

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### Lecture (8) 18/1/2021

One-storey concrete building is shown in figures (1) below, depending on following data: Dead load 4 kN/m², Live load 6 kN/m², Beam dimension (0.4 × 0.6 m), column dimension (0.4 × 0.6 m), slab thickness 0.2 m, height of floor 4m, cover 40mm, No. of division 5 × 5,  $f_y$ = 350 MPa,  $f_u$ = 550 MPa,  $f_v$ = 25 MPa,  $f_v$ = 24 kN/m³,  $f_v$ = 4700 $\sqrt{f_v}$  and the supports are considered fixed. Construct a model by using SAP2000 and answer on the following:

- 1- Find the maximum and minimum reactions with unit in (kN).
- 2- Find the deflections of X1 and X2 in millimeters (mm).
- 3- Find the maximum positive moments in Slab (S) in (kN.m) at X and Y directions.
- 4- Find the maximum moments, shears in beams (B1-1 and B2-2).
- 5- Find the moment and shear in section (a-a) at 1m from column.



Figure (1) Top view

#### ملاحظات مهمة:

۱- عدد المحاور بالاتجاه x هو 5 وعدد المحاور باتجاه z هو 4.

٢- المحاور باتجاه x و y يحتاج الى تغيير ليكون كما يلى:

| У  | Х  |
|----|----|
| 0  | 0  |
| 5  | 6  |
| 10 | 12 |
| 12 | 18 |
|    | 20 |
|    |    |



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

٣- الاعمدة تحتاج الى تغيير بالمحاور بزاوية 90.

1- The maximum Reaction with unit in (kN) = 661.1

minimum= 170.49

2- The deflection of X1= 4.44 mm

X2 = 3.21 mm

3- The maximum positive moment in Slab (S) x direction = 13.52 kN.m

y = 18.23 kn.m

4- The maximum moments, shear and in beams (B1-1 and B2-2).

| B1-1       |          |
|------------|----------|
| Moment     | Shear    |
| 205.5 kN.m | 174.5 kN |

| B2-2       |          |
|------------|----------|
| Moment     | Shear    |
| 161.1 kN.m | 173.3 kN |

5- Find the moments and shear in section (a-a) at 1m from column

| Section a-a |          |  |
|-------------|----------|--|
| Moment      | Shear    |  |
| 55.3 kN.m   | 121.5 kN |  |



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### **Lecture (1)** 8/12/2020

Structural Analysis using of SAP 2000.

١- فتح البرنامج عن طريق ابدا ( start ) ومن ثم computer and structure ومن ثم



٢ - التعرف على واجهة البرنامج



٣- من قائمة نختار new model مع تغيير الوحدات الى kN.m



**Subject: Structural Analysis** 

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi



٤- نختار Beam لاختار تحليل لجسر اعتيادي



٥ ـ بعد اختيار Beam تظهر لنا القائمة التالية:



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi



عدد الفضاءات فاذا على سبيل المثال ٢ يكون عدد المساند ٣ عدد الفضاءات فاذا على سبيل المثال ٢ يكون عدد المساند ٣ Span length= ٢ المسافة بين مسند واخر فعند اختيار مثلا ٥ م يكون طول الجسور هو ١٠ متر باعتبار اختيار عدد الفضاءات هو ٢ Beams= نوعية المقطع كونكريت او حديد او غيرها ويمكن تعريفه لاحقا بعد الضغط على موافق

بعد الضغط على موافق تظهر القائمة ادناه وتبين عدد الفضاءات ٢ وعدد المساند ٣





Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

# **Lecture (2)** 16/12/2020

### Structural Analysis using of SAP 2000.

A two-dimension concrete beams as shown in figures below, a dead loads were applied on this frame. Depending on the following assumptions:

Beam dimension  $(0.25 \times 0.5 \text{ m})$ , and dead load factor 1.4, answer on the following:

- 1- Find the maximum Reaction with unit in kN.
- 2- Find the maximum deflection in millimeter (mm).
- 3- Find the maximum moment and shear in the beams.





Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

## Lecture (5) 29/12/2020

A two-dimension concrete frame as shown in figures (1) below, a dead loads were applied on this frame. Depending on the following assumptions:

Beam dimension  $(0.3 \times 0.5 \text{ m})$ , column dimension  $(0.3 \times 0.3 \text{ m})$ , dead load factor 1.4 and the supports are considered hinge, answer on the following:

- 1- Find the maximum Reaction with unit in kN.
- 2- Find the maximum deflection in millimeter (mm).
- 3- Find the maximum moment and shear in the beams.



Dr.Bassim Jabbar Abass

#### ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 4 وعدد المحاور باتجاه Z هو 3

٢- المحور الاخير باتجاه z يحتاج الى تغيير ليكون 3+2.5= 5.5 متر

٣- المحاور باتجاه x تحتاج الى تغيير ليكون

0

2

5

10



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

## Lecture (4) 23/12/2020

A two-dimension concrete frame as shown in figures (1) below, a dead loads were applied on this frame. Depending on the following assumptions:

Beam dimension (0.3  $\times$  0.5 m), column dimension (0.3 $\times$ 0.3 m) and dead load factor 1.4, answer on the following:

- 1- Find the maximum Reaction with unit in kN.
- 2- Find the maximum deflection in millimeter (mm).
- 3- Find the maximum moment and shear in the beams.



#### ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 4 وعدد المحاور باتجاه z هو 3

٢- المحور الاخير باتجاه z يحتاج الى تغيير ليكون 4 + 2= 6 متر

٣- المحاور باتجاه x تحتاج الى تغيير ليكون

U

3

8

٤- القوة ٥٠ اكن يتم تحليلها الى قوتين عمودية وافقية والعمودية يكون اتجاه القوة الى الاسفل والافقية الى اليسار كما مبين ادناه



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

# Lecture (6) 5/1/2021

**Q.7** A two-dimension concrete frame as shown in figures (1) below, a live loads were applied on this frame. Depending on the following assumptions:

Beam dimension  $(0.3 \times 0.5 \text{ m})$ , column dimension  $(0.3 \times 0.3 \text{ m})$ , the dead load factor 1.2 and live load factor 1.6 and the supports are fixed answer on the following:

- 1- Find the maximum Reaction with unit in kN.
- 2- Find the maximum deflection in millimeter (mm).
- 3- Find the maximum moment and shear in the beams.



### Dr.Bassim Jabbar Abass

ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 3 وعدد المحاور باتجاه z هو 3

٢- المحور الاخير باتجاه z =6 متر

٣- المحاور باتجاه x تحتاج الى تغيير ليكون

0

3.5 8.5



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### Lecture (9) 19/1/2021

A concrete building is shown in figures (1) below, depending on following data: Dead load 6 kN/m $^2$ , Live load 4 kN/m $^2$ , Beam dimension 0.3 × 0.6 m, column dimension 0.3 × 0.3 m and slab thickness 0.2 m, No. of division

- 4 × 4, cover 40mm,  $f_y$ = 350 MPa,  $f_u$ = 500 MPa,  $f_c$ = 25 MPa,  $\gamma_c$ = 24 kN/m³,  $E_c = 4700\sqrt{fc}$  and the supports are considered fixed.
- 1- Find maximum moment, shear and torsion in B1-1.
- 2- Find the deflection at X in millimeter.
- 3- Find maximum negative and positive moments in X and Y directions for S.
- 4- Find maximum and minimum reactions.

Use 1.2 x dead load and 1.6 x live load





#### ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 3 وعدد المحاور باتجاه y هو 4 وعدد المحاور باتجاه z هو 2

٢- المحاور اباتجاه y تكون كما يلي:

0

2

7 10

٣- الاعمدة لا تحتاج الى تغبير بالمحاور بزاوية ٩٠:



Dr. Basim Jabbar Almusawi

Forth Year Class: Year: 2020 / 2021

# Lecture (3) 22/12/2020

A two-dimension concrete frame as shown in figures (1) below, dead loads were applied on this frame. Depending on the following assumptions:

Beam dimension (0.25 × 0.5 m), column dimension (0.25×0.3 m) and dead load factor 1.4, answer on the following:

- 1- Find the maximum Reaction with unit in kN.
- 2- Find the maximum deflection in millimeter (mm).
- 3- Find the maximum moment and shear in the beams.



#### ملاحظات مهمة:

۱- عدد المحاور بالاتجاه x هو 4 وعدد المحاور باتجاه z هو 3

٢- المحور الاخير باتجاه z يحتاج الى تغيير ليكون 4+2=6 متر

٣- المحاور باتجاه x تحتاج الى تغيير ليكون

0 5

7.5

10



Subject: Structural Analysis

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### Lecture (10) 26/1/2021

One-storey concrete building is shown in figures (1) below, depending on following data: Dead load 5 kN/m<sup>2</sup>, Live load 7 kN/m<sup>2</sup>, Beam dimension (0.4 × 0.6 m), column dimension (0.4 × 0.6 m), slab thickness 0.2 m, floor height 4 m, dead load factor 1.2, live load factor 1.6, No. of division 4 × 4 and the supports are considered fixed.  $f_y$ = 350 MPa,  $f_u$ = 550 MPa,  $f_c$ = 21 MPa,  $f_c$ = 24 kN/m<sup>3</sup>,  $f_c$ = 4700 $f_c$  and cover 30 mm.

### Answer on the following:

- 1- Find the deflection of X1 and X2 in millimeters (mm).
- 2- Find the maximum and minimum reactions.
- 3- Find moment, shear and torsion in 1m from the lower support and at the mid span for B1\_1.



#### ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 5 وعدد المحاور باتجاه y هو 4 وعدد المحاور باتجاه z هو 2

٢- المحور الاخير باتجاه x يحتاج الى تغيير ليكون 4.25+4.25+4.25+2= 14.75 متر

٣- جميع الاعمدة الوسطية تحتاج الى تغيير بالمحاور بزاوية 90



Subject: Structural Analysis

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### **Lecture (11) 2/2/2021**

One-storey concrete building is shown in figures (1) below, depending on following data: Dead load 5 kN/m², Live load 7 kN/m², Beam dimension 0.3 × 0.6 m, column dimension 0.3 × 0.5 m and slab thickness 0.2 m, height of floor 4m, cover 30mm, the supports are considered fixed No. of division 5 × 5,  $f_y$ = 350 MPa,  $f_u$ = 550 MPa,  $f_c$ = 21 MPa,  $f_c$ = 24 kN/m³ and  $f_c$ = 4700 $f_c$ .

### Answer on the following:

- 1- Find the deflection of X1 and X2 in millimeters (mm).
- 2- Find the maximum and minimum reactions.
- 3- Find moment, shear and torsion in 1m from the left support and at the mid span for B1-1 and B2-2.
- 4- Find maximum moments in X and Y directions for S1.



## Dr.Bassim Jabbar Abass

ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 5 وعدد المحاور باتجاه y هو 4 وعدد المحاور باتجاه z هو 2

2- المحور الاخير باتجاه x يحتاج الى تغيير ليكون =4.5 + 4.5 + 5.5 متر

3- جميع الاعمدة الوسطية تحتاج الى تغيير بالمحاور بزاوية 90



Subject: Structural Analysis

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### Lecture (13) 16/2/2021

One-storey concrete building is shown in figure below, depending on following data: Dead load 6 kN/m², Live load 4 kN/m², Beam dimension (0.3 × 0.6 m), column dimension (0.3 × 0.6 m) slab thickness 0.18 m, floor height 3.5 m, dead load factor 1.2, live load factor 1.6, No. of division 4 × 4 and the supports are considered bins.  $f_y$ = 350 MPa,  $f_u$ = 550 MPa,  $f_c$ = 25 MPa,  $g_c$ = 24 kN/m³,  $E_c$  = 4700 $\sqrt{fc}$  and cover 30 mm.

### Answer on the following:

- 1- Find the deflection of X1 and X2 in millimeters (mm).
- 2- Find the maximum and minimum reactions.
- 3- Find moment, shear and torsion in 1m from the lower support and at the mid span for B1-1 and B2-2.
- 4- Find maximum moments in X and Y directions for S1.



#### ملاحظات مهمة:

2 هو z هو z وعدد المحاور بالاتجاه z هو z وعدد المحاور باتجاه z هو z

2- المحور الاخير باتجاه x يحتاج الى تغيير ليكون 6+6+6+5+5.1=19.5متر

3- جميع الاعمدة الوسطية تحتاج الى تغيير بالمحاور بزاوية 90



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

## Lecture (14) 23/2/2021

Two-storey concrete building is shown in figures (1) below, depending on following data: Dead load 5 kN/m<sup>2</sup>, Live load 8 kN/m<sup>2</sup>, Beam dimension (0.4 × 0.6 m), column dimension (0.4 × 0.6 m), slab thickness 0.2 m, floor height 4.5 m, dead load factor 1.2, live load factor 1.6, No. of division 4×4, the supports are considered fixed,  $f_y$ = 350 MPa,  $f_c$ = 25 MPa,  $f_c$ = 24 kN/m<sup>3</sup>, cover 30 mm and  $f_c$ = 4700 $f_c$ 

Construct a model by using SAP2000 and answer on the following:

- 1- Find the maximum Reaction with unit in (kN).
- 2- Find the deflection of X<sub>1</sub> and X<sub>2</sub> in millimeters (mm).
- 3- Find the maximum negative moment in Slab (S) in (kN.m) at X and Y directions.
- 4- Find the maximum moments, shear and torsion in beams B1-1 and B2-2.
- 5- Find the moments and shear in sections (a-a) at the mid span and (b-b) at 1m from column.





Figure (1a) first floor

Figure (1b) second floor

ملاحظات مهمة:

1- عدد المحاور بالاتجاه x هو 5 وعدد المحاور باتجاه z هو 6 ومن الممكن عمله 5 بحيث نلغي المحور الاول 0.5 متر.

2- المحاور باتجاه x و y يحتاج الى تغيير ليكون كما يلي:

| У    | Х     |
|------|-------|
| 0    | 0     |
| 0.5  | 4.5   |
| 2.5  | 9     |
| 7.5  | 13.25 |
| 13.5 | 15.25 |
| 18.5 |       |
|      |       |

- 3- في الطابق الاول عدد الاقواس 2 (في الجهة السفلية والجهة اليمين) بينما عدد الاقواس 1 في الطابق الثاني.
  - 4- الانتباه الى اتجاه الاعمدة بحيث يكون كما في الرسم.
- 5- المطلوب يكون بعضها في سقف الطابق الاول والبعض الاخر في سقف الطابق الثاني كما موضح في الرسم.



Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

### Lecture (15) 2/3/2021

Two-storey concrete building is shown in figures (1) below, depending on following data: Dead load 5 kN/m<sup>2</sup>, Live load 8 kN/m<sup>2</sup>, Beam dimension (0.4 × 0.6 m), column dimension (0.4 × 0.6 m), slab thickness 0.18 m, first floor height 4m and second floor height 3m, dead load factor 1.2, live load factor 1.6, No. of division 5×5, the supports are considered fixed,  $f_y$ = 350 MPa,  $f_u$ = 550 MPa,  $f_c$ = 25 MPa,  $f_c$ = 24 kN/m<sup>3</sup>, cover 30 mm and  $f_c$ = 4700 $f_c$ = Construct a model by using SAP2000 and answer on the following:

- 1- Find the maximum Reaction with unit in (kN).
- 2- Find the deflection of X<sub>1</sub> and X<sub>2</sub> in millimeters (mm).
- 3- Find the maximum negative moment in Slab (S1) in (kN.m) at X and Y directions.
- 4- Find the maximum moments, shear and torsion in beam B1-1.
- 5- Find the moments and shear in sections (a-a) and (b-b) at the mid span.





#### ملاحظات مهمة:

- 1- عدد المحاور بالاتجاه x = 6 وعدد المحاور باتجاه y = 4 وعدد المحاور باتجاه z = 3
  - 2- البعد الاول يمكن استخراجه من 19.5-17= 2.5
  - 3- المحاور باتجاه x و y يحتاج الى تغيير ليكون كما يلى:

| У  | х     |
|----|-------|
| 0  | 0     |
| 5  | 2.5   |
| 10 | 6.75  |
| 15 | 11    |
|    | 15.25 |
|    | 19.5  |

- 4- احداثيات القوس الاول على اليسار النقطة الثالثة (7.5, 0).
- 5- احداثيات القوس الثاني على اليمين النقطة الثالثة (16.75, 15، 4).
  - 6- الانتباه الى اتجاه الاعمدة بحيث يكون كما في الرسم.
- 7- المطلوب يكون بعضها في سقف الطابق الاول والبعض الاخر في سقف الطابق الثاني كما موضح في الرسم.



Subject: Structural Analysis

Class: Forth Year Year: 2020 / 2021

Dr. Basim Jabbar Almusawi

## Lecture (17) 16/3/2021

The truss showed in Figure consist of chords W  $10 \times 30$  and braces L  $4 \times 4 \times 1/2$ , using AISC.PRO code and joint loads as dead load and dead load factor = 1.4, answer on the following:

- 1- Find the reaction.
- 2- Check if the sections are safe or not.

