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PROPERTIES OF FLUIDS

1.1. INTRODUCTION

Fluid Mechanics: Fluid mechanics may be defined as that branch of
Engineering science, which deals with the behavior of fluid under the
conditions of rest and motion. The fluid mechanics may be divided into
three parts: Statics, kinematics and dynamics.

Statics. The study of incompressible fluids under static conditions is called
hydrostatics and that dealing with the compressible static gases is termed
as aerostatics.

Kinematics. It deals with the velocities, accelerations and the patterns of
flow only. Forces or energy causing velocity and acceleration are not dealt
under this heading.

Dynamics. It deals with the relations between velocities, accelerations of
fluid with the forces or energy causing them.

Properties of Fluids—General Aspects: The matter can be classified on
the basis of the spacing between the molecules of the matter as follows:

1. Solid state, and

2. Fluid state,

(i) Liquid state, and (ii) Gaseous state.
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The differences between liquid, solid and gas state are:

1.2. FLUID
A fluid may be defined as follows:

“A fluid is a substance which is capable of flowing"'.

or
""A fluid is a substance which deforms continuously when subjected to
external shearing force"

A fluid has the following characteristics:

1. It has no definite shape of its own, but conforms to the shape of the
containing vessel.

2. Even a small amount of shear force exerted on a liquid/fluid will cause
it to undergo a deformation, which continues as long as the force
continues to be applied. A fluid may be classified as follows:

A. (i) Liquid, (ii) Gas, (iii) Vapor.

B. (i) Ideal fluids (ii) Real fluids.

Liquid

e Aliquid is a fluid, which possesses a definite volume (which varies
only slightly with temperature and pressure).

e Liquids have bulk elastic modulus when under compression and will
store up energy in the same manner as a solid. As the contraction of
volume of a liquid under compression is extremely small, it is
usually ignored and the liquid is assumed incompressible.

e A liquid will withstand slight amount of tension due to molecular
attraction between the particles, which will cause an apparent shear
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resistance, between two adjacent layers. His phenomenon is known
as viscosity.

e All known liquids vaporize at narrow pressures above zero,
depending on the temperature.

Gas. It possesses no definite volume and is compressible.

Vapor. It is a gas whose temperature and pressure are such that it is very
near the liquid state (e.g., steam).

Ideal fluids. An ideal fluid is one, which has no viscosity and surface
tension and is incompressible. In true sense, no such fluid exists in nature.
However, fluids, which have low viscosities such as, water and air can be
treated as ideal fluids under certain conditions. The assumption of ideal
fluids helps in simplifying the mathematical analysis.

Real fluids. A real practical fluid is one, which has viscosity, surface
tension and compressibility in addition to the density. The real fluids are

actually available in nature.

1.3. LIQUIDS AND THEIR PROPERTIES

e Liquid can be easily distinguished from a solid or a gas.
e Solid has a definite shape.

e A liquid takes the shape of vessel into which it is poured.
e A gas completely fills the vessel, which contains it.

Some important properties of water, which will be considered, are:

(i) Density (iv) Vapor pressure  (vii) Surface tension,
(i) Specific gravity  (v) Cohesion (viii) Capillarity
(iit) Viscosity (vi) Adhesion,  and (ix) Compressibility.
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1.4. DENSITY

1.4.1 Mass Density
The density (also known as mass density or specific mass) of a liquid may

be defined as the mass per unit volume LH at a standard temperature and
pressure. It is usually denoted by p (rho). Its units are kg/m?
_ m
P=y (1.1)
1.4.2 Weight Density

The weight density (also known as specific weight) is defined as the weight
per unit volume at the standard temperature and pressure. It is usually
denoted by y.

[7=p9] (12)

For the purposes of all calculations, relating to Hydraulics and hydraulic
machines, the specific weight of water is taken as follows:
In S.1. Units: y = 9.81 kN/m? (or 9.81x 10 N/mm3)

1.4.3 Specific volume
It is defined as volume per unit mass of fluid. It is denoted by v
Mathematically,

-5
5 (1.3)

1.5. SPECIFIC GRAVITY

Specific gravity is the ratio of the specific weight of the liquid to the specific
weight of a standard fluid. It is dimensionless and has no units. It is
represented by S. Fluid Mechanics For liquids, the standard fluid is pure
water at 4°C.

) o . Specific weight of liquid _ y liquid
- Specific gravity ~ Specific weight of pure water — y water ~(14)
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Example 1.1. Calculate the specific weight, specific mass, specific volume
and specific gravity of a liquid having a volume of 6 m® and weight of 44
KN.

Solution: Volume of the liquid =6 m®
Weight of the liquid = 44 kN

Specific weight, y =Weight of liquid /VVolume of liquid
= 44/6
= 7.333 KN/m?

Specific mass or mass density, p =y/g
= (7.333* 1000)/ 9.81
= 747.5 kg/m?®
Specific volume, v =1/ p
=1/747.5
= 0.00134 m3/kg

Specific gravity, S = y liquid / y water

=7.333/9.81
=0.747

1.6. VISCOSITY

Viscosity may be defined as the property of a fluid which determines its
resistance to shearing stresses. It is a measure of the internal fluid friction,
which causes resistance to flow. It is primarily due to cohesion and
molecular momentum exchange between fluid layers, and as flow occurs,
these effects appear as shearing stresses between the moving layers of
fluid. An ideal fluid has no viscosity.

If fluid is in motion, shear stress are developed — this occur if the fluid
particles move relative to each other with different velocities.

However, if the fluid velocity is the same at every point (fluid particles are
at rest relative to each other), no shear stress will be produced.

The following figure exhibit the velocity profile in a circular pipe:
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Y

>V

Note that fluid next to the pipe wall has zero velocity (fluid sticks to wall),
But if the fluid moved away from the wall, velocity increases to maximum.
Change in velocity (v) with distance(y) is (velocity gradient):

Velocity gradient _dv. ..(1.5)

dy
This also called (rate of shear strain)

Newton’s Law of Viscosity:
r=ug) -(16)

t=shear stress (pa=N/m?2).
u=dynamic viscosity

Units of Viscosity:

In S.1. Units: N.s/m?

One poise =10 N.s/m?

The viscosity of water at 20°C is 102 poise or one centipoise.

, | 2 - .
force/area _ force/length”  force x time

= 1 1 2
(length/time) x (length)

| length length

Newtonian Fluids:

v Fluids obey Newton’s law of viscosity are Newtonian fluids.

v For this type of fluids, there is a linear relationship between shear
stress and the velocity gradient.
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v Dynamic viscosity (p) is the slope of the line.

v Dynamic viscosity (p) is constant for a fluid at the same temperature.
v As temperature increase — () decreases —slope decreases.

v" Most common fluids are Newtonian, for example: Air, Water, Qil,
etc...

The following graph explains the linear variation of shear stress with rate

of shear strain (velocity gradient) for common fluids:

/f.'rude odl (16°C

— Slope =
/ s P

Eheoring stress, T
—

Water (16°C )

Water (38°C )

Air (16°C)

, . dv
Fate of shearing strain, ™

Kinematic Viscosity :

Kinematic viscosity is defined as the ratio between the dynamic viscosity
and density of fluid. It is denoted by v (called nu).

Mathematically,

V:ViLOS_itx _M (L7)
Density p

Units of kinematic viscosity:

In SI units: m?/s

the kinematic viscosity is also known as stoke ( = cm?/sec.)
One stoke = 1074 m?/s

Centistoke means10-2 stoke.
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1.6. VISCOSITY

Effect of Temperature on Viscosity

Viscosity is effected by temperature. The viscosity of liquids decreases but that of gases
increases with increase in temperature. This is due to the reason that in liquids the shear
stress is due to the inter-molecular cohesion which decreases with increase of
temperature. In gases the inter-molecular cohesion is negligible and the shear stress is due
to exchange of momentum of the molecules, normal to the direction of motion.

Effect of Pressure on Viscosity

The viscosity under ordinary conditions is not appreciably affected by the changes in
pressure. However, the viscosity of some oils has been found to increase with increase in
pressure.

Example A plate 0.05 mm distant from

a fixed plate moves at 1.2 m/s and i Moving plate v=12 mis
requires a force of 2.2 N/m? to maintain T ——
this speed. Find the viscosity of the fluid f et by e
between the plates. b e e

Fixed plate

Solution: Velocity of the moving plate, = 1.2 m/s
Distance between the plates, dv =0.05 mm =0.05 x 10> m
Force on the moving plate, F =2.2 N/m’

Viscosity of the fluid, u:
We know. T=p du
dy
where 1= shear stress or force per
unit area = 2.2 N/m>.
du = change of velocity
=u—-0=12m/s and
dy = change of distance
= 0.05 x 107 m.

1.2
22= pix—r2
0.05 <10
c 103 ] )
o. L= 2'2><0'10:><]0 =9.16 x 107"N.s/m"

=9.16 x 10~ poise (Ans.)
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H.W.:
plate having an area of 0.6 m? is sliding down the inclined plane at 30° to the horizontal

with a velocity of 0.36 m/s. There is a cushion of fluid 1.8 mm thick between the plane
and the plate. Find the viscosity of the fluid if the weight of the plate is 280 N.

Example The velocity distribution of flow over a plate is parabolic with vertex 30 cm
from the plate, where the velocity is 180 cm/s. If the viscosity of the fluid is 0.9 N.s/m?
find the velocity gradients and shear stresses at distances of 0, 15 cm and 30 cm from the

plate.

Y
A
u= 180 cm/s Vertex
7
> Velocity distribution
,;,A/ (Parabolic)
E .
= /
a >,
Plate
» U
/- s P s i s T -

Solution. Distance ot the vertex from the
plate = 30 cm.

Velocity at vertex, u# = 180 ci/s

Viscosity of the fluid = 0.9 N.s/m?

The equation of velocity profile. which is
parabolic, 1s given by

U= [1'2 Tmy +n -(1)
where /., m and » are constants. The

values of these constants are found from the
following boundary conditions:

() At y=0,u=0,
(i) Aty =30 cm.
1 =180 cm/s and
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du
v
Substituting boundary conditions (7) in eqn. (1), we get
0=0+0+n .. n=0
Substituting boundary conditions (77) in eqn. (1), we get

(iiif) Aty =30 cm, =0.

180 = 1 % (30)*+m =30 or 180=900/+30m -(2)
Substituting boundary conditions (7i7) in eqn. (1), we get
% =2ly+m . 0=2/%30+m or 0=60/+m ..(3)
A
Solving eqns. (2) and (3). we have / =— 0.2 and m = 12.
Substituting the values of /, m and » in eqn. (1), we getu =— 0.2 > + 12y
Velocity gradients, % :
Y
du _ —02x2y+12=-04y+ 12
dy
At y =09} =125 (Ans)
| \dy ), _
o y=0
_ (du ) _ : — €/5 (Ans
At y = 15cm, | — | =—-04 =« 15+ 12 =6/s (Ans.)
L), _is
_ 2 (du) _ <0412 = |
At vy = 30cm, | —— =—04x30+12=0(Ans.)
' Ldv)
VY Jy=30
Shear stresses, T:
We know, T = pﬂ
dv
B _(du’ PR 2 _
At ¥y =0.(1),_o=H| s =0.9 ¥ 12=10.8 N/m" (Ans.)
_ _ ., [du) 00— 2
At vy =15(1),_15= 1| o =0.9 ¥ 6=5.4 N/m" (Ans.)
: ) \ ay z
W Ay =15
. ~ (du) _ o .
At ¥ =30, (1),-5= 1 - =0.9 x 0=0 (Ans.)
' VRV =30

H.W.

Two large fixed parallel planes are 12 mm apart. The space between the surfaces is filled
with oil of viscosity 0.972 N.s/m?. A flat thin plate 0.25 m? area moves through the oil at
a velocity of 0.3 m/s. Calculate the drag force:

(i) When the plate is equidistant from both the planes, and

(if) When the thin plate is at a distance of 4 mm from one of the plane surfaces
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1.7. SURFACE TENSION AND CAPILLARITY
1.7.1. Surface Tension

Cohesion. Cohesion means intermolecular attraction between molecules of the same
liquid. It enables a liquid to resist small amount of tensile stresses. Cohesion is a tendency
of the liquid to remain as one assemblage of particles. “Surface tension” is due to
cohesion between particles at the free surface.

Adhesion. Adhesion means attraction between the molecules of a liquid and the
molecules of a solid boundary surface in contact with the liquid. This property enables a
liquid to stick to another body. Capillary action is due to both cohesion and adhesion.

Surface tension is caused by the force of cohesion at the free surface.

Molecule

Free surface

Effect of Surface tension
1.7.2. Capillarity
Capillarity is a phenomenon by which a liquid (depending upon its specific gravity) rises
into a thin glass tube above or below its general level. This phenomenon is due to the
combined effect of cohesion and adhesion of liquid particles.

This Figure shows the phenomenon of rising water in the tube of smaller diameters
Let, d = Diameter of the capillary tube,
0 = Angle of contact of the water surface
o = Surface tension force for unit length, and
y = Weight density (pg).
Now, upward surface tension force (lifting force) = weight of the water column in the
tube (gravity force)
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T ;2
rtd.ocos€)=’+4d xhx y

46 cos6
r d
For water and glass: 6 = 0.

h =

Hence the capillary rise of water in the glass
tube.
4c
yd
In case of mercury there is a capillary depression as shown in Figure, and the angle of
depression is 6 ~ 140°,
(It may be noted that here cos 6 = cos 140° = cos (180 — 40°) = — cos 40°, therefore, h is
negative indicating capillary depression).

h =

Following points are worth noting:

v Smaller the diameter of the capillary tube, greater is the capillary rise or depression.

v' The measurement of liquid level in laboratory capillary (glass) tubes should not be
smaller than 8 mm.

v’ Capillary effects are negligible for tubes longer than 12 mm.

v’ For wetting liquid (water): 6 < =/2. For water: 6 = 0 when pure water is in contact
with clean glass. But 6 becomes as high as 25° when water is slightly contaminated.
For non-wetting liquid (mercury): 6 > n/2. (For mercury: 0 varies between 130° to
150°)

. . -
h = Capillary rise |
I SR =

Adhesion > Cohesion
(Miniscus concave)
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—d—

/ (Glass tube

h= Cgpillary Mercury
y depression
0 0>m/2
” o

g Mercury
Cohesion > Adhesion
(Miniscus convex)

(a) Wetting liquid (water).

Liquid

K

Gas 0> /2

A

Solid

(b) Non-wetting liquid (mercury).

Example A clean tube of diameter 2.5 mm is immersed in a liquid with a coefficient of
surface tension = 0.4 N/m. The angle of contact of the liquid with the glass can be
assumed to be 135°. The density of the liquid = 13600 kg/m3. What would be the level of
the liquid in the tube relative to the free surface of the liquid inside the tube.

Figure illustrates the capillary effect
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Solution. Given: d = 2.5 mm : ¢ =4 N/m. 6 = 135° p = 13600 kg/m’
Level of the liquid in the tube, 5:
The liquid in the tube rises (or falls) due to capillarity. The capillary rise (or fall).
4G cos
wd
_ 4x0.4xcosl35°
(9.81x13600)x 2.5x107°

h =

(1 w=pg)

=—3.39 % 10~ °m or — 3.39 mm
Negative sign indicates that there is a capillary depression (fall) of 3.39 mm. (Ans.)

1.9. COMPRESSIBILITY AND BULK MODULUS

The property by virtue of which fluids undergo a change in volume under the action of
external pressure is known as compressibility. It decreases with the increases in pressure
of fluid as the volume modulus increases with the increase of pressure.

Elasticity of fluids is measured in terms of bulk modulus of elasticity (K) which is defined
as the ratio of compressive stress to volumetric strain. Compressibility is the reciprocal
of bulk modulus of elasticity.

P
Piston \
W .
iy 4 | / ;‘\ d
. 1 a 1)
Cylinder | ________ Ll __ av I
___________________ v i x|
\ V 2 dv/V.
i &
71
Volumetric strain ——

Let the pressure is increased to p + dp. the volume of gas decreases from V'to V—dV,

Then increase in pressure = dp:Decrease in volume = dV

Volumetric strain = — %V

(Negative sign indicates decrease in volume with increase of pressure)
dp (increase of pressure)
—dV /V(volumetricstrain)
dp
—-dViv

Bulk modulus. K

ie., K =

( Compressibility = %
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Example When the pressure of liquid is increased from 3.5 MN/m2 to MN/m2 its volume
Is found to decrease by 0.08 percent. What is the bulk modulus of elasticity of the liquid?

Solution. Initial pressure
Final pressure
Increase in pressure, dp

Decrease in volume

Bulk modulus (K) is given by:

K

Hence, K

3.5 MN/m

6.5 MN/m’

6.5—3.5=3.0 MN/m’

0.08 percent _dv _0.08
100

- 6
(E’)If = 3(;( ég =3.75 = 10° N/m” or 3.75 GN/m’
V100

3.75 GN/m’ (Ans.)
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1.9 Important Laws

1. Law of conservation of mass

“The mass can neither be created nor destroyed, and it can not be created from
nothing”

2. Law of conservation of energy

“ The energy can neither be created nor destroyed, though it can be
transformed from one form into another”

Newton’s Laws of Motion

Newton has formulated three law of motion, which are the basic postulates or
assumption on which the whole system of dynamics is based.

3. Newton’s first laws of motion

“Every body continues in its state of rest or of uniform motion in a straight line,
unless it is acted upon by some external forces”

4. Newton’s second laws of motion

“The rate of change in momentum is directly proportional to the impressed
force and takes place in the same direction in which the force acts ”[momentum
= mass X velocity]

5. Newton’s third laws of motion

“To every action, there is always an equal and opposite reaction”

1.5 Flow Patterns

The nature of fluid flow is a function of the fluid physical properties, the geometry
of the container, and the fluid flow rate. The flow can be characterized either as
Laminar or as Turbulent flow.

Laminar flow is also called “viscous or streamline flow”. In this type of flow layers
of fluid move relative to each other without any intermixing.

Turbulent flow in this flow, there is irregular random movement of fluid in directions
transverse to the main flow.
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Example One liter of certain oil weighs 0.8 kg, calculate the specific weight, density,
specific volume, and specific gravity of it.

Weight of fluid  (0.8kg)(9.81m /s Hy N
ML = = = T848—
P = Y olume of fluid 1x10 3 m? m?
(0.8kg) kg 1 _am’
= _R00—= =—=125x10" —
131073 m? m? v p > kg

Piquia 800kg /' m* ~
Posee  1000kg/m®

sp.gr.=

Example Determine the specific gravity of a fluid having viscosity of 4.0 c.poice and
kinematic viscosity of 3.6 c.stokes.

Solution:
poice ; g stoke cm’

= . =Y. = 9. = 3‘ 2 = 0. 3 - ey

a P 100¢.p Ve = cm.s WedieS 100c.s Sssioke s
04—
K = cm.s g kg

e - > =l-1111—— =llll_l——— ' -=l-llll

¥ p =F v 0.036cm" /s cc =P ’ = sp.gr

Example A plate having an area of 0.6 m?is sliding down the inclined plane at 30°
to the horizontal with a velocity of 0.36 m/s. There is a cushion of fluid 1.8 mm thick
between the plane and the plate. Find the viscosity of the fluid if the weight of the
plate is 280 N.

Solution: Area of plate, 4 =06 m”
Weight of plate, "= 280N
Velocity of plate, w =036 m's
Thickness of film. r=dy=18mm=18x10"m
Viscosity of the fluid, n:
Component of I along the plate = W sin 6 = 28051 30° = 140 N

e

S,
e

¥ e
-"J‘JQJ

w 0=30°
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. Shear force on the bottom surface of the plate. F = 140 N and shear stress,

F 140 2
= —=—=233 33N/m"
A4 0.
] du
We know, T= U —
L {j‘l‘tl
Where, du = change of velocity = —0=036 m/s
dy = t=18%x10"m
23333 = L X Lﬁ_i
18«10
23333x1. - )
of, n = <1810 =1.166N.s/m" = 11.66 poise (Ans.)

n3a

Example Two large fixed parallel planes are 12 mm apart. The space between the
surfaces is filled with oil of viscosity 0.972 N.s/m?. A flat thin plate 0.25 m? area moves
through the oil at a velocity of 0.3 m/s. Calculate the drag force:

(i) When the plate is equidistant from both the planes, and
(if) When the thin plate is at a distance of 4 mm from one of the plane surfaces.

Solution. Given: Distance between the fixed parallel planes = 12 mm =0.012 m

Area of thin plate, 4 =025 m’ Fixed parallel plane
Velocity of plate, v = 0.3 m/s /
Viscosity of o1l =0.972 N.s/m’ T T
Drag force, F: Plate 0 ™mm
() When the plate is equidistant from both the planes: 2 \"'\ 'L 0.3 ms >
Let. F, = Shear force on the upper side of the = T
thin plate, 6 mm
F, = Shear force on the lower side of the l ¢
~ thin plate,
F = Total force required to drag the plate
(=F,+F,).
The shear t,. on the upper side of the thin plate 1s given by:
w5

where, du = 0.3 m/s (relative velocity between upper fixed plane and the plate). and dy =
6 mm = 0.006 m (distance between the upper fixed plane and the plate)

(Thickness of the plate neglected).
1, = 0.972x 23
0.006

— 48 6N/m°

Shear force, F; = 1/ 4=486=025=12.15N
Similarly shear stress (7,) on the lower side of the thin plate 15 given by

2 '|E|_.‘

o= w9 0972 % %3 _ 486 N/m?
0.06
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and Fy = 1,,A=486x025=12.15N
F = F|+F,=12.15+12.15=24.30 N (Ans.)

(if) When the thin plate is at a distance of 4 mm from one of the plane surfaces:

The shear force on the upper side of the thin

plate, T T
( au .| - 8 mm
Flzrl":":h'l?l}‘q E
Y e 03 m/
— 2 MYs
= 0972x 23 025-9.11N g
70008 T T i 4 mm
The shear force on the lower side of the thun plate,
Fig. 1.13
F,= 1'qu=|“.'£'><
& - | d}. |1
0.3 |

= 0972x|—=—|x025=18.22N
10.004

Example The velocity distribution of flow Y
over a plate is parabolic with vertex 30 cm
from the plate, where the velocity is 180 cm/s.
If the viscosity of the fluid is 0.9 N.s/m? find 4= 180 em/s Vertex

the velocity gradients and shear stresses at 7 Velocity distributi
distances of 0, 15 cm and 30 cm from the T j/ ’ m(gﬁmlgfﬁc; o
plate. = =7
2
Solution. Distance of the vertex trom the
plate = 30 cm.
Velocity at vertex, u = 180 cm/s Plate
Viscosity of the fluid = 0.9 N.s/m? T . ——

The equation of velocity profile, which is

parabolic, 1s given by
u=h*+my +n (1)

where /. m and n» are constants. The
values of these constants are found from the
following boundary conditions:

@ At y=0.u=0,

(i) Aty =30 cm,

1 =180 cm/s and
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du
v
Substituting boundary conditions (7) in eqn. (1), we get
0=0+0+n .. n=0
Substituting boundary conditions (77) in eqn. (1), we get

(iiif) Aty =30 cm, =0.

180 = 1 % (30)*+m =30 or 180=900/+30m -(2)
Substituting boundary conditions (7i7) in eqn. (1), we get
% =2ly+m . 0=2/%30+m or 0=60/+m ..(3)
A
Solving eqns. (2) and (3). we have / =— 0.2 and m = 12.
Substituting the values of /, m and » in eqn. (1), we getu =— 0.2 > + 12y
Velocity gradients, % :
Al
du _ -02x2y+12=-04y+12
dv
At y=0.(9) =12/ (Ans)
' Ldv ) _
W v=0
_ (du ) _ — /s (Ans
At y = 15cm, | —— | =—-04 < 15+ 12 =6/s (Ans.)
\ d.lr Jv=15
_ 2 (du ) _ 2 _ .
At y = 30cm, | —— =—0.4x30+12=0 (Ans.)
: | dv |
VY Sy =30
Shear stresses, T:
We know, T = pﬂ
dy
B _(du) e 1A 2 _
At ¥y =0.(1),_o=H| s =0.9 © 12=10.8 N/m" (Ans.)
_ _ (du) _ _ 2
At vy o= 15(0),_ 5= 1| o =0.9 ¥ 6=5.4 N/m" (Ans.)
- ) \ dy .
LW Ay =15
. ~(du) _ _ .
At v =30, (T)y_30= U 5 =0.9 < 0=0 (Ans.)
' ! \ 0{1 Jy=30
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Home Work
P.ll
Two plates are kept separated by a film of o1l of 0.025 mm. the top plate moves
with a velocity of 30 cm/s while the bottom plate 1s kept fixed. Find the fluad viscosity
of oil if the force required to move the plate 1s 0.2 kg/m". Ans. u=9.81x10" Pa.s ?
P12
If the equation of a velocity profile over a plate is u=3 v* in which the velocity
i m/'s at a distance v meters above the plate, determune the shear stress at v=0 and y=>5
cm. Take pu= 8.4 poise Ans. Ty=g =, Ty=s =4.36 Pas
P.l.3
The equation of a velocity distmbution over a plate 15 u=1/3 v - }'! in which the
velocity m m/s at a distance v meters above the plate. determine the shear stress at y=0
and v=0.1 m. Take u= 8 35 poise Ans. 1= =278, 1,01=4.36 r:i*j-fl:tE*--"-:u:l.2
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CHPTER TWO
Dimensional Analysis

2.1 Introduction

Any phenomenon is physical sciences and engineering can be described by the
fundamentals dimensions mass, length, time, and temperature. Till the rapid
development of science and technology the engineers and scientists depend upon
the experimental data. But the rapid development of science and technology has
created new mathematical methods of solving complicated problems, which could
not have been solved completely by analytical methods and would have consumed
enormous time. This mathematical method of obtaining the equations governing
certain natural phenomenon by balancing the fundamental dimensions is called
(Dimensional Analysis). Of course, the equation obtained by this method is known
as (Empirical Equation).

2.2 Fundamentals Dimensions

The various physical quantities used by engineer and scientists can be
expressed in terms of fundamentals dimensions are: Mass (M), Length (L), Time
(T), and Temperature (0). All other quantities such as area, volume, acceleration,
force, energy, etc., are termed as ““ derived quantities”.

2.3 Dimensional Homogeneity

An equation is called ‘“dimensionally homogeneous” if the fundamentals
dimensions have identical powers of [L T M] (i.e. length, time, and mass) on both
sides. Such an equation be independent of the system of measurement (i.e. metric,
English, or S.1.). Let consider the common equation of volumetric flow rate,

Q=Au
L3TL1=1L2LT=L3%T
We see, from the above equation that both right and left hand sides of the equation

have the same dimensions, and the equation is therefore dimensionally
homogeneous.

Example -2.1-
a) Determine the dimensions of the following quantities in M-L-T system 1-
force 2-pressure 3- work 4- power 5- surface tension 6- discharge 7- torque

8- momentum.
b) Check the dimensional homogeneity of the following equations
2 — PIAz 8 e 2
1- u=\/ &(Pn—P) 2- O=—edtan—,|2 gZ*
P 15 2 -
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Solution:
a)
I- F=m.g (l{g.m-"sz) =
2- P=F/A=[(MLTS) (L?] (Pa) =
3- Work=F.L=[(MLT? (L)] (N.m) = [ML’T™
4-  Power = Work/time = [(ML*T?) (T™)] (W) =
=

5-  Surface tension = F/L = [(MLT?) (L')] (N/m) M T
6- Discharge (Q) m’/s = [L3T'1]
7-  Torque (I =F.L=[(MLT? (L)] N.m = [ML’T?]
8- Moment=m.uL)]N.m = [I\-'ILET"]
b'} 1_ u= llllg(pm_p)f—“:
\ P

LHS. u=[LT"]
_ (LT | P
RHS u= [?J = [LT ]

Since the dimensions on both sides of the equation are same. therefore the equation
is dimensionally homogenous.

5

8 & — -
2- QZI_.;""IMHT”-.-'IJ gZ?

LHS. q=[L’T']
RHS. (LTH (L)Y*=[L°T
This equation is dimensionally homogenous.

2.4 Methods of Dimensional Analysis

Dimensional analysis, which enables the variables in a problem to be grouped
into form of dimensionless groups. Thus reducing the effective number of
variables. The method of dimensional analysis by providing a smaller number
of independent groups is most helpful to experimenter.

Many methods of dimensional analysis are available; two of these methods are
given here, which are:

1- Rayleigh’s method (or Power series)
2- Buckingham’s method (or II-Theorem)

2.4.1 Rayleigh’s method (or Power series)

In this method, the functional relationship of some variable is expressed in the
form of an exponential equation, which must be dimensionally homogeneous.
If (y) is some function of independent variables (X1, X2, Xs, ......... etc.), then
functional relationship may be written as;

y = f(X1, X2, X3, ......... etc.)

Dimensional Analysis 2 Chapter Two
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The dependent variable (y) is one about which information is required; whereas
the independent variables are those, which govern the variation of dependent
variables.

The Rayleigh’s method is based on the following steps:-

1. First of all, write the functional relationship with the given data.

2. Now write the equation in terms of a constant with exponents i.e. powers
a, b, c,..

3. With the help of the principle of dimensional homogeneity, find out the
values of a, b, c, ... by obtaining simultaneous equation and simplify it.

4. Now substitute the values of these exponents in the main equation, and

simplify it.

Example -2.2-
If the capillary rise (h) depends upon the specific weight (sp.wt) surface tension (o)
of the liquid and tube radius (r) show that:

o

h=r¢|——— | where ¢ 1s any function.
(sp.wt.) r-
Solution:
Capillary rise (h) m =[L]
Specific weight (sp.wt) N/m’ (MLT'2 L?) = [ML'ET'E]
Surface tension (6) N/m (MLT> L1 = [MT?]

Tube radius (r) m = [L]
h=f(sp.wt.c.r)

h =k (sp.wt? o". 1)

[L]=[ML2T=] [MT]°[L]
Now by the principle of dimensional homogeneity, equating the power of M, L,
T on both sides of the equation

ForMO=a+b=a=-b

ForL1=-2a+c=>a=-b

ForT0O=-2a-2b=a=-b
h=k (sp.wt.'b. o’ 1‘1'%)

}g:f{rL,l h=?'$L~;
SpWE. ¥ "\ (spowt) o
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Example -2.3-
Prove that the resistance (F) of a sphere of diameter (d) moving at a constant speed
(u) through a fluid density (p) and dynamic viscosity (i) may be expressed as:
' (pud

F=—¢ . where ¢ 1s any function.
P 7
Solution:
Resistance (F) N = [MLT?]
Diameter (d) m = [L]
Speed (u) m/s = [LT'I]
Density (p) kg.-"mj = [ML'E]
Viscosity (p) kg/m.s = [I*»-'IL'1 T'l]

F=f(d. u p.p
F=k(d. v’ p° %
[MLT™]=[L] [LT "ML ML T

ForMl=c+d=c=1-b - 1)
ForLl1=a+b-3c-d = - 2)
ForT-2=-b-d=b=2-b - (3)

By substituting equations (1) and (3) in equation () give
a=1-b+3c+d=1-Q2-d)+3(1-d)+d=2-4d
F=k (d™% v*, pl'd. ud) =k {(d‘2 u’ p)(n/pu cl)d} --------- x {(p/ “z) I (p/ “z)}

F=k {(dv’ p’ /1) (u/pud)® 1/ p)}

. F=£¢'[—p”d)
p i
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Example -2.4-
The thrust (P) of a propeller depends upon diameter (D); speed (u) through a fluid
density ( o ); revolution per minute (N); and dynamic viscosity ( « ) Show that:

Solution:

Thrust (P) N = [MLT™]
Diameter (D) m = [L]

Speed (u) mv/'s =[LT]
Density (p) 1<:g.-"'1113 = [I\,-'[L'E]
Rev. per min. (N) min™ = [T'l]
Viscosity (u) kg/m.s = [ML'1 T'l]

P=f(D.up.N.w
P=k (D% v’ p N 1
) J
[MLT?] = [L] [LT ML 3T vt ™

ForMl=c+e=>c=1-e  smmmmmmmeeee (1)
ForL1=a+b-3c-e= a=1-b+3c+e -—----—------- (2)
ForT-2=-b-d-e= b=2-e-d W --mmmmmm- 3)

By substituting equations (1) and (3) in equation (2) give
a=1-(2-e—-d)+3(l-e)+e=2-e+d

P=k D% > p= N 1

[ 8
_ ¢ 2,2 H DN]
P=(pD }kl_{pﬂnle{ u JI

- p—(p Dy [ 7 DN
 P=(pD* N |GG
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Home Work
P.2.1
Show, by dimensional analysis, that the power (P) developed by a hydraulic

2 7

N D

. . . - D
turbine is given by: P=(p N’ Dj}f[( ¢ H

)] where (p) is the fluid density. (N)

1s speed of rotation i r.p.m.. (D) 1s the diameter of runner. (H) is the working head. and
(g) 1s the gravitational acceleration.
P22
The resistance (R) experienced by a partially submerged body depends upon the
velocity (u). length of the body (L), dynamic viscosity (i) and density (p) of the fluid.
and gravitational acceleration (g). Obtain a dimensionless expression for (R).
_ 1.2 M Lg
Ans. R=(u"L p)f[gm).( )]

-
-

P.2.3
Using Rayleigh’s method to determine the rational formula for discharge (Q)
through a sharp-edged orifice freely into the atmosphere in terms of head (h). diameter

(d). density (p). dynamic viscosity (). and gravitational acceleration (g).

[ 1
Ans. 0= [d\fg_h)fll(ﬁij

I
pd’ g’

|—

)-(;—I)J
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2.4.2 Buckingham’s method (or I1-Theorem)

It has been observed that the Rayleigh’s method of dimensional analysis
becomes cumbersome, when a large number of variables are involved. In order to
overcome this difficulty, the Buckingham’s method may be convenient used. It states
that “ If there are (n) variables in a dimensionally homogeneous equation, and if these
variables contain (m) fundamental dimensions such as (MLT) they may be grouped
into (n-m) non-dimensional independent I1-terms”.

Mathematically, if a dependent variable X1 depends upon independent variables
(X2, X3, X4, .......... Xn), the functional equation may be written as:

Xi=k (X2, X3, X4, .......... Xn)
This equation may be written in its general form as;
(X1, X2, X3, .......... Xn) =0

In this equation, there are n variables. If there are m fundamental dimensions,
then according to Buckingham’s I1-theorem;

fi(IT1, T2, I, .......... ITnm)=0
The Buckingham’s I1-theorem is based on the following steps:

1. First of all, write the functional relationship with the given data.

2. Then write the equation in its general form.

3. Now choose m_repeating variables (or recurring set) and write separate
expressions for each I1-term. Every I1-term will contain the repeating variables
and one of the remaining variables. Just the repeating variables are written in
exponential form.

4. With help of the principle of dimensional homogeneity find out the values of

powers a, b, c, ...... by obtaining simultaneous equations.

Now substitute the values of these exponents in the I1-terms.

After the I1-terms are determined, write the functional relation in the required

form.

o o

Note:-

Any II-term may be replaced by any power of it, because the power of a non-
dimensional term is also non-dimensional e.g. IT1 may be replaced by 112, IT:3,
I:°°,....... or by 2111, 3111, IT1/2, ...... etc.

2.4.2.1 Selection of repeating variables

In the previous section, we have mentioned that we should choose (m) repeating
variables and write separate expressions for each II-term. Though there is no

Dimensional Analysis 1 Chapter Two
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hard or fast rule for the selection of repeating variables, yet the following points

should be borne in mind while selecting the repeating variables:

1. The variables should be such that none of them is dimensionless.

2. No two variables should have the same dimensions.

3. Independent variables should, as far as possible, be selected as
repeating variables.

4. Each of the fundamental dimensions must appear in at least one of the
m variables.

5. It must not possible to form a dimensionless group from some or all
the variables within the repeating variables. If it were so possible, this
dimensionless group would, of course, be one of the II-term.

6. In general the selected repeating variables should be expressed as the
following: (1) representing the flow characteristics, (2), representing
the geometry and (3) representing the physical properties of fluid.

7. In case of that the example is held up, then one of the repeating
variables should be changed.

Example -2.5-

By dimensional analysis, obtain an expression for the drag force (F) on a
partially submerged body moving with a relative velocity (u) in a fluid; the other
variables being the linear dimension (L), surface roughness (e), fluid density (p),

and gravitational acceleration (g).
Solution:

Drag force (F) N = [MLT™]
Relative velocity (u) my/s =[LT"]
Linear dimension (L) m =[L]
Surtface roughness (e) m =[L]
Density (p) kg/m’ = [ML"]
Acceleration of gravity (g) m/s’ =[ L TY

F=k@L, e p,g
f(F,u,L,e . p,g)=0

-

n=6m=3, >I[[=n-m=6-3=3

No. of repeating variables =m =3

Dimensional Analysis 2
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The selected repeating variables is (u. L. p)

M =v’L”p?F - (1)
I, =y~ L™ pﬂ e e (2
L=uP1LYp%g et (3)

For IT; equation (1)
ML T =L T [LI" ML [MLT ]

Now applied dimensional homogeneity

For M O=cl+1 = cl=-1
ForT 0=-—al-2 = al =-2
For L 0=al +bl -3cl+1 = bl=-2

F
u® L* o

I, =u”L" p"l F = I, =

For IT, equation (2)

M°L° T% = [L T [L]ML32[L]

For M 0=c¢2 = c2=0
ForT 0=-—a2 = a2=20
For L 0=a2+b2-3c2+1 = b2=-1
ML,=L"e = ==

For I3 equation (3)

MO LO T% = [L TP [L]* ML T

ForM 0=¢c3 = c3=10

For T 0=-—a3-2 = a3 =-—2

For L 0=a3+b3—-3c3+1 = b3i=1

Dimensional-:&nalysis 3 Chapter Tv-v-c-)-
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2 L
I[I3=u"Lg = [, = £
i
F e Lg
fi (I1,.I1,.I15)=0 = f(————.—.—)=0
i (I11. I1,. I15) l{u‘L"p SRR,
73 73 L
. F=uL pf[i.—ﬁgj
L wu
Example -2.6-
Prove that the discharge (Q) over a spillway is given by the relation
, JeD H
=uD® f(— .=
O=uD" f )

where (u) velocity of flow (D) depth at the throat, (H), head of water, and (g)
gravitational acceleration.

Solution:

Discharge (Q) m’/s =[L°T"]
Velocity (u) m/s =[LT"]
Depth (D) m =[L]

Head of water (H) m =[L]
Acceleration of gravity (g) m/s’ =[ L T'j-]

Q=k(u.D.H.g
f(Q.u.D.H.g)=0
n=5m=2, =II=n-m=5-2=-

No. of repeating variables =m =2
The selected repeating variables 1s (u. D)

L =v'D"Q W (1)
L=u“D"H = cceceeeeeeen (2
=u"D"g e (3)

For IT; equation (1)
[Il‘—".[ﬂ L{J TU‘] — [L T-l]al [L]bl[LET—l]

Dimensional Analysis 4 Chapter Two




Al-Muthanna University
Civil Engineering Department

Fluid Mechanics/2™
Dr Huda M. Selman

ForT 0=-al-1 = al=-1
For L 0=al +bl +3 = bl=-2
[I;=u’'D?Q = I, = 9 5
u D
For IT, equation (2)
M°L°T]=[L T'T" [L]"[L]
For T 0=-a2 = a2==0
For L 0=a2+b2+1 = b2=-1
_ D
,=D'H = M,=—
For IT3 equation (3)
[I'M"Iﬂ L{:l TU‘] — [L T-l];ﬁ [L]b_:i- [L T-E]
For T 0=—-a3-2 = a3=-2
For L 0=a3+b3+1 = b3=1
7 D -'I'—D
IIh=u"Dg = I, = §=1‘g
i i
_ 0 D *..'D—E
fi I11. 115, II3) =0 = fl(uDJ'H‘ )
) B 2 *n."llg—D H
. O=uD" f( » .Dj

Example -2.7-

Show that the discharge of a centrifugal pump 1s given by 0=N D* f(

gH 7

N’D’ " ND* p

)

where (N) 1s the speed of the pump m r.p.m., (D) the diameter of impeller, (g)
gravitational acceleration, (H) manometric head, (n), (p) are the dynamic viscosity and

the density of the fluid.

Dimensional Analysis 5
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Solution:

Discharge (Q) m’/s =[L°T]
Pump speed (N) r.p.m. =[T"]
Diameter of impeller (D) m =[L]
Acceleration of gravity (g) m/s” =[ L T'l]
Head of manometer (H) m =[L]
Viscosity () kg/m.s = [I'»-'IL'1 T'l]
Density (p) kg.-"1113 = [ML'E]

Q=Kk(N.D.g H. 1 p)
f(QN.D.g H..p)=0
n=7m=3, =I[I=n-m=7-3=4

No. of repeating variables =m =3
The selected repeating variables is (N. D. p)

M =N'D"p'Q coeommeeee- (1)
L=NYD"p%g —oeeeemoeeees 2

[=N"D”p"H —eeeeemeeee- (3)
5P N 5 Rl T E——— (4)

For I1; equation (1)

For M 0=cl = cl=0
ForT 0=-—al-1 = al=-1
For L 0=bl —3cl+3 = bl=-3
_ -l 3 9
IL=N"D"Q = nl_N[f'

For I, equation (2)

[I'\«’Iﬂ L'L"J T[}] — [T—l]ﬂ [L]bE [I\:[Lj]d[LT_E]

Dimensional Analysis 6
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ForM 0O=c2 = c2=0
ForT 0=-a2-2 = a2=-2
For L 0=0b2-3c2+1 = b2 =-
-2 -1 g
,=N-D'g¢ - I,=—
- N-D

For I1; equation (3)

[I'VID LD T[}] — [-1-—1]:13 [L]b?[h[LE‘r]c_’n[L]

ForM 0=c3 = c3=0
For T =—al = a3 =20
For L 0=0b3—-3c3+1 = b3i=-1
M;=D'H - om -2

D

For I1; equation (4)
[M° L T% = [T [L]*[ML ML T

ForM O0=c4+1 = cd=-1
ForT 0=—a4 -1 = ad=-1
For L 0=b4-3c4-1 = bd=-2
N B S | M
IL=N"D"p n = 1"[4_Nsz
£ (LI I ) =0 = fi(-o, £ 2 2

ND*’N°D’D’ND>p
Since the product of two Il-terms is dimensionless, therefore replace the term II, and

&
H3 by N2D?
) H 7] H 1]
f( £3'.~ g’; EIE] "\ ) -.. Q:*NI)E']F( % 5 . ',_' )
ND?®  N?D?  ND?p Y N’D?  ND?p

Note:
The expression outside the bracket may be multiplied or divided by any amount,
whereas the expression inside the bracket should not be multiplied or divided. e.g.

m/4,sin O,tan 6/2, ....c.
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2.5 Dimensions of some important variables

Item Property Svimbol | SIUnits | M.L.T.
1- Velocity u m's LT
2- Anpular velocity 0] Rad/s. Deg/s T
3- Rotational velocity N Rev/s T
4- Acceleration a g m/s” LT
5- Angular acceleration a 5 T
6- Volumetric flow rate Q m/s LT
7- Discharge Q m’/s LT
8- Mass flow rate i kg/s MT"’
9- Mass (flux) velocity G k,g.-"m:_s ML-T"
10- | Density p kg.-"1n3 ML™
11- | Specific volume ) m’ kg L°M
12- | Specific weight sp.wt N/m’ ML™“T™
13- | Specific gravity sp.gr [-] [-]
14- | Dynamic viscosify u kg/ms, Pas | ML'T"
15- | Kinematic viscosity v m/s LT
16- | Force F N MLT™
17- | Pressure P N/m=Pa |ML'T”
18- | Pressure gradient AP/L Pa/m ML™“T™
19- | Shear stress T N/m’ ML T~
20- | Shear rate ¥ 5" T
21- | Momentum M kg m/s MLT"
22- | Work W Nm=] [MLT
23- | Moment M Nm=] |MLT-
24- | Torque T Nm=] |MLT-
25- | Energy E ] ML'T™
26- | Power P J/s=sW | ML'T™
27- | Surface tension V] N/m MT™
28- | Efficiency 1 [-] [-]
29- | Head h m L
30- | Modulus of elasticity | & K Pa ML T~

English Units SI Units

o =32.741 ft/s? ¢ =981 m/s’

g =32.741 Iby,. ft/lbg.s”

g, =1.0 kg.m/N.s”

psi= Ibg/in’

Pa = Pascal = N/m’

bar = 10° Pa

1.0 atm = 1.01325 bar = 1.01325%10°Pa = 101.325 kPa = 14.7 psi =760 torr (mimHg)
= 1.0 kg/em’

Dimensional Analysis
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Home Work
The resisting force (F) of a supersonic plane during flight can be considered as
dependent upon the length of the air craft (L). Velocity (u). air dynamic viscosity (L), air
density (p). and bulk modulus of elasticity of air (g). Express. by dimensional analysis.
the functional relationship between these variables and the resisting force.

Ans. F=(p I’ ul)f[(i}.( £ ]

ut p
. : . C e . . dP
Note: Expressing bulk modulus of elasticity in the form of an equation|e = ¥ where

P is pressure. and ¥ 1s volume. This mean (g) 1s a measure of the increment change in
pressure (dP) which takes place when a volume of flmid (7) 1s changed by an
ncremental amount (dV). Since arise in pressure always causes a decrease mn volume.
re. (dV) 1s always negative and so the minus sign comes in the equation to give a
positive value of (g).
where (p) is the fluid density. (N) is speed of rotation in r.p.m.. (D) is the diameter
of munner. (H) is the working head. and (g) is the gravitational acceleration.
P.2.5
The efficiency (1) of a fan depends upon density (p). and dynamic viscosity (LL).
of the fluid. angular velocity (@), diameter of the rotator (D). and discharge (Q). Express

. - . 1 0
1) in terms of dlmensmnless TONPS. Ans. = x 3 ).
m) group i f[(me_)(mm)

P.2.6
The pressure drop (AP) in a pipe depends upon the mean velocity of flow (u).
length of pipe (L). diameter of pipe (d), the fluid density (p), and dynamic viscosity ().
average height of roughness on inside pipe surface (e). By using Buckingham’s II-

-

Lu”

theorem obtain a dimensionless expression for (AP). And show thath, =4f 73 where
. ~E

(hy) 1s the head loss due to friction (E) and (f) 1s the dimensionless fanning friction

factor.

P27
The Power (P) required to drive the pump depends upon the diameter (D). the
angular velocity (m). the discharge (Q). and the fluid density (p). Drive expression for

. . . < D
(P) by dimensional analysis. Ans. P=w' pD’ f[ (%)J
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CHPTER THREE

Fluid Static and Its Applications
3.1 Introduction
Static fluids means that the fluids are at rest.
The pressure in a static fluid is familiar as a surface force exerted by the fluid ageist a unit
area of the wall of its container. Pressure also exists at every point within a volume of
fluid. It is a scalar quantity; at any given point its magnitude is the same in all directions.

3.2 Pressure in a Fluid
In Figure (1) a stationary column of fluid of height (h2) and P,
cross-sectional area A, where A=Ao=A1=Az, is shown. The
pressure above the fluid is Po, it could be the pressure of ALY
atmosphere above the fluid. The fluid at any point, say hi1, must I
support all the fluid above it. It can be shown that the forces at l Iy
any point in a nonmoving or static fluid must be the same in S A 7

all directions. Also, for a fluid at rest, the pressure or (force / 'd:’jt by
unit area) in the same at all points with the same elevation. For s
example, at hi from the top, the pressure is the same at all | )

points on the cross-sectional area Au. NS .

The total mass of fluid for h2, height and o density Figure (1): Pressure in a static fluid.
is: - (h2A o) (kg)

But from Newton’s 2nd law in motion the total force of the fluid on area (A) due to the
fluid only is: - (h.A o g) (N)i.e. F=h.A p g (N)

The pressure is defined as (P = F/A=h. o g) (N/mzor Pa)

This is the pressure on Az due to the weight of the fluid column above it. However to get
the total pressure P2on Az, the pressure Poon the top of the fluid must be added,

I.e. P2=h2 p g+ Po(N/mzor Pa)

Thus to calculate P1, P1=h: o g+ Po(N/m2or Pa)

The pressure difference between points (1 and [ is: -

P2—Pi1=(h2 o g+ Po)—(h. o g+ Po)

= P2—P1=(h2—h1) o g Sl units

P2—P1=(h2—h1) o g/gcEnglish units

Since it is vertical height of a fluid that determines the pressure in a fluid, the shape of
the vessel does not affect the pressure. For example in Figure (2) the pressure P1 at the
bottom of all three vessels is the same and equal to (h1 o g + Po).
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Pressure in vessel of various shapes.

Figure (2):

3.3 Absolute and Relative Pressure
The term pressure is sometimes associated with different terms such as atmospheric,

gauge, absolute, and vacuum. The meanings of these terms have to be understood well
before solving problems in hydraulic and fluid mechanics.

1. Atmospheric Pressure
It is the pressure exerted by atmospheric air on the earth due to its weight. This pressure

Is change as the density of air varies according to the altitudes. Greater the height lesser
the density. Also it may vary because of the temperature and humidity of air. Hence for
all purposes of calculations the pressure exerted by air at sea level is taken as standard

and that is equal to: -
1 atm =1.01325 bar = 101.325 kPa = 10.328 m H20 = 760 torr (mm Hg) = 14.7 psi

2. Gauge Pressure or Positive Pressure
It is the pressure recorded by an instrument. This is always above atmospheric. The zero

mark of the dial will have been adjusted to atmospheric pressure.

3. Vacuum Pressure or Negative Pressure
This pressure is caused either artificially or by flow conditions. The pressure intensity

will be less than the atmospheric pressure whenever vacuum is formed.

4. Absolute Pressure
Absolute pressure is the algebraic sum of atmospheric pressure and gauge pressure.

Atmospheric pressure is usually considered as the datum line and all other pressures are

recorded either above or below it.
(Gauge pressure line

Pz
Atmospheric pressure line
latm + Pg Pv {
Vacuum pressure line
) 1 atm
latm - Pv
Absolute zero pressure line
Fluid Statics and Its Applications 2 Chapter Three




Al-Muthanna University Fluid Mechanics/2™
Civil Engineering Department Dr Huda M. Selman

Absolute Pressure = Atmospheric Pressure + Gauge Pressure
Absolute Pressure = Atmospheric Pressure — Vacuum Pressure
For example if the vacuum pressure is 0.3 atm = absolute pressure = 1.0 — 0.3 =0.7 atm

Note: -
Barometric pressure is the pressure that recorded from the barometer (apparatus used to
measure atmospheric pressure).

3.4 Head of Fluid

Pressures are given in many different sets of units, such as N/mz, or Pa, dyne/cm?, psi,
Ibt/ft>. However a common method of expressing pressures is in terms of head (m, cm,
mm, in, or ft) of a particular fluid. This height or head of the given fluid will exert the
same pressure as the pressures it represents. P=h o g.

Example -3.1-

A large storage tank contains oil having a density of 917 kg/m?3. The tank is 3.66 m tall
and vented (open) to the atmosphere of 1 atm at the top. The tank is filled with oil to a
depth of 3.05 m and also contains 0.61 m of water in the bottom of the tank. Calculate the
pressure in Pa at 3.05 m from the top of the tank and at the bottom. In addition, calculate
the gauge pressure at the bottom of the tank.

Solution: P,=1 atm

P, =1 atm = 14.696 psia = 1.01325 x 10° Pa

P, =1 pon g + P,
=3.05m (917 kg/m’) 9.81 m/s” + 1.01325 x 10° Pa
=1.28762x 10’ Pa

P, = 1.28762 x 10° Pa (14.696 psia/1.01325 x 10° Pa)
= 18.675 psia

P2 = Pl Ll hz Pwater £
=1.28762 x 10° Pa+ 0.61 m (1000 kg/m?®) 9.81 m/s’
=1.347461 x 10’ Pa

Example -3.2-

Convert the pressure of [ 1 atm =101.325 kPa] to
a- head of water in (m) at 4°C

b- head of Hg in (m) at 0°C
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Solution:
a- The density of water at 4°C is approximatly1000 kg/m’
h=P/puu. g=1.01325x 10° Pa/(1000 kg/m’ x 9.81m/s”) =10.33 m H,o
b- The density of mercury at 0°C 1s approximatlyl13595.5 kg,-"nf
h=P/ Py £ = 1.01325 x 10° Pa/(13595.5 kg/m’ x 9.81m/s”) =0.76 m Hg

or

P= {h P g} water — {h P g) MErCury = hHg = h-n-'a'.a' '[:pwat&r p:—:g)
hgz, = 10.33 (1000 / 135955)=0.76 m Hg

Example -3.3-
Find the static head of a liquid of sp.gr. 0.8 and pressure equivalent to 5 x 10*Pa.

Solution: .
p=0.8 (1000) =800 kg/m’
h=P/pg= 5x10%/(800 x 0981)=637TmH,o
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3.5 Measurement of Fluid Pressure

In chemical and other industrial processing plants it is often to measure and control the
pressure in vessel or process and/or the liquid level vessel.

The pressure measuring devices are: -

The pressure of a fluid may be measured by the following devices:

1. Manometers:

Manometers are defined as the devices used for measuring the pressure at a point in a
fluid by balancing the column of fluid by the same or another column of liquid. These are
classified as follows:

(a) Simple manometers:
(i) Piezometer, (ii) U-tube manometer, and (iii) Single column manometer.
(b) Differential manometers.

2. Mechanical gauges:

The pressure is measured by balancing the fluid column by spring (elastic element) or
dead weight in these devices. Generally these gauges are used for measuring high
pressure and where high precision is not required. Some commonly used mechanical
gauges are:

(i) Bourdon tube pressure gauge, (ii) Diaphragm pressure gauge,

(iii) Bellow pressure gauge, and (iv) Dead-weight pressure gauge.

3.5.1 Manometers

3.5.1.1. Simple manometers

A “simple manometer” is one which consists of a glass tube whose one end is connected
to a point where pressure is to be measured and the other end remains open to
atmosphere. Common types of simple manometers are discussed below:

1. Piezometer tube Open__
The piezometer consists a tube open at one end to |
atmosphere, the other end is capable of being inserted
into vessel or pipe of which pressure is to be measured.
The height to which liquid rises up in the vertical tube
gives the pressure head directly.

ie.P=hp g
Piezometer is used for measuring moderate pressures. It is meant
for measuring gauge pressure only as the end is open to
atmosphere. It cannot be used for vacuum pressures.
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2. U-tube manometer:

Piezometers cannot be employed when large
pressures in the lighter liquids are to be measured, since
this would require very long tubes, which cannot be
handled conveniently. Furthermore, gas pressures cannot
be measured by the piezometers because a gas forms no
free atmospheric surface. These limitations can be
overcome by the use of U-tube manometers.

It consists of a transparent U-tube containing the
fluid A of density ( o ) wWhose pressure is to be measured
and an immiscible fluid (B) of higher density ( o g). The
limbs are connected to the two points between which the
pressure difference (P2 - P1) is required; the connecting
leads should be completely full of fluid A. If Pz2is greater

0 )
WA WA

P; P;

=

A E

O

than P1, the interface between the two liquids in limb 2 will be depressed a distance (hm)

(say) below that in limb 1.

The pressure at the level a— a must be the same in each of the limbs and, therefore:

P2+ Zm pag=Pi1+ (Zm—hm) pag+hmpsgQ
= Ap=P2—-Pi=hm(pB— pA)(

If fluid A is a gas, the density o awill normally be small compared with the Figure below:
The simple manometer density of the manometer fluid pm so that:

Ap=P2—-Pi=hm p&sgQ

3. The well-type manometer
In order to avoid the inconvenience of having to read
two limbs, and in order to measure low pressures,
where accuracy id of much importance, the well-type
manometer shown in the figure below can be used. If
Awand Acare the cross-sectional areas of the well and
the column and hm is the increase in the level of the
column and hw the decrease in the level of the well,
then:

P;=Pl+(hy+hy)pg
or: Ap=P.-Pi=(hpth,)pg

The quantity of liquid expelled from the well is equal
to the quantity pushed into the column so that:

-—
=

Q@ xz}_‘_rea =A,
P, |
L
hy,
T b Imitial level
|
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Ayhy=A hy = hy=(AJAy) ha
= Ap=P,—Py=pghu(l+ AJA,)

If the well 15 large in comparison to the column then:
te (AJA) —=0= Ap=DP,-Pi=pghy

4. The inclined manometer
This figure enables the sensitivity of the manometers | Pressure
described previously to be increased by measuring the

length of the column of liquid. If 6 is the angle of l
inclination of the manometer (typically about 10-20°) | \
and L is the movement of the column of liquid along the

limb, then:

hm=Lsin 0

If 6 =10°, the manometer reading L is increased by about 5.7 times compared with the
reading hmwhich would have been obtained from a simple manometer.

3.5.1.2. Differential manometer

A differential manometer is used to measure the difference in pressures between two
points in a pipe, or in two different pipes. In its simplest form a differential manometer
consists of a U-tube, containing a heavy liquid, whose two ends are connected to the
points, whose difference of pressures is required to be found out. Following are the most
commonly used types of differential manometers:

1. U-tube differential manometer (Two-liquid manometer).

2. Inverted U-tube differential manometer.

1. The two-liquid manometer

Small differences in pressure in gases are often measured with a Py P,
manometer of the form shown in this figure. The reservoir at the top J« l
of each limb is of a sufficiently large cross-section for the liquid level | % 5
to remain approximately the on each side of the manometer. I
The difference in pressure is then given by: P

Ap=P, P, =y, (P - Pac) & 7 —

where o miand p mp are the densities of the two manometer liquids. f
The sensitivity of the instrument is very high if the densities of the
two liquids are nearly the same. To obtain accurate readings it is

| Pm2
necessary to choose liquids, which give sharp interfaces: paraffin oil <‘ j
and industrial alcohol are commonly used. A

Fluid Statics and Its Applications 3 Chapter Three




Al-Muthanna University Fluid Mechanics/2™

Civil Engineering Department Dr Huda M. Selman
2. The inverted U-tube differential manometer Ao
This figure is used for measuring pressure differences in liquids. The %A

space above the liquid in the manometer is filled with air, which can be | /7~ X\

admitted or expelled through the tap A in order to adjust the level of the n
liquid in the manometer. I .
fo to

3.5.2 Mechanical Gauges

Whenever a very high fluid pressure is to be measured, and a very great sensitivity a
mechanical gauge is best suited for these purposes. They are also designed to read vacuum
pressure. A mechanical gauge is also used for measurement of pressure in boilers or other
pipes, where tube manometer cannot be conveniently used.

The Bourdon gauge

The pressure to be measured is applied to a curved tube, oval e

in cross-section, and the deflection of the end of the tube is & 2w
communicated through a system of levers to a recording =6 0% |
needle. This gauge is widely used for steam and compressed ThELS
gases, and frequently forms the indicating element on flow ~—
controllers. The simple form of the gauge is illustrated in Presﬂe gauge

figure below, this figure shows a Bourdon type gauge with the

sensing element in the form of a helix; this instrument has a very much greater sensitivity
and is suitable for very high pressures.

It may be noted that the pressure measuring Bourdon tube
devices of category (2) all measure a pressure
difference (Ap = P2 — P1). In the case of the
Bourdon gauge (1) of category (3), the pressure
indicated is the difference between that T
communicated by the system to the tube and the [P —- | ||
external (ambient) pressure, and this is usually \\
referred to as the gauge pressure. It is then NN e /77
necessary to add on the ambient pressure in order Ny

to obtain the (absolute) pressure. ""'
Gauge pressures are not, however, used in the Sl
System of units.

Pinion—L_[ [ /
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Example -3.4-

A simple manometer is used to measure the pressure of oil lPo
sp.gr. 0.8 flowing in a pipeline. Its right limb is open to

atmosphere and the left limb is connected to the pipe. The
center of the pipe is 9.0 cm below the level of the mercury EE

in the right limb. If the difference of the mercury level in the T
two limbs is 15 cm, determine the absolute and the gauge

pressures of the oil in the pipe.

Solution:
p=0.8 (1000) = 800 kg/m’
P =P,

P, =(0.15 —0.0 9)m(800 kg/m’)9.8 1m/s*+ P,

P, =(0.15) m (13600 kg/m’) 9.81 m/s* + P,

P, = 15 (13600) 9.81 + P, + [(15 — 9)cm
(800 kg.-"'m3 ) 9.81 11L-"'5‘2]

= 1.20866 x 10° Pa (Absolute pressure)

The gauge press. = Abs. press. — Atm. Press.
=1.20866 x 10° - 1.0325 x 10°
=1.9541 x 10* Pa

Example -3.5-

The following Figure shows a manometer
connected to the pipeline containing oil of sp.gr.
0.8. Determine the absolute pressure of the oil in
the pipe, and the gauge pressure. |

p.= 0.8 (1000) = 800 kg/m’ P,
P1 = Pg Pa
Pi=P,-hyp,g
P,=P,+hipng

= Pa=Po+hipmg +_]12 Pa £
= 1.0325 x 10° + (0.25) m
(13600 kg/m®) 9.81 m/s” +
(0.75) m (800 kg/m’) 9.81 my/s”
=1.40565x 10” Pa

15 cm

P, —1—+ |
,—j 3
=4/ 2) P,

7N
@ @ hy =25 cm
P; P, T .
hy =75 cm

- - /"
Pm Mercury
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Example -3.6-

A conical vessel is connected to a U-tube having mercury
and water as shown in the Figure. When the vessel is empty
the manometer reads 0.25 m. find the reading in manometer,

when the vessel is full of water.
Solution:
P1 — Pg
Pl — (0-25 + HJ Pw £ + Pcr
P, =025 png+P,
= (025 +H) pwg+ P, =0.25 pp 2 P,

= H= 025 (pm—pw) pw
= 0.25(12600/1000)=3.15m

ry
35m
v P
H
|
P10 -0 Py

P METCUry \/

When the vessel is full of water, let the mercury level in the left limp go down by (x)
meter and the mercury level in the right limp go to up by the same amount (x) meter.

I.e. the reading manometer = (0.25 + 2x)
Pl = Pg
Pi=(025+x+H+35)pwg TP
PE = {0-25 + :XJ Pm £ +Po

= (025 +x+H+3.5) prw g+ P, =(0.25 + 2X) pm g P,

= 6.9+x= (025 +2%) (pw/ pw) = X=0.1431m
The manometer reading = 0.25 + 2 (0.1431) = 0.536 m

Example -3.7-

The following Figure shows a compound
manometer connected to the pipeline containing
oil of sp.gr. 0.8. Calculate Pa.

Solution:
P1 — Pg
Pl = Pm'.t +0.5 Pw &
P=Pa+01p,g+005pyg
:’PA - Pai: +0.5 Pw & — 0.1 Pa g — 0.05 Pm £
= P = (1.0 kg/em’ Pg) (9.81mv/s%)

(1 0* cm?/ m)

=0.81 x10" Pa

P,
Pa

v

40 cm || t
30 cm

W/

Pm IMErcury
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P4 =9.81x10"Pa+ 0.5 (1000) 9.81 — 0.1 (900) 9.81 — 0.05 (13600) 9.81
=954513 x10* Pa

Example -3.8-
A Micromanometer, having ratio of basin to limb
areas as 40, was used to determine the pressure in a

pipe containing water. Determine the pressure in the A |l
pipe for the manometer reading shown in Figure. " T
. A T h,=8¢m
Solution: /" hi=Sem
P, i P, Basin (well) ) l D
Pi=Py+thopng N N~
P,=Py+hipwg H
.

= Py=P, + 11_2 Pm & — Iy Pw &
=1.01325x10° +0.08 (13600) 9.81—
0.05 (1000) 9:8]
=1.11507 x10° Pa

Note:
If h, and h, are the heights from initial level. the ratio (A,/A.) will enter in calculation.

Example -3.9-

Two pipes, one carrying toluene of sp.gr. = 0.875, and the other carrying water
are placed at a difference of level of 2.5 m. the pipes are connected by a U-tube
manometer carrying liquid of sp.gr. = 1.2. The level of the liquid in the
manometer is 3.5 m higher in the right limb than the lower level of toluene in the
limb of the manometer. Find the difference of

pressure in the two pipes. Solution:
T = Toluene, W = Water, L = Liquid /é T | :
sp.gr. = 0.875 . \ S5m
g, | | 50m
Py+35prg—-35pLg+Spweg-Pg=0  -— O f'}jﬂh l
— Py—Pg=[3.5(1200) — 3.5 (875) =5 (1000)] 9.81 Nl L

Pm IETCUrY

Water

=—3862.5Pa sp.gr. = 1.2
= Pg—Ps= 3862.5Pa
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Example -3.10-
A closed tank contains 0.5 m of mercury, 1.5 m of W

water, 2.5 m of oil of sp.gr. = 0.8 and air space above
the oil. If the pressure at the bottom of the tank is 2.943
bar gauge, what should be the reading of mechanical
gauge at the top of the tank.

Solution:

Solution:
Pressure due to 0.5 m of mercury
Pn=0.5(13600) 9.81 = 0.66708 bar

Pressure due to 1.5 m of water
P,=1.5(1000)9.81 =0.14715 bar

Pressure due to 2.5 m of oil
Po=2.5(800)9.81 =0.19620 bar

Pressure at the bottom of the tank = Py, + Py + Po + Pajr

= 2.943 =0.66708 bar + 0.14715 bar + 0.19620 bar + Pa;,

= Paz = 1.93257 bar
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Home Work
P31

Two pipes A and B carrying water are connected by a

connecting tube as shown in Figure.

a- If the manometric liquid is oil of sp.gr. = 0.8, find the
difference in pressure intensity at A and B when the
difference in level between the two pipes be (h =2 m)
and (x = 40 cm).

b- If mercury is used instead of water in the pipes A and
B and the oil used in the manometer has sp.gr. = 1.5,
find the difference in pressure intensity at A and B
when (h =50 cm) and (x = 100 cm).

Ans. a- Pg-P4 =18835.2 Pa, b- Pg-P4=51993 Pa

T

>

0.34 kg/em® £

¥

i

. 2
{x 7 0.15 kg/cm
b

P.3.2

A closed wvessel is divided into two
compartments. These compartments contain T
oil and water as shown in Figure. Determine 4 m
the value of (h).

Ans.h=45m

N
A
Air

Liquid
sp.gr.=1.6

P.3.3

—AVaer

Oil of sp.gr. = 0.9 flows through a vertical pipe (upwards). Two points A and B one
above the other 40 cm apart in a pipe are connected by a U-tube carrying mercury. If

the difference of pressure between A and B is 0.2 kg..-"'cmj.
1- Find the reading of the manometer.

2- If the oil flows through a horizontal pipe. find the reading in manometer for the

same difference in pressure between A and B.
Ans. I- R=0.12913 m. 2- R=0.1575m.

P.3.4

A mercury U-tube manometer is used to measure the pressure drop across an orifice
in pipe. If the liquid that flowing through the orifice is brine of sp.gr. 1.26 and
upstream pressure is 2 psig and the downstream pressure is (10 in Hg) vacuum. find
the reading of manometer.

Ans. R=394mm Hg
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P.3.5
Three pipes A. B. and C at the same level connected by a multiple differential

manometer shows the readings as show in Figure. Find the differential of pressure
heads in terms of water column between A and B. between A and C. and between B

and C.

______'_":'_"':::\".?a]'e]-‘

H——130 cm

20 cm

—— Mercury

Ans. P4-Pg =1.359666 bar = 13.86 m Hso
Ps-Pc=1.606878 bar = 16.38 m Hyo
Pg-Pc=0.247212 bar = 2.52 m Hyo
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3.5. Total Pressure and Centre of Pressure

Total pressure. It is defined as the force exerted by static fluid on a surface (either plane
or curved) when the fluid comes in contact with the surface. This force is always at right
angle (or normal) to the surface.

Centre of pressure. It is defined as the point of application of the total pressure on the
surface.

Now we shall discuss the total pressure exerted by a liquid on the immersed surface. The
immersed surfaces may be:

1. Horizontal plane surface; 2. Vertical plane surface;

3. Inclined plane surface; 4. Curved surface.

3.6. Forces on Plane Surfaces
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Table 3.1. The Centre of Gravity (G) and Moment of Inertia (I) of Some Important
Geometrical Figures:

S.No. | Name of figure | C.G. from the Area I about an axis passing | I about base
base through C.G. and
parallel to the base
L Triangle h bh 3 3
o 3 S P on bh bh
Fig. 33 3 2 36 W
2 Rectangle d 3 3
. : == hd bd bd
Fig. 3.4 =3 I =
3. Circle d 3 4
. - =4 nd= nd
Fig. 3.5 = —_ —_— —
= 2 1 &
4 Trapezinm 22+5 1k el 1 1
Fig. 3.6 =1z | | I | |2 rdab+d |, —
= | a+b 13 2 | " 3b(a+b)

-— =
[ = |
‘_

Example 3.1. This figure shows a circular plate of diameter 1.2
m placed vertically in water in such a way that the center of the
place is 2.5 m below the free surface of water. Determine: (i)
Total pressure on the plate. (ii) Position of center of pressure.

——F-—— s —— 4 B B
v e b —
Fig. 3.5 Fig. 3.6

i
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Example 3.2. A circular opening, 2.5 m

diameter, in a vertical side of tank is closed by a

disc of 2.5 m diameter that can rotate about a

horizontal diameter. Determine:

I. The force on the disc;

Ii. The torque required to maintain the disc in
equilibrium in vertical position when the
head of water above horizontal diameter is

Free surface

3.5m.

Example 3.3. A circular plate 1.5 m diameter is
submerged in water, with its greatest and least
depths below the surface being 2 m and 0.75 m
respectively. Determine:
(i) The total pressure on one face of the plate,
and
(if) The position of the center of pressure.

Free water surface

5
T t [{' A ——
B e —
" R
E ~ 7
e = //"
g RO j”
- A

%

® N\
@

7 X
X

N\

)
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Example 3.4. This figure shows a rectangular
sluice gate AB, 3 m wide and 4.5 m long hinged S
at A. It is kept closed by a weight fixed to the R S »
gate. The total weight of the gate and weight g
fixed to the gate is 515 kN. The center of
gravity of the weight and gate is at G. Find the
height of the water h, which will first cause the ;
gate to open.
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H.W1 A triangular plate of 1 meter base and 1.5 meter
altitude is immersed in water. The plane of the plate is
inclined at 30° with free water surface and the base is
parallel to and at a depth of 2 meters from water surface.
Find the total pressure on the plate and the position of
center of pressure.

H.W?2 A square aperture in the vertical side of

Water surface

a tank has one diagonal vertical and is
completely covered by a plane plate hinged

along one of the upper sides of the aperture. SEms=12)

The diagonals of the aperture are 2.4 m long
and the tank contains a liquid of specific —
gravity 1.2. The centre of aperture is 1.8 m

below the free surface. Calculate:

(i) The thrust exerted on the plate by the liquid,;

(i1) The position of its center of pressure. (Ans. 61. 026 kN, 1.933 m)

L —»
i
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3.7. Force on a Curved Surface due to Hydrostatic Pressure

If the surface is curved, the forces on each element of the surface will not be
parallel (normal to the surface at each point) and must be combined using some
vectorial method.

The most significant method to solve these types of problems is to calculate the
vertical and horizontal components, and then combine these two forces to obtain
the resultant force and its direction.

There are two cases:
Case |: if the fluid is above the curved
surface:

Horizontal Component (Rn):

The resultant horizontal force of a fluid
above a curved surface is:

Rn = Resultant force on the projection
of the curved surface onto a vertical
plane (i.e. along line AC in the above
figure).

We know that the force must be normal to the plane, so if we take the vertical
plane, the force will act horizontally through the center of pressure of the
projected vertical plane as shown in figure below, and we can use pressure
diagram method.

E
= -|I
== | Liquid J
B
|
R
i >ocp ——-
/ |
|
]
Al
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Vertical Component (Rv):

Because the fluid is at rest, there are no shear forces on the vertical edges, so the

vertical component can only be due to the weight of the fluid.

The resultant vertical force of a fluid above a curved surface is:

Rv= Weight of fluid directly above the curved surface and will act vertically
downward through the center of gravity of the mass of fluid as shown in figure

below.

Ry = Weight of fluid above the curved

surface = pgV =7V

Resultant Force (R):

The overall resultant force is found by
combining the vertical and horizontal

components vectorialy:

R= |R%+R2

This resultant force acts through point O at an angle (6) with Ry,

A

The position of O is the point of intersection of the horizontal line of action of Ry,

and the vertical line of action of R, as shown in figure below.
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Case ll: if the fluid is below the curved surface:

The calculation of horizontal force Ry is the same as case |, but calculation of
vertical force Ry will differ from case |.

Vertical force component in case of fluid below curved surface:

If the curved surface AB is removed, the area ABDE will replaced by the fluid
and the whole system would be in equilibrium.

Thus, the force required by the curved surface to maintain equilibrium is equal to
that force which the fluid above the surface would exert (weight of fluid above
the curved surface). I.e. The resultant vertical force of a fluid below a curved
surface is:

Rv = Weight of the imaginary volume of fluid vertically above the curved
surface.
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Example 1. This figure
shows a curved surface LM,
which is in the form of a
quadrant of a circle of radius 3
m, immersed in the water. If the
width of the gate is unity,
calculate the horizontal and
vertical components of the total
force acting on the curved
surface.

Fluid Statics and Its Applications

Free water surface |f
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0
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Water surface

Example 2. This figure

shows a gate having a quadrant T
shape of radius of 1 m subjected
to water pressure. Find the
resultant force and its inclination
with the horizontal. Take the
length of the gate as 2 m.
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Example 3. A hemisphere projection of diameter

0.6 m exists on one of the vertical sides of a tank. If
the tank contains water to an elevation of 1.5 m above
the center of the hemisphere, calculate the vertical
and horizontal forces acting on the projection.

1.5m

—

=
<
|‘_

0]0.6 m
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H.W:

A cylinder having 3 m diameter and 1.5
m length is resting on the floor. On one
side, water is filled upto half the depth
while on the other side oil of relative
density 0.8 filled upto the top .If the
weight of the cylinder is 33.75 kN,
determine the magnitudes of the
horizontal and vertical components of
the force which will keep the cylinder
just touching the floor.

Cylinder

il surface L

Water surface

!

i T i
33.75kN |

<«——3m
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Example 1: A swimming pool is 18m long and 7m wide. Determine the magnitude and
the location of the resultant force of the water on the vertical end of the pool where
the depth is 2.5m.

¥V {7

_L cz.Sm
% o

b= width = 7mm
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Example 2: A square 3m*3m gate is located in 45 sloping side of a dam. Some
measurements indicate that the resultant force of the water on the gate is 500 kN.

1- Determine the pressure at the bottom of the gate.
2- Show where this force acts.

-

Fluid Statics and Its Applications 2

Chapter Three




Al-Muthanna University
Civil Engineering Department

Fluid Mechanics/2™
Dr Huda M. Selman

Example 3: the vertical cross section of a 7m long closed storage tank is shown

below. The tank contains ethyl alcohol and air pressure is 40 kpa. Determine the
magnitude of the resultant fluid force acting on one end of the tank.

2m

-

Air

4 m

Ethyl
Alcohol
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Example: An inclined rectangular gate (1.5m wide) contains water on one side.

Determine the total resultant force acting on the gate and the location.

il

24m

R
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Example5: The gate in figure below is 5 m wide, is hinged at point B, and rests
against a smooth wall at point A. Compute:

a) The force on the gate due to the water pressure.

b) The distance between the centre of gate and location of force act.

¢) The reactions at hinge B.

-

b R | B e B el e ff 3
=
fry

<

Water

e e e e e e

-

m

Hinge ¥ m
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Example 5 : A tank holding water has a triangular gate, hinged at the top, in one wall.
Find the moment at the hinge required to keep this triangular gate closed.

Lan

[ L5m
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Example: A 4m long curved gate is located in the side of a reservoir containing water
as shown in figure below. Determine the magnitude of the horizontal and vertical
components of the force of the water on the gate.

i
abt™

B 949 LS SRR
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H.W:

A cylinder having 3 m diameter and 1.5
m length is resting on the floor. On one
side, water is filled upto half the depth
while on the other side oil of relative
density 0.8 filled upto the top .If the
weight of the cylinder is 33.75 kN,
determine the magnitudes of the
horizontal and vertical components of
the force which will keep the cylinder
just touching the floor.

Cylinder

il surface L

Water surface

!

i T i
33.75kN |

<«——3m
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3.8. Buoyancy

When a body is submerged or floating in a static fluid, the resultant force exerted
on it by the fluid is called the buoyancy force.

Buoyancy Force= weight of fluid displaced by the body and this force will act
vertically upward through the centroid of the volume of fluid displaced, known as
the center of buoyancy.

Archimedes’ principle
Archimedes’ Principle states that the buoyant force has a magnitude equal to the
weight of the fluid displaced by the body and is directed vertically upward.

Fi, = Pruid X 8 X Vaisplaced by body (Upward T)

Problems

1. A wooden block of width 1.25 m, depth _ Woodemblock
0.75 m and length 3.0 m is floating in | | &= = E——==—==
water. Specific weight of the wood is 6.4

kN/m3. Find: (i) Volume of water
displaced, and (ii) Position of centre of
buoyancy. . i
Note: Pg=F, , G:center of gravity, B: [ 1.25 m—>|
center of buoncy Py = Buoyant force

Solution:
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2. A wooden block of specific gravity 0.7 and having a size of 2m X 0.5m X 0.25
m is floating in water. Determine the volume of concrete of specific weight 25
kN/m3, that may be placed which will immerse (i) the block completely in water,
and (ii) the block and concrete completely in water.

Solution:
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H.W. A metallic cube 30 cm side and | |

weighing 450 N is lowered into a tank Water

containing a two-fluid layer of water and

mercury. Determine the position of block at _«,o_cf: ?;1
mercury-water interface when it has reached l o Ih’
equilibrium. - v
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Equilibrium of Floating Bodies:

To be the floating body in equilibrium, two conditions must be satisfied:

The buoyant Force (Fo) must equal the weight of the floating body (W).

Foand W must act in the same straight line. i.e. the center of gravity and the center
of buoyancy in the same straight line

So, for equilibrium: Fo=Wobject

The equilibrium of a body may be:

v' Stable.

v' Unstable.

v" Neutral (could be considered stable)

Stability of a Bodies

if when displaced, it returns to its original equilibrium position.

- if when displaced, it returns to a new equilibrium position

Notes:

In this case (body is fully immersed in water) when the body is tilted, the shape of
the displaced fluid doesn’t change, so the center of buoyancy remains unchanged
relative to the body.

The weight of the body is located at the center of gravity of the body (G) and the
buoyant force located at the center of buoyancy (B).

Stable Equilibrium:
A small angular displacement v or 6 L4
from the equilibrium position will
generate a moment equals: (W x BG x
V).

The immersed body is considered
Stable if G is below B, this will
generate righting moment and the
body will tend to return to its original
equilibrium position.

/ Restoring

couple
Stable
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Unstable Equilibrium:

The immersed body is considered
Unstable if G is above B, this will !
generate an overturning moment v
and the body will tend to be in new

equilibrium position.

¢ Overturning
couple

~

Unstable
Stability  of
Bodies

Here, the volume of the liquid remains unchanged since Fb=W, but the shape of
this volume changes and thereby its center of buoyancy will differ.

When the body is displaced through an angle v or 6 the center of buoyancy move
from B to Biand a turning moment is produced.

Metacenter (M):

The point at which the line of action of the buoyant force (Fb) intersects the
original vertical line through G.

So, Moment Generated is (W x GM x v).

GM is known as a metacentric height.

Stability:

Stable

If M lies above G, a righting moment is produced, equilibrium is stable and GM
is regarded as positive. (GM=+VE)

(l Stable

Unstable
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If M lies below G, an overturning moment is produced, equilibrium is unstable
and GM is regarded as negative. (GM= -VE).

W=mg

l Unstable

Neutral:
If M coincides with G, the body is in neutral equilibrium.
Determination of the Position of Metacenter Relative to Centre of Buoyancy:

BM =
Vdisplaced

[=the smallest moment of inertia of the waterline plane

Procedures for Evaluating the Stability of Floating Bodies

. Determine the position of the floating body (Draft) using the principles of
buoyancy (Total Weights = Buoyant Force).

. Locate the center of buoyance B and compute the distance from some datum to
point B (ys). The bottom of the object is usually taken as a datum.

. Locate the center of gravity G and compute (yc) measured from the same datum.

. Determine the shape of the area at the fluid surface (plane view) and compute | for
that shape.

. Compute the displace volume (Vd)

. Compute BM distance (BM =1/ V).

. Compute (ym = ys+BM)

If (ym> yc) >> the body is stable.(GM = +VE)

If (ym < yc) >> the body is unstable.(GM = VE)

Important Note:
If ym=yc (GM = 0), this case is called neutral and the object could be considered
stable.
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Problems

1. A solid cylinder 2 m in diameter and 2m high is
floating In water with its axis vertical. If the
specific gravity of the material of cylinder is 0.65
find its metacentric height. State also whether the
equilibrium is stable or unstable.

Y |
Plan  Solid cylinder
|

— T
Water ]_Dﬁ = £

|
ol

2. Rectangular pontoon 12 m long 9 m wide and 3 m deep weighs 1380 kN and
floats in sea water. The pontoon carries on its upper deck a boiler 6 m diameter
and weighing 864 kN. The centre of gravity of each unit coincides with
geometrical centre of the arrangement and lies in the same vertical line.

(i) What is the metacentric height?
(ii) Is the arrangement stable?
Take specific weight of sea water = 10 kN/m?

Rectangular pontoon \

Water surface
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H.W1.

A cylindrical buoy is 2 m in diameter and 2.5m long and weighs 22 kN. The
specific weight of sea water is 10.25 kN/m?3. Show that the buoy does not float with
its axis vertical? What minimum pull should be applied to a chain attached to the

centre of the base to keep the buoy vertical?
Ans. 13.39 kN

| — Cylindrical
/ buoy

|
|
| 2.5m
Ge Water surface
== I =2
1
; v v
O]
<—2 m dia.—»

H.W?2. A buoy having a diameter of 2.4 m and length 1.95 m is floating with its
axis vertical in sea water (specific weight = 10 kN/m?3). Its weight is 16.5 kN and
a load of 1.65 kN is placed centrally at its top. If the buoy is to remain in stable
equilibrium, find the maximum permissible height of the centre of gravity of the
load above the top of the buoy. (Ans.0.368 m)
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Weight = 1.65 kN

f Cylindrical buoy

|
T T
= |
] y I
it
- M t
G | Water surface
= B¢ -
Y| ol 1
I

[ 24mdia—|

Fluid Statics and Its Applications 15 Chapter Three




Al-Muthanna University Fluid Mechanics Lectures

College of Engineering 2"Year/ 1° semester
Civil Engineering Department Dr. Huda M. Selman
Buoyancy

When a body is submerged or floating in a static fluid, the resultant force
exerted on it by the fluid is called the buoyancy force.

Buoyancy Force= weight of fluid displaced by the body and this force
will act vertically upward through the centroid of the volume of fluid
displaced, known as the center of buoyancy.

Archimedes’ principle

Archimedes’ Principle states that the buoyant force has a magnitude
equal to the weight of the fluid displaced by the body and is directed
vertically upward.

Fi = Pruia X 8 X Vaisplaced by body (Upward T)

Problems
1. A wooden block of width 1.25 _ Woodenblock

ater surface
m, depth 0.75 m and length 3.0 m
is floating in water. Specific
weight of the wood is 6.4 kKN/m?.
Find: (i) Volume of water
displaced, and (ii) Position of . -
centre of buoyancy. [ 1.25 m—»
Note: Pg=F, , G:center of Py~ Buoyant force
gravity, B: center of buoncy

Solution:
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2. A wooden block of specific gravity 0.7 and having a size of 2m X 0.5m
X 0.25 mis floating in water. Determine the volume of concrete of specific
weight 25 kN/m3, that may be placed which will immerse (i) the block
completely in water, and (ii) the block and concrete completely in water.

Solution:
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H.W. A metallic cube 30 cm side and | |
weighing 450 N is lowered into a tank
containing a two-fluid layer of water

and mercury. Determine the position o_:: _ ﬁ;]
of block at mercury-water interface l o IF"
when it has reached equilibrium. '

Mercury
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Equilibrium of Floating Bodies:
To be the floating body in equilibrium, two conditions must be
satisfied:
v The buoyant Force (Fb) must equal the weight of the floating body
(W).
v" Fpand W must act in the same straight line. i.e. the center of gravity
and the center of buoyancy in the same straight line

So, for equilibrium: Fo=Wobject

The equilibrium of a body may be:

v Stable.

v" Unstable.

v Neutral (could be considered stable)

Stability of a Bodies
Stable equilibrium: if when displaced, it returns to its original equilibrium
position.
Unstable equilibrium: if when displaced, it returns to a new equilibrium
position
Notes:
¢ Inthis case (body is fully immersed in water) when the bodly is tilted,
the shape of the displaced fluid doesn’t change, so the center of
buoyancy remains unchanged relative to the body.
e The weight of the body is located at the center of gravity of the body
(G) and the buoyant force located at the center of buoyancy (B).

Stable Equilibrium:

A small angular displacement
v or O from the equilibrium
position will generate a
moment equals: (W x BG xv).
The immersed body is
considered Stable if G is
below B, this will generate
righting moment and the
body will tend to return to its
original equilibrium
position.

’ Restoring

couple
Stable
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Unstable Equilibrium:
The immersed body is
considered Unstable if G -

iIs above B, this will v
generate an overturning

moment and the body will

tend to Dbe in new
equilibrium position.

¢ Overturning
couple

~

Unstable

Stability of Bodies

Here, the volume of the liquid remains unchanged since Fb=W, but the
shape of this volume changes and thereby its center of buoyancy will
differ.

When the body is displaced through an angle v or 6 the center of buoyancy
move from B to Biand a turning moment is produced.

Metacenter (M):

The point at which the line of action of the buoyant force (Fb) intersects
the original vertical line through G.

So, Moment Generated is (W x GM x v).

GM is known as a metacentric height.

Stability:

Stable

If M lies above G, a righting moment is produced, equilibrium is stable
and GM is regarded as positive. (GM=+VE)

Stable
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Unstable

If M lies below G, an overturning moment is produced, equilibrium is
unstable and GM is regarded as negative. (GM= -VE).

W=mg .
Unstable

Neutral:

If M coincides with G, the body is in neutral equilibrium.

Determination of the Position of Metacenter Relative to Centre of
Buoyancy:

BM =
Vdisplaced

[=the smallest moment of inertia of the waterline plane

Procedures for Evaluating the Stability of Floating
Bodies

1. Determine the position of the floating body (Draft) using the
principles of buoyancy (Total Weights = Buoyant Force).

2. Locate the center of buoyance B and compute the distance from
some datum to point B (ys). The bottom of the object is usually taken
as a datum.

3. Locate the center of gravity G and compute (yc) measured from the
same datum.

4. Determine the shape of the area at the fluid surface (plane view) and

compute | for that shape.

Compute the displace volume (Vd)

Compute BM distance (BM =1/ V).

Compute (ym = ys+BM)

If (ym > yg) >> the body is stable.(GM = +VE)

If (ym < yg) >> the body is unstable.(GM = VE)

©ooNOo O
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Important Note:

If ym = ye (GM = 0), this case is called neutral and the object could be
considered stable.

- M
h 4 o o v
= ~~__ @6 __— T =
I Ce8 —  D=Draft
YG - “— 1
/// \‘\‘“‘ !
* = - Y l Datum
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Problems :

. . . . 2.0m
1. A solid cylinder 2 m in diameter and 2m W\

high is floating in water with its axis
vertical. If the specific gravity of the
material of cylinder is 0.65 find its ':
metacentric height. State also whether the i

Y |
Plan  Solid cylinder

equilibrium is stable or unstable. 5
| ]

— T
Water Eﬁ = £

2. Rectangular pontoon 12 m long 9 m wide and 3 m deep weighs 1380
kN and floats in sea water. The pontoon carries on its upper deck a boiler
6 m diameter and weighing 864 kN. The centre of gravity of each unit
coincides with geometrical centre of the arrangement and lies in the same
vertical line.

(i) What is the metacentric height?

(ii) Is the arrangement stable?

Take specific weight of sea water = 10 kN/m?3

Rectangular pontoon \

Water surface
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A cylindrical buoy is 2 m in diameter and 2.5m long and weighs 22 kN.
The specific weight of sea water is 10.25 kN/m3. Show that the buoy does
not float with its axis vertical? What minimum pull should be applied to a

chain attached to the centre of the base to keep the buoy vertical?
Ans. 13.39 kN

| — Cylindrical
/ buoy

|
|
|
! 25m
i
|
|

G Water surface
= | g e
h
\ 2
(0]

<€—2 m dia.—

H.W?2. A buoy having a diameter of 2.4 m and length 1.95 m is floating
with its axis vertical in sea water (specific weight = 10 kN/m?3). Its weight
Is 16.5 KN and a load of 1.65 kN is placed centrally at its top. If the buoy
is to remain in stable equilibrium, find the maximum permissible height of
the centre of gravity of the load above the top of the buoy. (Ans.0.368 m)

Weight = 1.65 kN
T i K—Cylindrica] buoy

I
I
o1
G | Water surface
t
|
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Chapter 4: Motion of Fluid Particles and Streams

Fluid kinematics is a branch of ‘Fluid mechanics’ which deals with the
study of velocity and acceleration of the particles of fluids in motion and
their distribution in space without considering any force or energy
involved.

DESCRIPTION OF FLUID MOTION

The motion of fluid particles may be described by the following methods:
1. Langrangian method.

2. Eulerian method.

1. Langrangian Method

In this method, the observer concentrates on the movement of a single
particle. The path taken by the particle and the changes in its velocity and
acceleration are studied.

2. Eulerian Method

In Eulerian method, the observer concentrates on a point in the fluid
system. Velocity, acceleration and other characteristics of the fluid at that
particular point are studied.

TYPES OF FLUID FLOW

Fluids may be classified as follows:

1. Steady and unsteady flows

2. Uniform and non-uniform flows

3. One, two and three dimensional flows
4. Rotational and irrotational flows

5. Laminar and turbulent flows

6. Compressible and incompressible flows.

1. Steady and Unsteady Flows

Steady flow. The type of flow in which the fluid characteristics like
velocity, pressure, density, etc. at a point do not change with time is called
steady flow. Mathematically, we have:

Cow )
I/,

Xo.Yo-Z0

(o o [2)

=

{

1

-~ | |

! Cf "l'xﬂ':l'-ﬁ':ﬁ '

i)

fé‘_p‘. :O.f
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where (Xo, Yo, Zo) IS a fixed point in a fluid field where these variables are
being measured w.r.t. time.

Example. Flow through a prismatic or non-prismatic conduit at a constant
flow rate Q m¥/s is steady.

(A prismatic conduit has a constant size shape and has a velocity equation
in the form u = ax2 + bx + ¢, which is independent of time t).

Unsteady flow. It is that type of flow in which the velocity, pressure or
density at a point change w.r.t. time. Mathematically, we have:

P - om0

ou , [ OV | ow | )
— | = 0| —| =0 — | =0
\ O Jxo.3047 N O Jxg.v0-20 \OF Jxg.v0-20

— ‘ = 0 | — | = 0: and so on
\ O Jxy. 0.7 \ O .32

Example. The flow in a pipe whose valve is being opened or closed
gradually (velocity equation is in the form u = ax? + bxt).

2. Uniform and Non-uniform Flows

Uniform flow. The type of flow, in which the velocity at any given time
does not change with respect to space is called uniform flow.
Mathematically, we have:

\‘I

1 —

| =0
5 Jt = constant

.v"'__ -_\"'-\.
" ‘ )]

where, 0V = Change in velocity, and

0s = Displacement in any direction.
Example. Flow through a straight prismatic conduit (i.e. flow through a
straight pipe of constant diameter).

Non-uniform flow. Itis that type of flow in which the velocity at any given
time changes with respect to space. Mathematically,

V‘.

i

# 0

\

-
. 05 A F = constant

Example. (i) Flow through a non-prismatic conduit.
(if) Flow around a uniform diameter pipe-bend or a canal bend.

2
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3. Laminar and Turbulent Flows
Laminar flow. A laminar flow is one in which paths taken by the
individual particles do not cross one another and move along well defined
paths. This type of flow is also called stream-line flow or viscous flow.
Examples. (i) Flow through a capillary tube.

(if) Flow of blood in veins and arteries.

(iif) Ground water flow.

Turbulent flow. A turbulent flow is that flow in which fluid particles move
In a zig zag way.

Example. High velocity flow in a conduit of large size. Nearly all fluid flow
problems encountered in engineering practice have a turbulent character.

YVYY
YYYVY
YVYY

|

|

|

|

|

L

|

|

|

|

III | '|| -
\ 'l—b—}— Laminar flow — ~ 7 Turhulent flow
\/ /

Patterns of Flow
Reynolds Number (Re):
A dimensionless number used to identify the type of flow.

Inertia Forces pXVxD VXD
~ Viscous Forces 1l oy

(=]

V=mean velocity (m/s) , D=pipe diameter (m), p=fluid density (Kg/m?®)
pu=Dynamic viscosity (Pa.s) , v=kinematic viscosity (m?/s)

For flow in pipe: If (Re<2000)——The flow is laminar If
(2000<Re<4000)——The flow is transitional If (Re>2000)——The flow
Is turbulent

4. Compressible and Incompressible Flows

Compressible flow. It is that type of flow in which the density (p) of the
fluid changes from point to point (or in other words density is not constant
for this flow). Mathematically: p # constant.

Example. Flow of gases through orifices, nozzles, gas turbines, etc.

Incompressible flow. It is that type of flow in which density is constant for
the fluid flow. Liquids are generally considered flowing incompressibly.
Mathematically: p = constant. Example. Subsonic aerodynamics.

3
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TYPES OF FLOW LINES

1. Path line

A path line is the path followed by a T

fluid particle in motion. A path line Ao \LQ \”‘“@-ﬁ_q}_n

shows the direction of particular |5~ }-f e e
article as it moves ahead. 29— o

2. Stream line _ [

A st_ream _Ilne way be defined as an B >y
imaginary line within the flow so that the — T

tangent at any point on it indicates the -'fd'— T

velocity at that point ) e

3. Stream Tube

A stream tube is a fluid

mass bounded by a group of “‘\
streamlines. The contents of “

a stream tube are known as r-
‘current filament’.

RATE OF FLOW OR DISCHARGE AND MEAN VELOCITY:
Rate of flow (or discharge) is defined as the quantity of a liquid flowing
per second through a section of pipe or a channel.

Flow Rate can be measured by one of the following two methods:
1. In terms of mass (Mass Flow Rate, m ):

Mass of fluid dm

™~ time taken to collect the fluid _ dt " x Q (Re/s).

2. In terms of volume (Volume Flow Rate or discharge, Q,):

_ Volume of Fluid _ vV .,
Q= Time B (m?/5).
This method is the most commonly used method to represents discharge.

There is another important way to represents Q:

Q= % — A"e:”‘]‘ = Area X Speed — Q = A X v (m3/s).
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CONTINUITY OF FLOW
Matter cannot be created or destroyed (principle of conservation of
mass)
Mass entering per unit time = Mass leaving per unit time +
Increasing of mass in the control volume per
unit time

If the flow is steady, no increase in the mass within the control volume.
So,
Mass entering per unit time = Mass leaving per unit time

Continuity Equation for Steady Flow and Incompressible Flow:
Ai1vi=A,v,=Q=constant

This equation is a very powerful tool in fluid mechanics and will be used
repeatedly throughout the rest of this course.
The following problems clarify the concept of continuity of flow

Example 1. @
The diameters of a pipe at the sections 1-
land 2-2 are 200 mm and 300 mm
respectively. If the velocity of water
flowing through the pipe at section 1-1 is

4 m/s, find: i
(i) Discharge through the pipe, and
(i1) Velocity of water at section 2-2

Sol.
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Example 2.

A pipe (1) 450 mm in diameter
branches into two pipes (2 and 3) of
diameters 300 mm and 200 mm
respectively. If the average velocity
in 450 mm diameter pipe is 3 m/s
find:

(i) Discharge through 450 mm
diameter pipe;

(if) Velocity in 200 mm diameter pipe

if the average velocity in 300 mm pipe is 2.5 m/s.

Sol.
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Water flows through pipe AB 1.3m diameter at speed of 3m/s and passes
through a pipe BC of 1.6m diameter. At C the pipe branches. Branch CD
IS 0.7m in diameter and carries one third of the flow in AB. The velocity in
branch CE is 2.7m/s. Find the flow rate in AB, the velocity in BC, the
velocity in CD and the diameter of CE.

13m 16m (<

2.

Pipe flow steadily through the piping junction (as shown in the figure)
entering section (1) at a flow rate of 4.5m?%hr. The average velocity at
section (2) is 2.5 m/s. A portion of the flow is diverted through the
showerhead 100 holes of 1-mm diameter. Assuming uniform shower flow,
estimate the exit velocity from the showerhead holes.

_ _Acem




