50-=0 .
= + cos (—30.96%) + (—15) sin (—30.967)
= 542 MPa = o,

Thus,

(6,)1 = —15.5° and (6,), = 74.5°
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The element that represents the state of principal stress is shown in Fig. a.

Maximum In-Plane Shear Stress:

o — T,\2 — 0\2
o = \/<—2 ’) tr = \/(5”2 (’) + (=152 =292MPa  Ans.
in-plane

Orientation of the Plane of Maximum In-Plane Shear Stress:

—(0r —0))/2  —(50 - 0))2
Ty - —-15

tan 260, =

= 1.667

#, = 29.5° and 120° Ans.

By inspection, 7,,

has to act in the same sense shown in Fig. b to maintain
in-plane

equilibrium.
Average Normal Stress:

g, + 0o 50 +
Cog =5 = 02 0 _ 25 MPa Ans.

The element that represents the state of maximum in-plane shear stress is shown
in Fig. c.

4.15MPa

(2)

&)
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Homework:

9-19. Determine the equivalent state of stress on an element
at the same point which represents (a) the principal stress, and
(b) the maximum in-plane shear stress and the associated
average normal stress. Also, for each case, determine the
corresponding orientation of the element with respect to the
element shown and sketch the results on the element.

— 25MPa

100 MPa

9-17. Determine the equivalent state of stress on an
element at the same point which represents (a) the principal
stress, and (b) the maximum in-plane shear stress and the
associated average normal stress. Also, for each case,
determine the corresponding orientation of the element
with respect to the element shown. Sketch the results on

each element.
75 MPa

125 MPa

*0-20. Planes AB and BC at a point are subjected to the
stresses shown. Determine the principal stresses acting at
this point and find o pc.

9-21. Thestress acting on two planes at a point is indicated.
Determine the shear stress on plane a—a and the principal
stresses at the point.

60 ksi




Al-Muthanna University
College of Engineering
Civil Engineering Department

Lecturer/ Alaa Al-Najjar

Strength Of Materials - Second Year ‘ 2019-2020

«* MOHR'’S CIRCLE - Solved Problems & Homeworks

50 MPa

Prob. 01 Determine (a) the principal stresses and (b) the maximum in-
plane shear stress and average normal stress. Specify the orientation of { l

the element in each case.

—t—p 30MPa

Solution.

A(0, —30) B(50, 30) C(25.0) s

R=CA = V(25 - 0) + 30® = 39.05

oy =25 + 39.05 = 64.1 MPa

o, =25 — 39.05 = —14.1 MPa
30

tan 26, = = 1.2

= L (MPa)
Opp = 25.1°

b4.1 MPa
Tavg = 25.0 MPa 14-1MPa
25-4°
Tmax = R = 39.1 MPa
in-plane

5-0

tan 26, 30 (0.8333
25.0 Mpa

6, = —19.9°
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Prob. 02 Determine the equivalent state of stress if an element is
oriented 25° counterclockwise from the element shown.

Solution.

A0, —550) B(0, 550) (0, 0)
R=CA=CB=5%
oy = —5505in 50° = —421 MPa @ %y),

Tyy = —350cos 50° = —354 MPa

GL))
oy = 550 sin 50° = 421 MPa

G, %y

YMpa)

21 Mh
25’

3t Pa

X

421 Ml
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Prob. 03 Determine the principal stresses, the maximum in- 20 MPa

plane shear stress, and average normal stress. Specify the
orientation of the element in each case.

500 MPa

350 MPa

Solution.

or+ oy 350 + (—200)

Tavp =
- 2 2

A(350,500)  C(75.0,0)

= 75.0 MPa

R = V(350 — 75.0) + 5002 = 570.64 MPa

oy = 75.0 + 570.64 = 646 MPa

oy = 75.0 — 570.64 = —496 MPa

tan 29” = 350+5.0750 = 152

Hpy = 30.6° (Counterclockwise)

tan 26, = %00750 = 0.55

0, = 144° (Clockwise)
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HWs.

1. The grains of wood in the board make an

angle of 20° with the horizontal as shown. 200 s 60 mm
Using Mohr’s circle, determine the normal ZAN- o 2N
and shear stresses that act perpendicular and 25 mm

parallel to the grains if the board is subjected
to an axial load of 250 N.

2. The post has a square cross-sectional area. If it is fixed supported at its base
and a horizontal force is applied at its end as shown, determine (a) the
maximum in-plane shear stress developed at A and (b) the principal stresses
atA

3. Determine the principal stress, the maximum in-plane shear stress, and average normal stress.
Specify the orientation of the element in each case.
20 MPa

80 MPa

30 MPa
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- MOHR’S CIRCLE - PLANE STRESS

In this section, we will show how to apply the equations for plane stress
transformation using a graphical solution that is often convenient to use and easy to
remember. Furthermore, this approach will allow us to “visualize” how the normal
and shear stress components oy and 7y, vary as the plane on which they act is
oriented in different directions, Fig. 9-15 a. If we write Egs. 9-1 and 9-2 in the form

o, + o, T — @
oy — T =|——F—)cos 20 + 7,y sin 260 (9-9)

P

s — iy
Toy = — T sin 20 + 7, cos 26 (9-10)

Then the parameter @ can be eliminated by squaring each equation and adding the
equations together. The result is

Ty + Ty 2 o, — 0y 2
T — —2 - + 'T_%-},r = —2 - + 1'%},

For a specific problem, oy, gy, tx, are known constants. Thus the above equation can be
written in a more compact form as

(o — ﬂ'a\,g]z + *r%-yr = R? (9-11)
o, + a,
Tavg — T

o, — aOo 2
R - \/ (Z52) + (612
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If we establish coordinate axes, g positive to the right and t positive downward , and then
plot Eq. 9-11, it will be seen that this equation represents a circle having a radius R and
center on the ¢ axis at point C (gavg, 0) , Fig. 9-15 b . This circle is called Mohr’s circle,
because it was developed by the German engineer Otto Mohr.

(b)

Each point on Mohr’s circle represents the two stress components oy and tx} acting on the
side of the element defined by the x' axis, when the axis is in a specific direction 8. For
example, when x' is coincident with the x axis as shown in Fig. 9-16 a, then 8 = 0° and ox =
Ox Txy = Txy .We will refer to this as the “reference point” A and plot its coordinates A (oy,
Ty), Fig. 9-16 c. Now consider rotating the x' axis 90° counterclockwise, Fig. 9-16 b. Then
Ox = 0y, Txy= - Txy. These values are the coordinates of point G (ay, - Txy') on the circle, Fig.
9-16 c. Hence, the radial line CG is 180° counterclockwise from the “reference line” CA. In
other words, a rotation 0 of the x' axis on the element will correspond to a rotation 26 on
the circle in the same direction. (If instead the t axis were constructed positive upwards,
then the angle 20 on the circle would be measured in the opposite direction to the
orientation 0 of the x' axis.) Once constructed, Mohr’s circle can be used to determine the
principal stresses the maximum in-plane shear stress and associated average normal
stress, or the stress on any arbitrary plane.
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a, ») X
A S—
— A O, \\\\9 = 090
¥ a=10 ) Txy

(a)

(c)
Fig. 9-16
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EXAMPLE:

Due to the applied loading, the element at point A on the
solid shaft in Fig. 9-18a is subjected to the state of stress
shown. Determine the principal stresses acting at this point.
SOLUTION

Construction of the Circle. From Fig. 9-18a,
o, = —12ksi o, =0 Ty = O ksl
The center of the circle is at

-12+0 .
Oavg = = = —6ksi

The reference point A(—12, —6) and the center C(—6, 0) are
plotted in Fig. 9-18b.The circle is constructed having a radius of

R = V(12 — 6)* + (6)> = 8.49 ksi

Principal Stress. The principal stresses are indicated by
the coordinates of points B and D. We have, for oy > o>,

o, =849 — 6 = 249ksi
oy = —6 — 849 = —14.5ksi

The orientation of the element can be determined by calculating the
angle 26, in Fig. 9-18b, which here is measured counterclockwise from
CA to CD. It defines the direction 6, of o, and its associated principal

plane. We have

20, —dan " 6
2 12 -6

8, =225°

= 45.0°

The element is oriented such that the x" axis or o, is directed
22.5° counterclockwise from the horizontal (x axis) as shown
in Fig. 9-18c.

2.49 ksi

Fig. 9-18

# 12 ksi

—_— 6ksi
(a)
Ans.
Ans.
12
A
| \\6’
6 - Y0
| p R —6— |5 s
e o (ksi)
7 (ksi)

(b)
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EXAMPLE 02:

90 MPa The state of plane stress at a point is shown on the element in Fig. 9-19a.

Determine the maximum in-plane shear stress at this point.

—1—*> 60MPa SOLUTION
Construction of the Circle. From the problem data,
20 MPa
o, = —20MPa oy, = 90 MPa Ty = 60 MPa
——
The o, 7 axes are established in Fig. 9-19b. The center of the circle C
(@) is located on the o axis, at the point
—20 + 90
/_F Oag = 5 = 35 MPa
Point C and the reference point A(—20, 60) are plotted. Applying
B the Pythagorean theorem to the shaded triangle to determine the
o (MPa) . N "
| > circle’s radius CA, we have
0
jO_Q_’/ s, 814
2 R = V(60)* + (55)" = 81.4 MPa
E

Maximum In-Plane Shear Stress. The maximum in-plane shear
(®) stress and the average normal stress are identified by point E (or F') on
the circle. The coordinates of point £(35,81.4) give

Tmax = 81.4 MPa Ans.

in-plane
T e — 33 MPa Ans.

avg

The angle 6, . measured counterclockwise from CA to CE. can be
found from the circle. identified as 26, . We have

20 + 35
— -1 o
26, = tan ( 5 ) = 425

0,

= 21.3° Ans.

This counterclockwise angle defines the direction of the x' axis,
© Fig. 9-19c. Since point E has positive coordinates, then the average
normal stress and the maximum in-plane shear stress both act in the

Fig. 9-19 positive x’ and y' directions as shown.




Mohr's circle

Procedure for Analysis

1. Find A, B, C coordinates (A and B in the same straight line and pass through the center

of circle).
ox+oy

2. Determine o, Where o, =

_ 2
gx—ay + (tx 2 ) Note that R= Tmax in plane
2 Y a

4. Calculate Principal stresses, 612 = cav.x R
5. Determine Q coordinate where Q represented max in plane shear stress coordinate

3. Calculate R value, where R = \/(

Point X coordinate Y coordinate
A Ox Ty
B oy - Ty
C Oave 0
Q Oav- R

6. Drawing Mohr's circle by using all the coordinated above




