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Abstract

An automatic method for the regularisation of building outlines is presented,
utilising a combination of data- and model-driven approaches to provide a robust
solution. The core part of the method includes a novel data-driven approach to
generate approximate building polygons from a list of given boundary points. The
algorithm iteratively calculates and stores likelihood values between an arbitrary
starting boundary point and each of the following boundary points using a
function derived from the geometrical properties of a building. As a preprocessing
step, building segments have to be identified using a robust algorithm for the
extraction of a digital elevation model. Evaluation results on a challenging dataset
achieved an average correctness of 96�3% and 95�7% for building detection and
regularisation, respectively.

Keywords: building detection, DEM extraction, digital surface model, laser
scanning, polygonal simplification, regularisation

Introduction and Previous Research

THE MAPPING OF BUILDING OUTLINES is relevant for numerous applications such as urban
planning, three-dimensional (3D) city modelling and map updating. As the manual
digitisation of building outlines is expensive and time-consuming, the aim of several
approaches is to automate the process starting with the raw sensor data. A typical pipeline
for the regularisation of building outlines consists of three crucial steps: (i) computation of
the digital elevation model (DEM – sometimes termed a digital terrain model or DTM) from
the digital surface model (DSM); (ii) building mask detection; and (iii) building outlining.
The following paragraphs refer to previous work achieved on these steps as well as their
insufficiencies.

Extracting a DEM is the key step for building detection (Mongus et al., 2014) and it
must be computed first (Bulatov et al., 2014). The existing DEM extraction algorithms are
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either based on “raw” point clouds or on a rasterised DSM where each pixel has a specific
value which corresponds to a height. Methods based on point clouds can be difficult and
time-consuming when searching for adjacent points in border regions, while working on a
raster DSM can overcome such problems (Meng et al., 2009b). In addition, 3D point density
is not always sufficient, which can lead to a negative impact on the quality of the results
(He et al., 2014; Rottensteiner et al., 2014). Interpolating point cloud data into a raster may
help to overcome this issue because it offers enough points that are consistently sampled in
a regular grid.

Based on the literature, DEM extraction algorithms can be described as slope-based,
linear-prediction-based and methods based on morphological filtering (Sithole and
Vosselman, 2004; Liu, 2008; Mongus et al., 2014). In addition, directional scanning filters
have also proved to be promising algorithms for DEM generation (Meng et al., 2009b,
2010; Perko et al., 2015; Mousa et al., 2017).

Slope-based methods are based on the assumption that slope angles between ground
points are distinctly lower than slopes between ground and non-ground points. Several
methods have been developed (Axelsson, 2000; Vosselman, 2000; Sithole, 2001; Shan and
Sampath, 2005). The selection of a suitable slope threshold is critical because the terrain
slope can be non-uniform, even in the same scene, depending on terrain complexity.
Adaptive slope thresholding is therefore implemented (Sithole, 2001) to handle such
limitations. Promising results can be achieved with such methods in flat areas, while their
efficiency decreases with increasing terrain slope (Liu, 2008; Mongus et al., 2014).

Linear prediction or interpolation-based methods start by estimating a rough terrain.
Then, height differences or residuals between points and the estimated rough terrain are
minimised by linear least squares interpolation. Negative residuals are given higher
weights than positive ones assuming that the estimated roughness is usually interpolated
over the actual ground surface. A number of approaches have been modified based on
this concept (Kraus and Pfeifer, 1998; Lee and Younan, 2003). Cubic-spline surface
minimisation can be also used because of its robustness against outliers (Bulatov and
Lavery, 2010; Bulatov et al., 2014). However, extraction of detailed ground surfaces and
small objects might be difficult by using such interpolation methods (Sithole and
Vosselman, 2004; Liu, 2008).

Classical morphological filtering methods have been commonly implemented for
DEM extraction (Kilian et al., 1996; Zhang et al., 2003). The idea is based on applying
morphological operators, such as erosion and dilation (Haralick et al., 1987), in greyscale
images using a structural element (SE). The size of the SE is critical in eliminating
buildings with diverse sizes; Zhang et al. (2003) therefore proposed progressive filtering
by gradually increasing the sizes of the SE. The local elevation difference and slope
within the size of the SE were applied to identify ground points. Chen et al. (2007)
applied a similar approach, but used an adaptive slope threshold. Nevertheless, percentile
rank filters (for example, 5%, 10%, 20%, and 40%) were used to mitigate the effect of
outliers. More recently, Mongus et al. (2014) also applied a morphological filtering
approach for building detection purposes in three steps: (i) smoothing the DSM using a
Gaussian kernel was applied as preprocessing step; (ii) objects having smooth or
continuous surfaces were labelled as ground objects, while other objects were removed;
and (iii) the input laser points were classified as ground points based on their elevation
differences from DEM and the slope gradient.

Directional scanning methods have also attracted attention. Meng et al. (2009b)
proposed a multi-directional ground filtering (MGF) approach based on lidar-DSM. The
basic idea was to apply scanline filtering, from left to right and right to left, within a
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moving window of pre-defined dimensions. Points were classified as ground or non-ground
based on both the height difference with the lowest point in the conducted scanlines and on
the slope with their adjacent points. Selection of the lowest point in sloping areas is the
main limitation of this method. Perko et al. (2015) overcame this limitation by considering
the local slope of the terrain; however, smoothing of the DSM is required which may lead
to possible inaccuracies.

Points belonging to a DEM can be identified based on the following physical
characteristics: (i) lowest elevation in a local area; (ii) slope angle; (iii) elevation difference;
and (iv) surface homogeneity (Meng et al., 2010). The majority of existing algorithms have
been built on these characteristics. The slope is the most sensitive parameter in the process
of DEM generation (Zhang and Whitman, 2005). In addition, defining a slope threshold in
terms of terrain information in the analysed scene is, to some extent, subjective (Zhang
et al., 2003). This problem becomes obvious in high-resolution DSMs because the slope
value between neighbouring pixels is considerable without transitioning from ground to
non-ground, or vice versa (Mousa et al., 2017).

After the extraction of the DEM, the so-called normalised DSM (nDSM),
representing buildings, trees and other non-ground features, can be generated by
subtracting the DEM from the DSM. For the purpose of generating a building map, the
problem is related primarily to removing trees. To do so, the normalised difference
vegetation index (NDVI) can be utilised if it is available. Otherwise, the multi-return
properties of laser points (Meng et al., 2009a) and/or analysing the height difference of a
point and its neighbours, for example, using a planarity measure (West et al., 2004), are
possible options. If a comprehensive classification is required, convolutional neural
networks (CNNs) (Long et al., 2015) can be utilised; these aim to train a parametric
system learning object identification jointly with a classifier (Marcos et al., 2018) in an
end-to-end method. Its advantage is in its effectiveness in image classification with pixel-
level accuracy. The main disadvantage, however, lies in an expensive training effort.
Nevertheless, an nDSM is an essential input in processing (for example, as used by
Marmanis et al. (2018) and Piramanayagam et al. (2018)) which can only be computed
after extracting the DEM. The generated building map can be either building regions
(such as a binary image) or segmented laser points. In both cases, a list of boundary
points can be obtained using the Moore contour-tracing algorithm (Gonzalez et al., 2004)
or convex-hull-based procedures (Pohl et al., 2017).

The approaches used for building outline regularisation can be grouped into three
categories: (i) model-driven (Sohn et al., 2012; Br�edif et al., 2013); (ii) data-driven (Pohl
et al., 2017); or (iii) a combination of both models (He et al., 2014). The goal of these
methods is to reduce the number of building boundary points to the minimum required
to describe the shape of the building. More specifically, the result from model- and data-
driven approaches is to find a polygon describing the same properties of the original
building object with a significant reduction in the number of given boundary points.

Model-driven approaches rely on several preselected parametric building models to be
fitted with a given boundary-point dataset; they are therefore more robust against noise.
Such approaches are based on the orthogonality characteristics of building outlines (right-
angled corners), which is true for the majority of existing buildings but can be a challenge
for complex buildings. Therefore, non-rectangular buildings can be incorrectly simplified or
be represented by overly complex shapes (Avbelj, 2015). The most common model-driven
approaches for building outlining are implemented using a minimum bounding rectangle
(MBR) procedure (Gerke et al., 2001; Dutter, 2007; Arefi, 2009; Kwak and Habib, 2014;
Avbelj, 2015). Overcoming the problem of noisy data is the main advantage of model-
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driven approaches; the main drawback is that only buildings with right angles can be
modelled, which is not always the case for complex buildings.

In contrast to model-driven approaches, data-driven approaches do not require prior
knowledge of the building shape; they therefore offer greater flexibility to model any
building shape. Nevertheless, data-driven approaches still face difficulties in the case of
missing data to be recovered (Sohn et al., 2012) and it is often difficult to formulate
constraints imposing regularity (Kwak and Habib, 2014). The most common data-driven
approaches can be classified, in terms of the underlying method, into three groups: (i) the
Douglas–Peucker (DP) algorithm (Douglas and Peucker, 1973); (ii) the random sampling
consensus (RANSAC) method (Fischler and Bolles, 1981); and (iii) the Hough transform
(Hough, 1962). Many of the existing data-driven approaches have utilised an initial
solution based on the DP algorithm (Maas and Vosselman, 1999; Wang et al., 2006; Jwa
et al., 2008; Sohn et al., 2012; He et al., 2014) because it is easy to implement and is able
to maintain the original shape (Song and Miao, 2016). However, the efficiency of the DP
algorithm decreases with increasing irregularity of the building boundary points. This is
because the algorithm is inherently sensitive to both noise and the position of the starting
point. In addition, building characteristics such as angle detection and area preservation
are not considered in the processing. Therefore, a more robust data-driven approach is
preferable.

The final step for the building outline regularisation is an adjustment that aims to find
the best-fitting polygon edges with respect to the input boundary points for non-rectilinear
buildings. For rectilinear buildings, orthogonality constraints must be added. If the polygon
edges are adjusted subsequently, the topological relationships between such edges will be
lost (Avbelj, 2015). Many of the existing procedures tend to find the dominant building
direction, which then is used as the basis to adjust the other polygon edges accordingly
(Arefi, 2009; Awrangjeb, 2016; H€ohle, 2017). However, the challenge is to adjust all
parameters simultaneously (Avbelj, 2015). Therefore, the best fitting of polygon edges must
be achieved jointly with orthogonality constraints to provide the best solution.

Considering the drawbacks of existing methods, as summarised above, this study
proposes a workflow with the aims of:

(1) Employing a robust DEM extraction algorithm that does not need a slope parameter
nor the smoothing of the DSM.

(2) Developing a new data-driven approach to generate approximate polygons for both
rectilinear and non-rectilinear buildings.

(3) Combining the robustness of model-driven approaches with the flexibility of data-
driven approaches in order to build a comprehensive strategy to deal with the
building outline regularisation problem more effectively.

(4) Solving regularisation of rectilinear buildings by implementation of orthogonality
constraints and the best fitting of boundary points with respect to their corresponding
edges simultaneously in the adjustment process.

The paper is structured as follows. In the next section the methodology is introduced.
The results are then presented and evaluated, with the last section containing conclusions.

Methodology

DSM refinement is the first step in the proposed workflow presented in Fig. 1.
Then, the DSM is separated into a DEM and an nDSM. Further, trees are removed using
NDVI image and planarity data to generate a building mask. The next step is to combine
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the data-driven approach with the model-driven approach to obtain approximate building
polygons. Buildings satisfying the rectilinearly conditions (for example, an even number
of vertices) will be processed via a least squares adjustment using the Gauss–Helmert
(GH) model. Otherwise, they are assumed to be non-rectilinear and will be processed
through the Gauss–Markov (GM) model to provide the final solution of the building
outline regularisation.

Building Mask Generation

As a DSM refinement step, a median filter (MF) is applied. While small elevated
objects are eliminated in this step, it allows the modelling of the building outlines to be
more precise, as well as improving the DSM quality against outliers (Bulatov et al., 2014).
The size of the MF must be chosen carefully because closely adjacent buildings could be
merged to a single complex shape. This could result in an increase in the percentage of
false positives and, as a negative consequence, make the regularisation result become less
reliable. The DEM is generated using the network of ground points (NGPs) algorithm
(Mousa et al., 2017). Then, the nDSM is created by subtracting the DEM from the DSM
in order to extract non-ground points. Next, the non-ground points other than buildings
(primarily high vegetation) have to be removed from the nDSM to generate the building
mask. To do so, an NDVI mask is created from the ortho-image. The NDVI values range
from �1 to 1, with pixels having NDVI values greater than 0�15 being the most likely to
belong to vegetation. Non-vegetation objects usually having a low NDVI value (less than
about 0�1). However, when vegetation is located in shadow areas, their NDVI values are
very low and therefore may not be removable. To overcome this limitation, the authors
considered the planarity measure (West et al., 2004). Considering a neighbourhood of a
3D point, a so-called structure tensor is obtained whose eigenvalues provide several
important measures. The most popular is the planarity measure which, essentially, assesses
how the neighbourhood of a point can be approximated by a plane. To compute the
structure tensor, it is helpful to interpret the slightly smoothed DSM as a point cloud.
Based on the cylinder-like extraction of neighbours proposed by Gross and Thoennessen
(2006), the planarity measure is particularly suitable for differentiating between the ground
and flat roofs (value close to 1), areas around walls (value of 0, because there is a jump
in elevation), trees (values close to 0, except for the crown, which constitute smaller
regions) and sloping roofs (which, depending on inclination angle, have an approximately
constant value between 0 and 1). The overall decision rule using NDVI and planarity
measure is given by:

Fig. 1. Workflow of the proposed methodology.
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BuildingsMask ¼ ðnDSM[ threshold and ðNDVI\0 �15 and planarity[ 0�6ÞÞ: ð1Þ

Pixels satisfying equation (1) are labelled as building pixels. The result is a binary
image separating all building segments from the background. In Fig. 2, the marked point
(red cross) belongs to a tree in a shadow area and was selected as an example. Its NDVI
value is 0�08 which is too low to be eliminated by the NDVI threshold, which is set to
0�15. However, its planarity measure is 0�26, and therefore lower than the required
threshold of 0�6, indicating that this point does not belong to a building. Therefore, the
point is correctly eliminated from the nDSM when forming the building mask. It has to be
emphasised that the parameters in equation (1) were determined empirically, but the
robustness of the approach – that nDSM, NDVI and planarity are sufficient to discard trees
– is confirmed because few changes occur by modifying these thresholds by around 10%. In
addition, small objects (for example, with an area of less than 10m2) are eliminated
because: firstly, they are most likely to be associated with tree crowns in shadow, vehicles
or just noise; and secondly, buildings (or parts of buildings) with an area less than 10m2

are so small they rarely exist. Finally, morphological filtering is performed to fill small
holes that may occur.

Approximate Building Polygon Generation

Data-driven Approach to Generate an Approximate Building Polygon. The goal of
this step is to find the minimum number of vertices, from a list of boundary points, that
represents a building outline as similar as possible to its original building shape. These
boundary points are collected in Cartesian coordinates for each building segment by
applying the Moore contour-tracing algorithm (Gonzalez et al., 2004).

A list of consecutive boundary building points is given. Let P ¼ fp1; p2; . . .pIg,
where I is the number of boundary points. The goal is to find V ¼ fv1; v2; . . .vJg with
V ⊂ P and 3 ≤ J ≤ I, where J is the number of vertices and V is a closed circular sequence
of J vertices (VJ+1 = V1) (Backes and Bruno, 2013). In this context, the orthogonal distance
error (dist) between each boundary point (i) and its corresponding line segment (j), as well
as the root mean square error (RMSE), are calculated as shown in equation (2):

RMSEðVjÞ ¼
P

i distðpi; VV
�!

jÞ2
Iþ

 !1
2

ð2Þ

where j = 2, . . . , J, distðpi; VV�!jÞ is the orthogonal distance (see the red lines in Fig. 3)
from the line connecting V and Vj to the boundary point pi, V is the previously determined
vertex Vj�1 while I+ denotes the number of points i running from Vj�1 to Vj.

Fig. 2. Generation of the building mask. Left to right: orthophoto, nDSM, planarity map, NDVI mask and
building mask. The red cross belongs to a tree in a shadow area.
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Fig. 3 shows an example of a list of boundary points with a 0�25m ground sample
distance (GSD), which needs to be simplified. Starting from an arbitrary point V1, for
example, the one shown as a black triangle, the aim was to find the locations of the most
probable vertices. Logically, points located at a building corner (the point presented by the
orange triangle in Fig. 3(a)) can be nominated as a vertex (V2). However, finding this point
automatically is a challenging task. To do so, the following criteria should be considered:

(1) Distance (D): V2 can be defined as the farthest point from V1, and at the same time
achieves three criteria: acceptable RMSE, preservation of the building’s area and it
(V2) should be located on a corner in order to avoid unnecessary boundary points.

(2) Error (E): the RMSE of the boundary points between V1 and V2 must be acceptable,
and must therefore lie under a pre-defined threshold.

(3) Area (A): the calculated area of the points which should be as close as possible to the
original area while reducing the unnecessary points between V1 and V2.

(4) Angle (Θ): V2 must not be located on a straight line considering the previous and
subsequent points; there is an angle even for curves as the aim is to find the corner
points of the building. The priority is given to angles close to 90°.

These four criteria seem to be the most essential with respect to the physical
characteristics which should be considered to solve the problem of building simplification
through a list of given points. However, formulating these characteristics in one
mathematical model solution is a challenging task. Based on these characteristics a
likelihood equation consisting of three major terms is formulated as follows:

lðiÞ ¼ Aþ aDjsinðHÞj � bE2 ð3Þ

where l is the likelihood for a boundary point i to be nominated as a vertex, and a and b
are weight factors to balance the equation.

The first term on the right-hand side of equation (3) represents the calculated area (A)
after reducing the number of redundant boundary points. Sometimes, the calculated area is
larger than the original area, which typically occurs when the interior angles of a building
exceed 180°. In this case, the calculated area has to be modified.

Fig. 3. Examples of conducted straight lines (blue lines) from the start point (black triangle) to the following
ones. The red lines are the orthogonal distances. The green lines represent a distance of 1�5m (6 pixels with a

0�25m GSD) for the angle-detector threshold at the point under evaluation (orange triangles).
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The second term in equation (3) combines the distance (D) and angle (Θ)
hypotheses. In Fig. 3 the blue lines represent the distance D from the starting point (black
triangles) to the point under evaluation (orange triangles), while Θ is the calculated angle
at the point under evaluation. A high weight for this term is required (a = 20 was
determined by empirical testing and fixed in all the tests) to make sure that the distance
between two adjacent vertices is maximised within an acceptable RMSE. This is a
reasonable assumption if the evaluated boundary point is close to a building corner.
Otherwise, lower weight should be assigned to the distance, especially when the evaluated
point is located on a straight line. For this reason, this weight a is multiplied by the
absolute sine of the angle at the point under evaluation. The angle is calculated by using
the boundary points before and after the current point. Fig. 3 shows the distances for the
angle detector (AD) depicted by the two green lines (6 pixels in length) intersecting at the
point under evaluation. When the point under evaluation is located at a building’s corner
(Fig. 3(a)), the angle is close to 90°. In contrast, when the point under evaluation is
located on a straight line (Fig. 3(b)), the angle is close to 180°. Since |sin(90°)|= |sin
(270°)|= 1 (a maximum) while |sin(180°)|= 0 (a minimum), the evaluated point attracts
greater weight when it is located at a corner while it is assigned zero weight when it is
located on a straight line.

The last term in equation (3) represents the mean square error (MSE) of the
orthogonal distances, visualised by the red lines in Figs. 3(a) and (b) from the constructed
straight (blue) lines. The orthogonal distance for each boundary point, along with the
constructed line (E), is calculated according to equation (2). This is squared and
multiplied by the weight (b = 2, which was determined by empirical testing and fixed in
all tests).

The process recursively constructs straight lines from the starting point to each
subsequent boundary point, as shown in Fig. 3. On each occasion, the likelihood value is
computed according to equation (3) and indexed. This process stops when reaching the
maximum of the pre-defined RMSE threshold. Then, the boundary point which has the
highest likelihood value will be nominated as a vertex. The process is repeated, starting
from the last accepted vertex, until returning to the first nominated vertex. Boundary points
that achieved the highest likelihood value for each individual process will be considered as
the most likely vertices. In the results section it will be demonstrated that, contrary to the
DP algorithm, the proposed method does not show an exaggerated dependence on the
starting point.

Model-driven Approach for Buildings not Passing the Rectilinearity Conditions. In
this work, only the first level of detail of the MBR is applied to detect whether a building
has a rectangular shape. The decision as to whether a building has rectangular shape or not
is made by thresholding the so-called similarity ratio (SR):

SR ¼ ðAs=AmÞ ð4Þ

where As is the area of the building segment (the yellow area surrounded by black
boundary points in Fig. 4(d)) and Am is the area of the derived MBR as presented by the
red box in the same figure. Kwak and Habib (2014) considered this ratio to evaluate their
reconstruction result and called it the area ratio. This approach is applied to cope with
buildings having high levels of noise at their border, caused by inadequate data or
removing vegetation covering building roofs. Therefore, the data-driven approach may not
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always provide the appropriate initial polygons for such buildings. Fig. 4 demonstrates an
example for a rectangular building, represented by its reference polygon in Fig. 4(a) and
DSM data in Fig. 4(b); the building has a very noisy border as shown in Fig. 4(c).

The SR value is always close to one when a building is rectangular, while it becomes
smaller with decreasing probability of being a rectangle. If this value is within the range of
a preselected threshold, a decision of being a rectangle will be made. Then, an approximate
polygon with only four vertices is introduced, as depicted by the black dots and connected
by the green lines in Fig. 4(e); in this figure all boundary points have been assigned
different colours according to their corresponding edges. The vertices have been selected
from the boundary points as they have the minimum distance to the corners of the bounding
box. Lastly, processing is done by GH: the final building outlines are presented as black
solid lines associated with up-to-date labelling of the boundary points in Fig. 4(f). While the
advantage of the SR value is that it can overcome a high level of noise in the boundary
points more efficiently, the disadvantage is that small details in building outlines can
disappear.

Adjustment of Building Polygons

After obtaining approximate polygons for the building outlines, model adjustment is
the final step in the workflow. When the approximated polygons fulfil the rectilinear
conditions, the GH model is applied. Otherwise, buildings are assumed to be non-rectilinear
and will be processed with the least squares fitting approach based on the GM model
(Avbelj, 2015) by modifying the given weights to the observation equations.

Fig. 4. Building simplification procedure based on the similarity ratio (SR). (a) Orthophoto showing a building
with its reference. (b) DSM data. (c) Building segment. (d) MBR. (e) Initial outline. (f) Final outline after

Gauss–Helmert processing.
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Gauss–Helmert (GH) Model. Orthogonality means that each pair of connected line
segments must have a right angle at their connection point. In a mathematical sense, if a
line segment j has a normal vector nj ¼ ðnx; nyÞ, then the next line segment must have a
perpendicular normal vector njþ1 ¼ ðny; �nxÞ. All parallel line segments have the same
normal vector, as highlighted by the red arrows in Fig. 5.

The observation equations for a boundary point i, expressed by its Cartesian
coordinates ðxi; yiÞ located on its corresponding line segment, are given as follows:

f ¼ nx xi þ ny yi � dj ¼ 0 ð5Þ
f ¼ ny xi � nx yi � djþ1 ¼ 0 ð6Þ

where dj and dj+1 are the distances from the origin of the coordinate system parallel to, and
perpendicular to, the extension of a line segment j (blue arrows in Fig. 5). The unknown
parameters (u) are nx; ny and d1,. . .,J where J is the number of vertices or line segments.
Therefore, the functional model can be written as follows:

Fðû; l̂Þ ¼ 0 ð7Þ

where û and l̂ are the unknowns and the observations, respectively. The normals nx and ny
must have a length equal to one and satisfy the following constraint:

g ¼ n2x þ n2y � 1 ¼ 0: ð8Þ

Because the unknowns and observations for a point in the line segment observation
equation cannot be separated, and each constraint contains more than one observation, the mixed

Fig. 5. Orthogonality functional model. Boundary points (dots) coloured differently according to their
corresponding edges. Red arrows indicate the direction of normal vectors. The blue arrows are the distances di

computed from the origin. The black solid line is the final rectilinear polygon after the adjustment.
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model or GH model adjustment has to be applied (Skaloud and Lichti, 2006). While the GH
adjustment was implemented by Avbelj (2015), in this work it is modified as outlined below.

The model is linearised for the approximated values uo of the unknowns u and the
observations l as follows:

Fðû; l̂Þ ¼ Fðuo; lÞ þ @F
@u uo;l ðû� uoÞ þ @F

@l

����
����
uo;l

ð̂l� lÞ þ e ¼ 0 ð9Þ

AI;udu;1 þ BI;2Iv2I;1 þ wI;1 ¼ 0 ð10Þ
where A ¼ @F

@u is the design matrix of partial derivatives of the observation equations with
respect to the unknowns at the approximated values uo; d ¼ ðû� uoÞ is the correction
vector to the approximated values; B ¼ @F

@l is the design matrix of partial derivatives of
observation equations with respect to the coordinates xi and yi; v ¼ ð̂l� lÞ is the vector of
residuals; and w=F(uo, l) is the misclosure vector. The condition equation (8) is linearised
as shown in equation (11) and applied as a weighted unknown constraint:

G1;udu;1 þ wc1;1 ¼ vc1;1 : ð11Þ

In equation (11), G ¼ @g
@u is the matrix of partial derivatives of the condition equation (8)

with respect to the unknowns; wc ¼ gðnox ; noyÞ is the misclosure vector of the condition
equation (8) for the approximated values of nx; ny; and vc is the residual of the
constraint.

The orthogonal distance of each boundary point (i) to its corresponding line segment
(j) is assumed to be the error (ri) and is calculated from equation (2). Accordingly, the
weight matrix P for the observations is designed as PðiÞ ¼ diagð1=r2i Þ. The weight matrix Pc

for the constraint must be over-weighted, for example, Pc = I2 which has (19 1) dimensions.
Otherwise, for nx and ny, an infinite number of solutions are obtained because the scale of the
vector distances d cannot be determined. Finally, the adjustment solution is formulated
according to the least squares procedure considering the mixed model as follows:

d ¼ �½ATðBP�1BTÞ�1AþGTPcG� ½ATðBP�1BTÞ�1wþGTPcwc�: ð12Þ

Evaluation

Study Area

The ISPRS benchmark dataset of Vaihingen, a town in Southern Germany, includes
three sites called Areas 1, 2 and 3 and were used for this evaluation. The sites contain 107
buildings with dramatically varying sizes and complexity between the three areas. The
specifications of the dataset can be found in Cramer (2010).

Building Detection Results

Several evaluation approaches have been used in the literature, including object-based,
area-based and RMSE (Rutzinger et al., 2009; Rottensteiner et al., 2014), together with
polygon and line segments (PoLiS) (Avbelj et al., 2015). The area-based approach (using
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completeness, correctness and quality) was chosen to cover all quality aspects (Pot�u�ckov�a
and Hofman, 2016) and the results are presented in the left-hand part of Table I. The results
of the object-based approach (applied twice for the two cases of buildings larger than 10m2

and then larger than 50m2), together with the method using the RMSE of the orthogonal
distances between the extracted vertices and the closest vertices in the reference, are
presented in the right-hand side of Table I.

In terms of the area-based evaluation, the presented algorithm shows satisfactory
results with a high average correctness of 96�23% and an average quality of 88�43%
(Table I). Nevertheless, a 99�13% average quality rate has been achieved for buildings larger
than 50m2. The performance of the approach for the three Vaihingen sites is visualised in
Fig. 6. Fig. 6(c2) depicts a building with insufficient point cloud data (highlighted by the red
circles) while the interpolated DSM offered better two-dimensional (2D) grid data. This
specific building was missed by numerous airborne laser scanning (ALS) based algorithms
(Rottensteiner et al., 2014) due to inadequate data. Working on a gridded DSM can
overcome this problem more efficiently as this building has been successfully detected (as
highlighted by the black dashed circle in Fig. 6(c)).

On the other hand, there are some complex cases where the proposed algorithm
struggles in its performance. For instance, Fig. 6(a1) presents a profile of part of a building
missed in Area 1. It could not be detected because the height difference with respect to the
terrain is less than 2m. The other problem the algorithm faces is related to the detection of
low man-made objects such as those indicated by the green arrows in Fig. 6(c) leading to
false-negative errors. The main reasons for these buildings being missed are firstly, that the
height difference with their surrounding terrain is quite low. For instance, the building
indicated by the top green arrow in Fig. 6(c) has approximately 1m height difference with
the terrain to its left and right as shown in the profile in Fig. 6(c1). As the height difference
is less than the pre-defined threshold of 2m in Area 3, the building was not detected.
Secondly, the extracted DEM has been interpolated above the terrain (Fig. 6(c4)). The DEM
(blue dashed line) is slightly raised on the left, reducing the height difference to the DSM
(red solid line) to approximately 1�8m. By subtracting the DEM from the DSM to create
the nDSM (mainly buildings and trees), a part of this building was missed because the
height difference is less than the threshold of 2m. By decreasing the threshold (for example,
to 1�5m), such low buildings can be detected but, at the same time, non-relevant elevated
objects (such as vehicles) will be incorrectly identified as buildings. In addition, a greater
area around buildings can also be detected due to the fact that the edges in the DSM are not
sharp and therefore building outlines are noisier. Hence, the correctness rate might be

Table I. Area-based and object-based evaluations of building outline extraction output. Cm= completeness,
Cr= correctness, Ql= quality and the RMSE in metres.

Area Area or pixel based (%) Object based RMSE (m)

>10m2 >50m2

Cm Cr Ql Cm Cr Ql Cm Cr Ql

1 92�70 96�50 89�70 93�80 100�00 93�80 100 100 100 0�79
2 95�20 94�80 90�50 91�70 91�70 90�00 100 100 100 0�73
3 87�10 97�40 85�10 87�50 100�00 87�50 97�4 100 97�4 0�73
Avg. 91�67 96�23 88�43 91�00 97�23 90�43 99�13 100 99�13 0�75
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decreased more than the potential increase in completeness. Other disadvantages are
associated with noisy edges; it may lead to an increase in the complexity of the building
outline regularisation process. A similar case is indicated by the orange arrow in Fig. 6(b)
where part of the building is missing because it is approximately 1m above the DEM.

Comparison of Building Detection Performance

In comparison with the results presented in Rottensteiner et al. (2014), the proposed
method shows very good performance for the area-based evaluation with an average quality
of 88�43%. It is also positioned within the highest level in terms of correctness, with an
average of 96�23%. Compared with the methods based on morphological filtering by
(i) Mongus et al. (2014) and (ii) Zhao et al. (2016), the proposed method shows a higher
average quality by 2�6% and 3�4%, respectively, over the three sites, but a lower
completeness in Area 3 by 1�8% and 0�6%, respectively. In addition, the proposed method
shows a significantly higher area-based quality rate for Area 1 by 4�8% and 6�2% over
sources (i) and (ii), respectively. This is an indicator that morphological filters show a worse
performance in sloping terrain. In comparison with the lidar data-fusion method (Du et al.,
2017), the proposed method shows a lower average area-based quality by 1% but a higher
average correctness by 1�36% in the three areas.

Compared to point-cloud-based approaches such as Awrangjeb et al. (2014), the
proposed method performed significantly better in area-based correctness and quality
(96�23% versus 91%, 88�43% versus 80�7%, respectively). Only Area 3 showed a lower
completeness rate by approximately 0�6% compared to Awrangjeb et al. (2014). However,
while that work assumed the DEM was available, this paper has presented a fully automatic
workflow. In terms of geometrical analysis, the proposed method yielded a higher accuracy
by 0�17m (0�75m versus 0�87m).

Fig. 6. Building detection results for the Vaihingen dataset: (a) Area 1; (b) Area 2; and (c) Area 3. True
positives, false negatives and false positives are depicted in yellow, blue and red, respectively. Analysis of some

complex scenarios are presented in (a1) and (c1) to (c4).
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Setting Parameters for Building Outline Regularisation

The goal of this section is to find reasonable ranges for the following parameters:
nDSM threshold (NT), median filter (MF), RMSE threshold (RT), angle detector (AD) and
similarity ratio (SR). For sensitivity analysis, five different values for each of the applied
parameters were used. The following values were used for these parameters:

(1) nDSM threshold (NT): 1�5, 2, 2�5, 3 and 3�5m;
(2) median filter (MF): 0, 0�5, 1, 1�5 and 2m;
(3) RMSE threshold (RT): 0�4, 0�8, 1�2, 1�6 and 2m;
(4) angle detector (AD): 1, 1�5, 2, 2�5 and 3m; and
(5) similarity ratio (SR): 100%, 90%, 80%, 70% and 60%.

While the nDSM threshold NT impacts the results of the building detection, it has no
significant impact on the regularisation algorithm. Typical values for the nDSM threshold
usually fluctuate in the range of 2 to 3m depending on the minimum height of man-made
objects in the scene. Fig. 7(a) shows that increasing the NT leads to an increase of the
correctness but a decrease of the completeness. This is because small buildings and parts of
buildings are lost.

In the regularisation step, a comprehensive sensitivity analysis was performed for this
new approach. The RMSE of the extracted vertices was calculated as a suitable measure to
estimate the planimetric accuracy of the regularisation results. In Fig. 7(b), the numbers 1 to
5 along the x axis indicate the set values for each of the five parameters ((1) to (5) above),
whilst the y axis shows the calculated RMSE of the extracted vertices. When one of the
parameters was changed, the other parameters were set at their standard values: the NT
value depends on the lowest building that exists, MF= 1m, RT= 1m, AD = 2m and
SR= 90%. Overall, RT was found to be the most sensitive parameter. Choosing a suitable
RMSE threshold value is highly dependent on the complexity of buildings in the scene, and
on the desirable degree of simplification. For instance, Area 2 has complex buildings with
many small edges (sometimes less than 2m) which required a strict RT value of 0�75m (see
Table II) to preserve these details. Compared to Area 3, the used RT was higher (1�1m
Table II). Therefore, some small details have been lost (Fig. 10(c)). Such details can be
reinstated with a stricter RT threshold (similar to Area 2), but the regularisation goal is to
obtain the highest reduction in the number of boundary points, while at the same time

Fig. 7. Sensitivity analysis of the thresholds. (a) Sensitivity analysis of the nDSM threshold (NT).
(b) Sensitivity analysis for the five parameter alternatives (1 to 5) of the MF, RMSE threshold (RT), angle

detector (AD) and similarity ratio (SR).
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maintaining the original building shape as much as possible. In the next section an
extensive analysis and evaluation will be given for RT, which was used in the proposed
algorithm for generating approximate building polygons or building simplification.

The MF and AD parameters show less sensitivity in behaviour and both can be fixed
to their default values of 1 and 2m, respectively (see Table II). Similarly, SR shows a more
robust behaviour and only at a value of 60% does the calculated RMSE increase to 0�83m.
At 60%, the chance of a building being oversimplified and modelled as a rectangular is too
high.

Evaluation of the Proposed Building Simplification Approach

In order to evaluate the performance of the proposed simplification algorithm, a
comparison was performed with the DP algorithm. As a data-driven approach, the DP
algorithm was chosen because it is the most common simplification algorithm in the
literature, as discussed previously. In order to make both methods comparable, the
parameters of both algorithms were adjusted so that the same number of vertices was
obtained. As the number of vertices is identical, the standard deviation (SD) is a reasonable
measure to compare the success of both approaches during the evaluation process. In fact,
an algorithm that yields a lower number of vertices, associated with a lower RMSE,
definitely shows a better performance.

First of all, it is highlighted that the DP algorithm is highly sensitive to the position
of the starting point. Fig. 8 shows the results of the extraction of vertices depending on the
starting point position (black triangles indicated by the orange arrows) for both approaches.
In this figure, boundary points are shown by coloured dots assigned to their corresponding
edges. The top row presents the DP algorithm results and the bottom row shows the results
of the proposed method. While the DP algorithm produced significantly different output
regarding the shape and number of obtained vertices (in spite of a fixed tolerance threshold
(T) with value of 10 pixels (1 pixel = 0�25m GSD)), the proposed method showed a more
stable performance (the same number of vertices was obtained with a fixed value of the
RMSE threshold (RT) equal to 7 pixels). Hence, where possible, it is desirable to fix the
number of vertices; this is not possible in the case of the DP algorithm. The main reason is
that the tolerance threshold (T) corresponds to the farthest boundary points to its assigned
edges. This farthest point is not always located at a building’s corner, which is the only way
to detect vertices in the processing of the DP algorithm. In contrast, the proposed algorithm
utilised the RMSE value as a threshold, which is more robust against outliers because these

Table II. Evaluation results of building reconstruction: area-based completeness (Cm), correctness (Cr), quality
(Ql), RMSE of the extracted vertices and RMSE of centroids of building objects. Parameter settings for the
three sites are shown for the median filter MF, nDSM threshold NT, RMSE threshold RT, angle detector AD

and similarity ratio SR.

Area Area or pixel based
(%)

RMSE of
vertices (m)

RMSE of
centroids (m)

Execution
time (s)

Parameters set-up (m)

Cm Cr Ql MF NT RT AD SR (%)

1 88�7 95�6 85�3 0�93 0�8 97�69 1 2�3 1�4 1�75 75
2 93�4 95�3 89�3 0�75 0�57 67�71 1 2�7 0�75 2 ~
3 84�1 96�1 81�4 1�04 0�7 94�05 0�75 2 1�1 2 68
Avg. 88�73 95�67 85�33 0�91 0�69
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can be hidden in the calculated RMSE value. Nevertheless, corner detection has been
implemented in the simplification approach of the proposed method through the likelihood
equation (3).

Fig. 9 shows the results of the comparison with the DP algorithm. The figure shows
eight buildings (examples) processed by both the proposed method and the DP-based
method, applying different parameters for both algorithms. These parameters are: the
tolerance threshold (T) for the DP algorithm and RT for the proposed approach. In addition,
the calculated standard deviation (SD) values are presented in order to compare the results
in an objective manner. Examples 1 and 2 show the same input building boundary points
that should be represented by six vertices and six edges to achieve the best fit. However,
the best possible DP simplification output is seven vertices with an SD value of 2�2.
Decreasing the number of vertices to six by changing the value for T (from 16 to 19), the
shape diverges from the optimal solution and produces a SD value of 3�8. In contrast, the
proposed algorithm yields six vertices and a SD value of 0�96. Other performance issues are
related to the ad hoc tuning of parameters of both algorithms when dealing with buildings
of different complexity. For instance, simple building structures such as the third example in
Fig. 9 requires a minimum T value of 8 to produce four vertices, while more complex
shapes (example 6 in the figure) requires a T of at least 11. In addition, for other types of
buildings (such as examples 7 and 8), it is a long iterative process to determine the T value
yielding the best outcome with the DP algorithm. In contrast, the proposed algorithm
requires significantly less empirical tuning of the RT value; an RT value of 4 is suitable for
all types of buildings presented in Fig. 9. Overcoming such issues is essential for the
automation of building outline regularisation, especially if different building complexity
levels exist in one scene.

Fig. 8. The sensitivity to a change of the starting point for the DP algorithm (top row) and the proposed
method (bottom row). In the DP-based algorithm, the final number of vertices changes from 6 to 9 to 4 and
finally 6 (from left to right) even with one fixed tolerance threshold (10 pixels). The proposed algorithm seems

more stable as the same number of vertices (6) has been obtained.

MOUSA et al. Building detection and regularisation using DSM and imagery information

© 2019 The Authors

The Photogrammetric Record © 2019 The Remote Sensing and Photogrammetry Society and John Wiley & Sons Ltd100



Final Regularisation Results

The final regularisation results are presented in Fig. 10. In this figure, (a), (b) and (c)
represent the regularisation results of Areas 1, 2 and 3, respectively. The assessment is
divided into qualitative and quantitative evaluations.

Fig. 9. Comparison of simplification results created by the DP algorithm and the proposed algorithm. Triangles
(▲) represent the starting boundary point. T is the tolerance threshold for DP. V is the number of vertices (●),

SD is the calculated standard deviation. Note the RMSE threshold is used in the proposed algorithm.
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(1) Qualitative evaluation: Fig. 10(a) contains complex buildings with more than two
main orientation directions, which are difficult to simplify (such as buildings
indicated by black arrows). Such buildings cannot be processed by a model-driven
approach due to their non-rectilinearity or simplified to an overly complex polygon.
Nevertheless, the results produced (red polygon) were still very close to the
reference (yellow polygon) in Fig. 10(a1). While the majority of the building
outlines have been successfully regularised, some rectilinear buildings, for example,
the one indicated by the green arrow in Fig. 10(a), were not simplified correctly
(cyan polygon) when compared with its reference (yellow polygon) in Fig. 10(a2).
The main reason is that the initial solution did not satisfy the rectilinearity
conditions by providing an accurate number and position of the vertices.
Nevertheless, the final simplified result for this building is still close to its reference.
The three buildings indicated by the purple arrows in Fig. 10(c) show a high level of
noise at their edges, which makes the data-driven approach troublesome in providing
an accurate solution. However, such an issue is overcome by combining this with
the model-driven approach used.
On the other hand, estimating the main direction of a building is a challenging

task. Overall, compared with the reference, although the final building orientation
results are not identical, they are very close to the reference. The building indicated
by the white arrow in Fig. 10(c) demonstrates an example of this problem. In this
work, the main direction is estimated from the longest four-line segments and are
introduced as an initial solution for the GH model adjustment. Then, the final
dominant direction is obtained simultaneously with the solution for the best-fitting
polygon edges with respect to their corresponding boundary points. However, for
this specific building the problem is related to missing data caused by removing
trees touching and slightly overlapping the building, as can be seen in the
orthophoto in Fig. 10(c).

(2) Quantitative evaluation: Building polygons are rasterised. The rasterisation process
may introduce errors, but it provides a more robust outcome (Pot�u�ckov�a and

Fig. 10. Final regularisation results. (a), (b) and (c) represent the regularisation results of Areas 1, 2 and 3,
respectively.
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Hofman, 2016). Values for area-based completeness, correctness, quality, RMSE of
vertices and RMSE of the centroids of the polygons, as well as the execution time,
are presented in Table II. Accordingly, high rates of correctness and completeness
have been achieved for all three sites with an average of 95�67% and 88�73%,
respectively. The perpendicular distances between each vertex of an extracted
building polygon and the nearest boundary points from the reference has been
calculated. Distances greater than a pre-defined threshold of 3m are excluded
(Rottensteiner et al., 2014). The average RMSE of the geometric accuracy is 0�91m
and the RMSE of the building centroids is 0�69m in all areas. The RMSE seems to
be slightly high in all test sites. However, it is anticipated that the RMSE increases
with a higher degree of generalisation and vice versa. For instance, adding more
polygon vertices or edges usually leads to a lower RMSE. However, this is not the
goal of the simplification process. This efficiency allows the extracted building
outlines to be used for further processing steps, such as the updating of an existing
building outline register.

Conclusion

A novel automatic workflow for building detection and boundary regularisation from
2D and 3D sensor data has been presented and evaluated using Areas 1 to 3 of the ISPRS
Vaihingen benchmark dataset. Four concluding observations can be made:

(1) The procedure for building detection has achieved a high level of area-based quality
(88�43%) compared to the results presented in Rottensteiner et al. (2014). The high
quality of the output for the proposed algorithm is due to its reliance predominantly
on the height difference parameter for DEM extraction. It has been shown that this is
the most meaningful indicator for DEM generation, as well as building detection.
This means that the traditional slope parameter used for DEM generation is
eliminated. Furthermore, the planarity measure successfully improves the result by
removing trees in shadow areas.

(2) An innovative data-driven approach for generating an accurate approximate building
polygon is presented. In this approach the geometrical characteristics of buildings
have been addressed by methodologies such as corner detection and area
preservation, implemented in a likelihood function. In contrast, the majority of
existing data-driven approaches utilise the DP algorithm, which does not consider
the geometric aspects present in buildings. It has to be highlighted that the DP
algorithm is quite sensitive to both the position of the starting point and to noise,
due to the distance threshold employed whilst not considering the geometrical
characteristics of buildings.

(3) Combining the robustness of model-driven approaches with the flexibility of data-
driven techniques in one comprehensive strategy proved to be efficient in the
regularisation of complex building structures. Therefore, the majority of the complex
buildings have been modelled accurately. However, there are some remaining
difficulties, such as recovering missing data caused by trees occluding rooftops. The
effect of such a problem has been mitigated significantly through the applied model-
driven approach.

(4) Regularisation of rectilinear building outlines has been largely solved. Firstly, the
perpendicularity constraints of adjacent building edges must be integrated into the
methodology. Secondly, the best fitting of these edges with their corresponding
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boundary points has to be solved. This was achieved by minimising the orthogonal
distances between them. Nevertheless, these two steps should be solved
simultaneously in the adjustment process (Avbelj, 2015). Skipping one of these steps
will not achieve a precise solution. In this study, both requirements are
simultaneously solved by modifying the GH model adjustment.

The final regularisation results have been evaluated both qualitatively and quantitatively.
Qualitatively, the proposed data-driven approach for polygonal simplification as well as
model-driven approach for rectangular buildings outlining have been successfully applied by
providing an accurate solution for building polygons. Quantitatively, the proposed method
achieved average values of 88�7% and 95�67%, respectively, for area-based completeness and
correctness. The RMSE of vertices and centroids were 0�91 and 0�69m, respectively. The
future direction of work will be testing the proposed methodology on data with lower
resolution and to updating a given building map. This will be extended to applying the
proposed methodology to 3D building reconstruction.
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R�esum�e

Une m�ethode automatique de r�egularisation des contours de bâtiments est pr�esent�ee, utilisant une
combinaison d’approches reposant sur les donn�ees et sur les mod�eles pour fournir une solution robuste. La
partie principale de la m�ethode comprend une nouvelle approche bas�ee sur les donn�ees pour g�en�erer des
polygones approximatifs �a partir d’une liste de points donn�es sur les contours des bâtiments. L’algorithme
calcule et stocke de mani�ere it�erative des valeurs de vraisemblance entre un point initial arbitraire sur le
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contour et chacun des points suivants du contour �a l’aide d’une fonction issue des propri�et�es g�eom�etriques d’un
bâtiment. L’une des �etapes du pr�etraitement consiste �a identifier les segments de bâtiments �a l’aide d’un
algorithme robuste de reconstruction de mod�ele num�erique d’�el�evation. Les r�esultats d’�evaluation sur un jeu de
donn�ees difficile sont corrects en moyenne �a 96,3% et 95,7% pour la d�etection et la r�egularisation des
bâtiments, respectivement.

Zusammenfassung

Dieser Beitrag stellt eine automatisch Methode zur Regularisierung von Geb€audeumrisslinien vor, die eine
Kombination von daten- und modellgetriebenen Ans€atzen einsetzt, um eine robuste L€osung zu erhalten. Den
Kern der neuen Methode stellt ein datengetriebener Ansatz zur Erzeugung gen€aherter Geb€audepolygone aus
einer Liste gegebener Umrisspunkte dar. Der Algorithmus berechnet und speichert iterativ die Likelihood-Werte
zwischen einem zuf€alligen Startpunkt des Umrisses und jedem folgenden Punkt basierend auf einer Funktion,
die von geometrischen Eigenschaften von Geb€aude abgeleitet wurde. In einem Vorverarbeitungsschritt m€ussen
Geb€audesegmente mit Hilfe eines robusten Algorithmus zur Extraktion eines digitalen H€ohenmodells identifiziert
werden. Empirische Untersuchungen an einem anspruchsvollen Datensatz ergaben Werte f€ur die mittlere
Korrektheit von 96�3% bzw. 95�7% f€ur die Geb€audeerkennung bzw. f€ur die Regularisierung.

Resumen

Se presenta un m�etodo autom�atico para la regularizaci�on de contornos de edificios, que combina
aproximaciones basadas en datos y modelos para proporcionar una soluci�on robusta. El n�ucleo incluye un
m�etodo nuevo basado en datos para generar pol�ıgonos aproximados de edificios a partir de una lista de puntos
frontera. El algoritmo calcula y almacena iterativamente la probabilidad entre un punto de frontera inicial
arbitrario y cada uno de los siguientes puntos de frontera utilizando una funci�on derivada de las propiedades
geom�etricas del edificio. En un paso previo, los segmentos de edificio se identifican utilizando un algoritmo
robusto para la extracci�on de un modelo de elevaci�on digital. Los resultados de la evaluaci�on en un conjunto
de datos lograron una correcci�on media de 96�3% y 95�7% para la detecci�on y regularizaci�on de edificios,
respectivamente.

摘要

本文提出一种建物轮廓规则化的自动方法, 利用联合数据和模型驱动的方法来提供可靠的解决方案。
该方法的核心部分包括一个新颖的数据驱动方法, 从一系列边界点生成近似的建筑物边界多边形。 该算法

使用建筑物的几何属性函数,经由迭代计算并储存由任意起始边界点开始与其后各边界点位置的估值。在

预处理阶段, 则须应用一可靠的算法, 由数字高程模型提取建筑物的各个组成部分。 本研究以具有挑战性

的数据集进行实验, 结果显示建筑物提取和规则化的平均正确率分别达到96�3%和95�7%。
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ABSTRACT: 
The aim of this project is to create the required framework to allow the transformation of the Canning River location survey data 
captured by Dr. J. A. Ludwig Preiss from 1841 into today’s maps and to utilise visualisation techniques to analyse the results. The 
original survey data includes distances and bearing observations as well as 14 historical maps. Firstly, the old survey data (includes 
distances and angles measurements) is plotted into a local coordinates system using modern surveying software (MAGNET Office). 
Then, common points (unchanged locations) are identified by comparison with the plotted and the current paths of the river. A 
similarity and affine transformation are used to find transformation parameters that allow to geo-locate the plotted river into the current 
geodetic datum (MGA94). The calculated Root Mean Squared Errors (RMSE) are 21.7 m and 21.1m obtained by geo-locating the 
common points using similarity and affine transformation, respectively. For geo-referencing the historical maps, the similarity, 
projective and Thin Plate Spline (TPS) transformations have been applied. It has been found that one point of interest (referred to as 
Nairn’s house), which was drawn in one of the historical maps, still exists today (now known as Maddington Homestead). The distances 
from the actual position of Nairn’s house to its position in the georeferenced maps using similarity, projective and TPS are 11.8m, 
13m, and 14m respectively. All the gained information and map details are utilised in creating a dynamic visualisation suitable for 
comparing the generated map and historical map with modern aerial imaging and DTM data. 
 
 

1. INTRODUCTION 

Historical maps have been used and shown to be of importance, 
not just for historic purposes, but also for several different fields 
including urban planning, field cultivation and landcover/ land 
use (LCLU) changes (Király et al., 2008). Historical maps help 
to explain the evolution of areas and their dynamics over time. If 
the aim is to extract complex information, the precise geo-
referencing of the maps is important. This paper focuses on 
original field observations and maps produced during a survey 
along the Canning River in Western Australia. They have been 
identified to be of great value because of the historical 
information of landmarks such as homesteads, significant trees, 
and information about the flora noted in the field sheets and on 
the maps. 
 
The 1841 survey of the Canning River was commissioned by 
Governor Hutt of the Colony of Western Australia to record 
existing land grants and sites for new land settlement. Hutt 
appointed the German naturalist, Dr. Johann August Ludwig 
Preiss (1811-1883, who arrived in the colony in 1838 to lead the 
survey (Calaby, J. H, 1967). It was common practice to use 
naturalists and other men of science due to the lack of trained 
surveyors in the Australian colonies. 
 
The survey was a Crown Grant Survey designed to define the 
actual boundaries of each grant. As per the practices of the day 
the original crown grant boundary posts may not have been 
placed by a surveyor, but the grant holder himself. Preiss may 
have only surveyed the line between the marks. The original 
Crown Grant Marks are still accepted today as being the defining 
point regardless of later dimensions. 
 

 
*  Corresponding author 
 

The survey was completed observing the left bank of the river 
only, as well as the location of property boundaries. Overall, 
there are 2 field books available; the first field book is related to 
the mapping of the Canning River, while the second field book is 
related to the mapping of properties. Each field book contains 
more than 90 pages/ field sheets. The field sheets contain more 
information than just the survey data. This additional information 
is important material for historians and includes the location of 
homesteads, points of interests (creeks entering the river and 
similar) as well as botanical information recorded in field sheets.  
 
During the 1840s a series of maps were produced based on the 
field sheets. Overall, there are 14 maps focusing on the location 
of the Canning River. The available survey data in the first field 
book covers nearly 2km of the river and relates to three maps. 
The other 11 maps available also show part of the river and other 
objects of interest such as property boundaries.  
 
The State Records Office (SRO) of Western Australia has 
scanned the historical field sheets as well as maps in order to 
preserve them. These digital files were available to us as part of 
the project. This paper focuses only on the field sheets and maps 
containing information about the Canning River.  
 
The objectives of the project are: 
- To redraw the historical map based on the original field 

sheets 
- To reference the redrawn map with the historical maps and 

to compare those data 
- To geo-reference the re-drawn river map as well as the 

historical maps using Ground Control Points (GCPs) 
picked along the river and to assess the accuracy of the geo-
referencing process 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-575-2020 | © Authors 2020. CC BY 4.0 License.

 
575



 

- To identify a small number of points of interest and to 
utilise in the accuracy assessment 

- To present the information in a format in which non-spatial 
experts can see the process as well as the final results. 

 
The paper is structured as follows: Section 2 provides more 
details about related work and Preiss’ survey including the 
methods used, and the results of the survey. The data sources 
which have been used for the geo-referencing will be further 
introduced. Section 3 reviews the methods which have been used 
during the geo-referencing process and the visualisation 
processes and techniques and their utilisation. Section 4 presents 
the project results, including a detailed analysis of the results 
utilising the different transformation methods. Section 5 
concludes the paper.  
 

2. BACKGROUND  

2.1 Related Work 

Extensive research has been undertaken in the field of geo-
referencing historical ortho-images or historical images. Often, 
the bundle adjustment using unchanged topographic features as 
Ground Control Points (GCP) is used in a multi-scale approach. 
New points are obtained from the block adjustment of the lower 
resolution images that can be used as control points in the block 
adjustment of the next scale (Zhu at el., 2008). This is an iterative 
process and is repeated until all resolution levels have been 
processed. In some cases, line features such as road network and 
building limits are used instead of point features (Cléry et al., 
2014). In order to enhance the accuracy, sometimes additional 
information is used, including Digital Surface Models (DSM) 
derived from the historical images (Giordano, et al., 2018) or 
distance, orientation difference and overlap between matched 
lines are used. The ortho-images and images used often date no 
further back then the 1930s (Cléry et al., 2014), the 1940s 
(Giordano, et al., 2018) or even the 1960s/1980s (Zhu, et al., 
2008). Giordano, et al. (2018) contains a good overview of 
photogrammetric and non-photogrammetric methods used in this 
context. 
 
A much greater challenge is presented when attempting to geo-
reference historical maps. A problem which historical ortho-
images/map and topographic maps have in common, is the 
process of the scanning. Care must be taken when scanning the 
maps, i.e. using a calibrated large-format scanner, appropriate 
resolution, and image file format (Affek, 2013). 
 
Nevertheless, historical satellite and airborne images are “young” 
compared to some historical topographic maps. Due to the age of 
some of these maps, the used projection and geodetic referencing 
systems are often unknown (Király et al., 2008).  
 
If the used geodetic referencing system and the map projection 
are known, the transformation of the historical map into today’s 
datum can be performed using the known parameters (Király et 
al., 2008). The challenges for this kind of transformation are well 
explained in (Affek, A., 2013). Furthermore, if the historical map 
is based on geodetic measurements (e.g. triangulation networks) 
and a geocentric geographic coordinate system with graticules or 
measured grids is used, then usually a similarity of affine 
transformation is used (Affek, A., 2013).  
 
If the geodetic referencing system and the map projection are 
unknown, and the maps were not created based on detailed 
geodetic measurements but rather on estimated distances and 
angles, transformation parameter will have to be determined 
using GCPs. The selection of GCPs is usually easy and possible 
in topographic maps rich in information and features which do 

not change over time. For instance, mountain ranges, historical 
roads and property boundaries. However, not all historical maps 
are information rich.  
 
Topographic maps produced up to the end of the 18th century 
often have an unknown geodetic referencing system and map 
projection and have not been observed using geodetic networks. 
In this case a polynomial transformation and/or a rubber-sheet 
method are appropriate. As explained in Király et al. (2008), the 
rubber-sheet transformations are a group of transformations, 
where residual errors do not exist; the control points are 
transformed exactly to the to-coordinates of the points. There are 
some discrepancies how the transformation vectors are 
interpolated between the control points. The most common way 
is based upon the Delaunay triangulation. 
 
Király et al. (2008) applied both transformation methods (a 
polynomial transformation and a rubber-sheet method) to geo-
reference historical topographic maps dating back to the period 
from 1780-1826. The maps have been produced by the Military 
Survey of the Austria and have a relatively large scale of 
1:12,000. The mean point error was the largest (41.9m) when 
using the 3rd order polynomial transformation and improved 
using the non-linear rubber sheeting method (38.4) and the linear 
rubber sheeting method (24m). 
 
If unprocessed (raw) data is available (e.g. field sheets and notes), 
the challenge of different map projection and cartographic 
generalisation does not exist. Cartographic generalisation is the 
effect based on the cartographer’s interpretation and adjusted to 
a map’s scale and application (cartographic and thematic 
generalisation) necessary to visualise all required information on 
a map. Cartographic generalisation could be a source to introduce 
errors in the geo-referencing process. The cartographic 
generalisation is generally low in maps which were created out 
of pure cartographic interest (e.g. military maps) compared to 
maps which has been produced for public purposes (Balletti, 
2006).  
 
It is also important to make the geo-referenced historical maps 
available to the public (Previtali, 2017) and to present them in 
museums exhibitions in an interesting way. There are several 
agencies making geo-reference historical data available, e.g. 
projects carried out by several National Geographical Institutes. 
For instance, in France the IGN published the “Carte d'État-
Major”(www.geoportail.gouv.fr/donnees/carte-de-letat-major-
1820-1866). Another project is the Divenire project by the 
National archive Milan (www.asmilano.it/Divenire/home.htm). 
After the data is geo-referenced and publicly available, the 
extraction of explicit map information, e.g. the location and areas 
of settlement is the next challenge, already addressed in several 
papers (Herold et al., 2011). 
 
The resulting data, points of interest and historical information is 
process into a dynamic three-dimensional visualisation. 
Overlaying the generated map, historical map and historical 
points of interest with modern aerial photography and digital 
terrain models (DTM) will allow for the contrasting of the 
historic with modern imagery and reveal not only the modern 
equivalent of historic points of interest but also the topographical 
influence on the Canning River’s historical variance. 
 
2.2 Surveying methods used by Preiss 

The Canning River survey was observed using a series of traverse 
lines with chain and bearing measurements. For distance 
observations links and chains were used. A chain consisted of 
100 links and converts to 20.117m in today’s metric system. The 
chain would be pulled until tense ensuring there were no kinks, 
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from the starting position to the end to record a distance 
measurement. Chain measurements were to be done at a 
horizontal level otherwise a correction for the slope had to be 
applied. Generally flat open ground was required to avoid the 
chain catching on obstructions.  
 
Along with the chain, a circumferentor was used to perform 
direction observations. A circumferentor is a survey compass 
which would have been placed on top of a tripod. By lining up 
the target point through the eye pieces, angle readings were 
recorded. All angle readings in the Canning River survey were 
observed to the nearest minute, which was the accuracy the 
survey compass could be observed to. 
 
As the Canning River survey was completed over 20km of 
riverbank, the task surveyor Ludwig Preiss had of keeping the 
survey as accurate as possible in rugged conditions is immense.  
 

 
Figure 1: Field sheet of Preiss' survey of the Canning River. 

 
It was possible to re-draw the location of the river and any points 
of interest using a standard surveying software (in this case 
MAGNET (Topcon, 2020)).  

 
Figure 2: Section of the historical map fitting the field sheet 

provided in Figure 1. 
 

A field sheet example is presented in Figure 1. The red circle 
shows an example of a station. Here the station is called Ra. The 
solid brown circle contains the azimuth from station Qa to station 
Ra. In this case the azimuth is 44º8’. Please note, that the azimuth 
(relative to magnetic north) and not the bearing (relative to 
grid/map north) are observed. The magnetic declination in this 
area is 5º and had been applied manually when producing the 
historical maps. Furthermore, the distance observations (chains) 
are indicated with the light green arrow in Figure 1. The offsets 
to the river, also in chains, are indicated with a dark green circle. 
If distance measurements were not possible, additional azimuth 
were observed enabling the determination of a location using the 
resection method. Such side angle readings are highlighted with 
the dashed brown circle. Furthermore, the orange circle is an 
example of a cottage located along the survey, the blue circle 
being a tree that was also located. The purple circle indicates a 
low point of the river. 
 
The section of the river in one of the historical maps which 
belongs to the field sheet showing in Figure 1 is presented in 
Figure 2. Station Qa and Ra are both highlighted with a red circle. 
Furthermore, the tree which was highlighted in blue in Figure 1 
is also highlighted in blue in Figure 2. The left-hand side of the 
river is indicated by a black arrow, and the offsets which were 
used to draw the river are highlighted with a green circle. While 
the maps are generally well preserved, there are some sections 
which are of poor quality due to the age of the maps. In addition, 
not all information has been transferred to the maps. For instance, 
the building highlighted in orange in Figure 1 is missing. The 
approximate location of this building is shown in Figure 2 (white 
box).  
 
While the magnetic declination is indicated in the maps with 5º 
no further information about any projection is used. Therefore, 
also considering the overall size of the survey area, it is assumed 
that a planar project has been used. 
 
2.3 Information used during geo-referencing 

Two methods of geo-referencing have been identified. Firstly, 
some of the historical maps also contain information about 
property boundaries (see highlighted note in Figure 3). Those 
property boundaries are also shown in the map including markers 
for the end of a chain (red arrow in Figure 4). Those markers were 
also established in the field. Furthermore, the maps contain the 
information of the property owners as well as the approximate 
size of the property (blue arrow in Figure 4) 
 

 
Figure 3: Field notes showing a property boundary (highlighted 

in red). 
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Figure 4: Historical map including property boundaries. 

 
The most common way of changing property boundaries in Perth 
is through subdivisions. Therefore, the property boundaries (next 
to many new property boundaries) should still exist today. The 
attempt was made to identify the property corners, and to use 
those to geo-reference the historical maps. The coordinates of the 
property corners in Figure 5 are provided in the MGA94 
coordinate system. However, careful investigation has shown 
that the corner points highlighted in red in Figure 5 are incorrect, 
and that, therefore, not always did a simple subdivision take 
place. Therefore, this method has been discharged.  
 
Alternatively, the river and its topography are inspected in up-to-
date airborne images and compared with the information 
provided in the historical maps, as well as the redrawn map based 
on the field sheets. It became clear that there are areas of the river 
which are unlikely to have changed. Therefore, it was decided to 
use these common points for coordinate transformations which 
are reviewed in the next section.  
 

 
Figure 5: Historical map overlaid with today’s cadastral 

information in the attempted to geolocate the historical map. 
 

3. METHODOLOGY  

In order to assess the accuracy of the re-drawn map as well and 
to perform the geo-referencing process, several different 
transformations have been utilised. Also, an overview of the 
visualisation methods and the technology used is provided. 
 
3.1 Similarity and affine transformation 

The similarity and affine transformation equations are given in 
(1) and (2) respectively. 
 

�𝑋𝑋𝑇𝑇𝑌𝑌𝑇𝑇
� = �𝜆𝜆 cos𝜃𝜃      𝜆𝜆 sin𝜃𝜃 

−𝜆𝜆 sin𝜃𝜃    𝜆𝜆 cos𝜃𝜃�  �𝑋𝑋𝐼𝐼𝑌𝑌𝐼𝐼
� + �∆𝑥𝑥∆𝑦𝑦�                            (1) 

 

�𝑋𝑋𝑇𝑇𝑌𝑌𝑇𝑇
� = �cos 𝜃𝜃     sin𝜃𝜃 

− sin𝜃𝜃   cos𝜃𝜃�  �1   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�   �

𝑆𝑆𝑥𝑥    0
0    𝑆𝑆𝑦𝑦

� �𝑋𝑋𝐼𝐼𝑌𝑌𝐼𝐼
� + �∆𝑥𝑥∆𝑦𝑦�  (2)                          

 
In (1) and (2), 𝑋𝑋𝑇𝑇 and 𝑌𝑌𝑇𝑇 are the coordinates of the target system 
(e.g. MGA94 system) while 𝑋𝑋𝐼𝐼 and 𝑌𝑌𝐼𝐼 are the coordinates of the 
input system (e.g. the river local system of the re-drawing map). 
Both transformations account for translation parameters (∆𝑥𝑥 and 
∆𝑦𝑦) as well as for a rotation (𝜃𝜃). While equation (1) only 
considers for one scale factor (𝜆𝜆), equation (2) considers a scale 
factor for x and y (𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦). Furthermore, equation (2) also 
considers a skew angle (𝛿𝛿). The parameters can be determined 
using common points in a least square adjustment. Afterwards, 
the parameters can be applied to all other points in order to 
perform the transformation of these points from the input system 
into the target system. For the process of finding the 
transformation parameters as well as for the transformation of 
points a self-implemented MATLAB code was utilised. 
 
3.2 Projective transformation 

Projective transformation is a non-linear transformation method 
that implicitly estimates the scale, rotation and tilt of coordinate 
system planes. While the similarity transformation solves for 4 
parameters, and the affine transformation solves for 6 parameters, 
the projective transformation solves for 8 (a1, a2, a3, b1, b2, b3, c1, 
c2) parameters using the equations (3) and (4).  
 

𝑥𝑥𝑇𝑇 = 𝑎𝑎1𝑥𝑥𝐼𝐼+𝑎𝑎2𝑦𝑦𝐼𝐼+𝑎𝑎3
𝑐𝑐1𝑥𝑥𝐼𝐼+𝑐𝑐2𝑦𝑦𝐼𝐼+1

        (3) 
 

𝑦𝑦𝑇𝑇 = 𝑏𝑏1𝑥𝑥𝐼𝐼+𝑏𝑏2𝑦𝑦𝐼𝐼+𝑏𝑏3
𝑐𝑐1𝑥𝑥𝐼𝐼+𝑐𝑐2𝑦𝑦𝐼𝐼+1

      (4) 
 
For the project transformation the implementation in QGIS 
(version 3.2) (Lennert, 2017) has been utilised.  
 
3.3 Thin Plate Spline (TPS) transformation 

Referring to a thin sheet of metal, this transformation has its 
physical analogy involving bending of the metal sheet. Hence, it 
is not a ridged transformation like the transformation introduced 
previously. TPS enables local deformations in the data, implying 
a penalty involving the smoothness of the fitted surface. 
Therefore, this spline-based technique for data interpolation and 
smoothing is especially useful when very low-quality originals 
are being georeferenced. The residuals for all used control points 
are nearly zero, as the thin plate is made fitting through those 
points. For further details see Duchon (1976). 
 
For the TPS transformation the implementation in QGIS (version 
3.2) (Lennert, 2017) has been utilised.  
 
3.4 Visualisation technique and technology 

Firstly, the re-drawn map, historical map and aerial photography 
are combined with a digital elevation model (DEM) of the area 
derived from LiDAR at a 5m resolution from 2015 (GeoScience 
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Australia, 2020). These maps are then overlaid within the Unity 
application (Unity Technologies, 2020) to develop the 
visualisation. Additional functionality was implemented and 
included: 
- Adding and changing the height scale of the DEM data 

dynamically with different maps 
- Changing the different maps’ visibility dynamically 
- Automating a camera viewing path over areas  
- Water, Texture and Lighting adjustments to enhance 

realism 
 
Then, a second visualisation was also implemented which took 
the three maps and DEM data and was used to create a point cloud 
of each map overlaid on the DEM data. This was achieved 
utilising Maya 2019 (Autodesk) to create a mesh object textured 
with each map which was then converted to a point cloud using 
Present (Euclideon Holographics). In addition, Open Street Map 
data (also projected using MGA94) has also been used. 
 
The visualisations are presented in the Curtin University HIVE 
facility with three different display screen technologies.  
 
Firstly, a high-resolution Tiled Display is used to view the 
visualisation at a screen resolution of 7860 x 3240 pixels (24 
MPix) with a screen area of 10.028m2. The Tiled Display allows 
for the most visually detailed image to allow direct comparison 
between the different maps to look for variations and some of the 
historical hand drawn details due to the possibility to present fine 
detail clarity on the map data. 
 
Secondly, a curved Cylinder Display with stereoscopic projectors 
with time-sequential shutter glasses was used. This is 5048 x 
1200 pixels resolution with a screen area of 37.699m2. The 
Cylinder Display provided stereoscopic rendering on a very large 
surface. This provided the most accessible perception of the 
terrain surface comparatively to the mapped data. Furthermore, 
the Cylinder Screen adds stereoscopic with time sequential 
shutter glasses, which allows three-dimensional perception of the 
topographical data with the different maps aligned for 
comparison. 
 
Thirdly, there was the Holographic Table (Euclideon 
Holographics) with four stereoscopic projectors underneath and 
IR tracked time-sequential shutter glasses for two users with 
stereoscopic views of the point cloud data with corrected 
projection. It allows the two users with separate 3D glasses to 
view different views of the terrain which are adjusted to their 
viewing point to give highly accurate representation of the map 
data in stereoscopic 3D. The table has a resolution of 1440 x 1440 
pixels and a screen area of 1.6129m2. 
 

4. RESULTS AND DISCUSSION 

In this section, firstly the transformation of the re-drawn map into 
today’s geodetic datum is performed. Then follows discussion of 
how redrawing maps based on the original field sheets compares 
with the scanned historical maps. The section closes with the 
visualisation of the data. 
 
4.1 Transformation of the re-drawn map based on the 
original field sheets to today’s geodetic datum 

Firstly, the previously mentioned magnetic declination of 5 
degrees has been applied to the re-drawn map. Next, common 
points of suspected unchanged locations are identified by 
comparison the re-drawn map and the current paths of the river 
in OSM. Overall, 17 common points have been identified and 
utilised in a similarity (equation 1) and affine transformation 
(equation 2) in order to define the transformation parameters. 

As the redrawn map is in a local system with a map scale factor 
of one, and considering the map scale factor of 0.9997156 for the 
MGA system in which the today’s maps are defined, it is assumed 
that a scale factor of this dimension can be found. Furthermore, 
it is assumed that there is no large rotation as the magnetic 
declination has been applied already. There is no meaning of the 
magnitude to the translation vector as the first point of the re-
drawn map was given arbitrary coordinates which, by purpose, 
have been selected to be close to the true location.  
 
The results of the affine and similarity transformation are 
presented in Table 1. 
 

Parameters Similarity Affine 
Rotation (Minutes) 27 22 

Scale 0.999949 ~ 
∆𝑥𝑥 (m) 27.0611 27.0611 
∆𝑦𝑦 (m) -65.7418 -65.7418 
𝑆𝑆𝑥𝑥 ~ 0.9934 
 𝑆𝑆𝑦𝑦 ~ 1.0018 

Skew (Minutes) ~ -16 
Table 1: The similarity and affine transformation parameters for 

the geo-location of the re-drawn map based on the historical 
field sheets. 

 
While the magnitude of the translation is not important, the 
translation parameters are similar for both translations. The scale 
parameters of both transformations are also similar and similar to 
the predicted scale factor of 0.9997156.  
 
The calculated rotation angle using the affine transformation is 
slightly lower than the rotation angle calculated using the 
similarity. The difference is 5 minutes and the magnitude of the 
rotation is around 25 minutes, and therefore below the tolerance 
of the used compass for the angle readings. The calculated Root 
Mean Squared Errors (RMSE) of the 17 common points are 
21.7m and 21.1m for similarity and affine respectively are high.  
 
Next, all other survey points (1376 points) including stations, 
river boundary and points of interest are transformed from the 
local system of the re-drawing map to the MGA94 using the 
calculated similarity and affine transformation parameters. The 
RMSE of the 1376 points geo-located by similarity and affine 
parameters are 7.6 m in X and 3.5 m in Y between them. These 
differences are insignificant considering the accuracy of the used 
common points, and the fact that river points may have changed 
in the last 180 years. Thus, both methods are sufficient to obtain 
accurate geo-located coordinates. Figure 6 shows a small section 
of the river points from the re-drawing map (black dots) overlaid 
on OSM. Some of the differences are very large, and maybe can 
be explained with an actual change of river points. 
 

 
Figure 6: Section of the geo-located river points (black dotes) 

on OSM. 
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As a conclusion, the absolute accuracy (positional accuracy) of 
the re-drawn map to today’s geodetic datum is in the magnitude 
of less than 10m.  
 
4.2 Transformation of historical maps to geo-referenced re-
drawn map  

Next, the aim is to compare the relative accuracy of the re-drawn 
map to the historical maps. Affek, A. (2013) suggest that if the 
historical maps are based on geodetic measurements (e.g. 
triangulation networks) and a geocentric geographic coordinate 
system with graticules or measured grids is used, then usually a 
similarity of affine transformation is applied. While both are not 
true for the re-drawn map and the historical map, both should be 
in the same coordinate system. Therefore, for the transformation 
of those datasets, the similarity transformation is applied. 
However, instead of applying the affine transformation the 
projective transformation is used to account for any errors which 
maybe have been introduce during the scanning process. 
 
Point-labels of the re-drawn map and the historical maps are 
identical, which made it easy to define common points. Overall, 
for each historical map 10 common points have been identified 
and utilised a similarity transformation (equation 1) and a 
projective transformation (equation 2). 
 
Due to problems with the scanning process the maps are not to 
scale. Furthermore, the scanned images have a pixel coordinate 
system and the re-drawn geo-located maps is in the metric 
system. Hence, large scaling numbers are suspected. 
Furthermore, the historical maps have not been scanned with 
north to the top of the page; so the rotation angles also do not 
provide with any further information. As none of the 
transformation parameters provide any valuable information, the 
focus next is only on the residual plots.  
 

 

 

 
Figure 7: Residual plot for the transformation of the historical 

map using a similarity transformation (top), projective 
transformation (middle) and Thin Plate Spline (TPS) 

transformation (bottom). 1 pixel is approximately 1m. 
 
The residual plots for the similarity transformation is provided in 
Figure 7 (top), and for the projective transformation in Figure 7 

(middle). Please note that the provided scales for the plot are 
different. Overall, the magnitude of the residuals of the projective 
transformation is much smaller. An important aspect is that the 
residuals are all small, similar and random. Therefore, no 
systematic trend has been detected. 
 
The magnitudes of the residuals are also clearly visible in the 
calculated RMSE values in Table 2. The RMSE of the projective 
transformation is half of the RMSE of the similarity 
transformation.  
 

 RMSE in 
X (m) 

RMSE in 
Y (m) 

RMSE in 
XY (m) 

Similarity 3.467 2.529 4.292 
Projective 2.174 0.649 2.268 

Table 2: RMSE for the similarity the projective transformation. 
 
As an additional transformation, the Thin Plate Spline (TPS) 
transformation is applied. As this transformation creates zero 
residuals the residual plot in Figure 7 (bottom) is as expected. 
Please note that the sale bar shows a very small-scale number in 
this figure. 
 
Overall, it can be concluded that the field notes (re-drawn map) 
and the historical map fit well which is what has been expected. 
The relative accuracy is within 5m. 
 
4.3 Assessment of the positional accuracy 

The final evaluation step is to evaluate the positional accuracy of 
the transformed historical maps. For this assessment, an object in 
the historical maps is located which still (or at least its ruins) exist 
today. This object is the Nairn House. The house burnt down in 
the 1930s and therefore only the skeleton of the buildings can be 
seen today. No other objects shown in the historical maps and 
field sheets could be identified as still existing today. 
 
Nevertheless, the distances from right corner of Nairn House to 
its corresponding location in the geo-referenced historical maps 
created using the similarity, projective and TPS transformation 
are shown in Figure 8. Today’s location of the Nairn corner has 
been determined using high resolution airborne images provided 
by EagleView and is also shown in Figure 8. 
 

 
Figure 8: Positional accuracy assessment of the historical maps 

using Nairn House. 
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The distance of the corner of the similarity, projective and TPS 
transformation map to today are 11.8m, 13m and 14m 
respectively. These are very good results and expected based on 
previous conclusions about the absolute and relative accuracy 
assessments of approximately 10m and 5m respectively. It is 
interesting to note that the similarity transformation produced the 
best results for this test. This transformation has created the 
largest residuals in the previous relative and absolute accuracy 
assessment. Possible explanations are the overfitting of the 
projective and TSP transformation. However, it must be also 
pointed out that the historical map was slightly damaged close to 
the Nairn House which is also visible in Figure 8. This can be 
another contributing factor for the similarity transformation 
producing the best result. 
 

 
Figure 9: Area of significant change of the Canning River. In 
dark blue the location of the river in 1841; in light blue the 

location of the river today (OSM). 
 

 

 
Figure 10: A profile through the DEM for the section indicated 
by the black arrow is presented in the top figure. In the profile 

on the bottom: the red and green arrows indicate the old and the 
current locations respectively of the Canning river. 

From the data it is further concluded that there are some 
significant changes in the watercourse of the Canning River 
between 1841 and today. Figure 9 shows that the river moved 
approximately 70m as indicated by the red double headed arrow. 
However, the top and bottom parts in this figure show a strong 
correspondence with no significant changes. 
 
The Digital elevation model (DEM) of the area shown in Figure 
9 is presented Figure 10. A profile for the section indicated by 
the black arrow in the top figure is presented in the bottom figure. 
In the bottom profile, the red and green arrows indicate the old 
and the current locations of the Canning river. This is clearly 
indicating the movement of the river to left with nearly 70 m. The 
direction of the watercourse is from the bottom to the top. 
 
Finally, Figure 11 shows the location of the historical maps with 
EagleView’s high resolution images shown in the background, 
and the location of river taken out of the re-drawn map. Overall, 
the alignment and accuracy which was calculated for the Nairn 
House can be confirmed using the overlay.  
 

 
Figure 11: High resolution airborne image with geo-located 

historical maps. 
 
4.4 Visualisation 

Visualising the project data has produced several benefits. 
Firstly, an accessible real time visualisation that is most suitable 
for public display of the generated and historic maps. Secondly, 
overlaying the historic content with modern airborne images 
(MGA94) (provided by EagleView) allows the results to be 
viewed and interrogated in real time alternating between the 
modern historical images of the same point. Thirdly, adding the 
Digital Elevation Data (provided by GeoScience Australia) 
allows the ability to visualise the historic imagery on top of the 
historic data and reveal the river path topographically as shown 
in Figure 2.6 (top figure).  
 
This visualisation shown in Figure 12 (bottom figure) provided a 
visual and dynamic method to interrogate the data and visualise 
the conclusions outlined within this paper.  
 
Other benefits: 
- The correlation of the historical map with the re-drawn map 
- The correlation of the historical map and the re-drawn map 

to the modern Aerial photography 
- The correlation of the historical map to the topology of the 

terrain for the path of the river 
- The correlation of buildings within the modern Aerial 

photography with historical referenced buildings and the 
discovery of the Nairn House association. 
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Figure 12: Top: Historical Map visualised with DEM in Unity 

with associated field sheet. Bottom: Modern aerial 
photography and historical map combined with DEM in Unity 

visualisation. The yellow bar indicates the same profile. 
 
The visualisation is built as a custom application which allows 
for the ease of demonstration and access for the public, 
collaborators, and other researchers. 
 
 

5. CONCLUSION  

In this work, a framework for transforming old survey 
measurements (bearing and distances) as well as historical maps 
into today’s geodetic referencing system (here: MGA 94) has 
been introduced. The paper investigated the absolute (app. 12m) 
and relative accuracy (app. 5m) utilising a number of different 
transformations. The predicted accuracies could be confirmed 
utilising the last shown in the 1841 maps and field sheets which 
still exist today. Furthermore, a pathway for further processing 
has been outlined in this paper that was implemented to allow 
non-experts to view the produced results in an accessible visual 
format. 
 
The results presented here can now be used to reference the field 
sheets where Preiss drew and named botanical information about 
the river and to begin mapping the plant biodiversity he recorded. 
Much more can be done using geo-spatial visualisation to engage 
publics in new conversations about the river environments. The 
Preiss field books and maps have a unique role to play. As well 
as being 180-year-old documents of early land grants to colonists 
along the Canning River they are also visually compelling images 
of the millennia-old riverscape and of the abundance of 
freshwater lakes and fertile wetlands and dense stands of trees 
and plants. Preiss documented this moment before the staggering 
environmental transformations of the river began. With several 
river projects starting in Perth and a new state museum this is an 
opportune time for the project to show the way using geo-spatial 
mapping and visualisation.  
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ABSTRACT: 

In this work, a new filtering approach is proposed for a fully automatic Digital Terrain Model (DTM) extraction from very high 
resolution airborne images derived Digital Surface Models (DSMs). Our approach represents an enhancement of the existing DTM 
extraction algorithm Multi-directional and Slope Dependent (MSD) by proposing parameters that are more reliable for the selection 
of ground pixels and the pixelwise classification. To achieve this, four main steps are implemented: Firstly, 8 well-distributed 
scanlines are used to search for minima as a ground point within a pre-defined filtering window size. These selected ground points 
are stored with their positions on a 2D surface to create a network of ground points. Then, an initial DTM is created using an 
interpolation method to fill the gaps in the 2D surface. Afterwards, a pixel to pixel comparison between the initial DTM and the 
original DSM is performed utilising pixelwise classification of ground and non-ground pixels by applying a vertical height threshold. 
Finally, the pixels classified as non-ground are removed and the remaining holes are filled. The approach is evaluated using the 
Vaihingen benchmark dataset provided by the ISPRS working group III / 4. The evaluation includes the comparison of our approach, 
denoted as Network of Ground Points (NGPs) algorithm, with the DTM created based on MSD as well as a reference DTM 
generated from LiDAR data. The results show that our proposed approach over performs the MSD approach. 

1. INTRODUCTION 

Having an accurate and reliable DTM is beneficial for 
numerous mapping applications in photogrammetry and remote 
sensing, such as object detection. High resolution stereo images 
from airborne or satellite platforms can achieve sub-meter 
Ground Sample Distance (GSD) and therefore have yielded the 
opportunity to produce a high resolution and accurate Digital 
Surface Models (DSMs) by using dense image matching 
technique (Hirschmuller, 2008). In the context of this paper a 
DSM is defined including all visible ground details, i.e. the 
visible terrain and all objects such as buildings and trees on the 
terrain. Therefore, a DSM can be separated into a Digital 
Terrain Model (DTM) representing the bare ground including 
roads and low vegetation, as well as a normalized DSM 
(nDSM) describing non-ground objects such as buildings and 
vegetation. However, the extraction of reliable DTMs from 
DSMs is not a straight forward process, and is an ongoing 
research topic especially with respect to densely built-up areas 
(Krauß et al., 2011). 

The two most common approaches to generating DSMs are 
based on images using stereo image matching techniques and 
Light Detection and Ranging (LiDAR). Recently, state-of-the-
art dense image matching approaches such as Semiglobal 
Matching SGM (Hirschmuller, 2008) have been considered to 
generate high resolution and accurate DSM for object detection 
and 3D reconstruction (Bulatov et al., 2014). However, DSM 
derived from stereo image matching often contains holes as a 
result of occlusion and mismatches (Krauß et al., 2015). Such 
holes can be filled by interpolation (Krauß & d’Angelo, 2011). 
As a result, sharp edges e.g. building boundaries might be 
smoothed. In contrast, LiDAR data yields more well defined 
DSMs and the objects outlines are well defined (Perko et al., 
2015; Tian et al., 2014).  

This research proposes a robust DTM extraction algorithm for 
DSMs derived from very high resolution airborne images in 
structurally complex regions. The basic idea is to enhance the 
approach of (Perko et al., 2015) by adding additional parameters 
for the selection of the minimum ground points and the 
pixelwise classification. Furthermore, instead of applying the 
complex and non optimal local slope correction of (Perko et al., 
2015), an alternative technique is proposed. This technique is 

simpler, more reliable and faster, which is based on creating a 
network of ground points (NGPs). In addition, our approach 
will not be affected by the smoothed transition caused by 
occlusion during the generated DSM process as the slope angle 
threshold is eliminated from the pixelwise classification process 
completely.  

This paper is structured as followed. The related studies are 
reviewed and discussed in the next section. Then, we explained 
our approach in detail in the third section. In the fourth section, 
the approach is evaluated; results are shown and analysed. The 
last section concludes the paper and outlines future work.  

2. PREVIOUS WORK

Based on the literature, there are a limited DTM extraction 
methods in the context of photogrammetric DSMs when 
compared with LiDAR-based DTM extraction methods 
(Beumier & Idrissa, 2016). A good review about DTM 
extraction algorithms for LiDAR data can be found in (Meng et 
al., 2010). More generally, the authors classified ground 
filtering algorithms into six major categories including 
Segmentation and Clustering, Morphological, Directional 
Scanning, Contour, Triangulated Irregular Network (TIN), and 
Interpolation. In contrast, our work targets DTM extraction 
from DSMs based on photogrammetry. However, while DSMs 
derived from airborne or very high satellite stereo images are in 
general similar to DSMs derived from LiDAR, the main 
exception is the spatial resolution (point density). DSMs derived 
from images generally have a higher spatial resolution but less 
accuracy in height measurements (Beumier & Idrissa, 2016). 
Fusion of images information with DSMs could be a useful 
option for DTM generation. However, the variety of the man-
made objects and their occurrence mitigates the anticipated 
benefits (Beumier & Idrissa, 2016). For these reasons our 
literature review is limited to approaches designed for automatic 
DTM extraction from only photogrammetry-based DSMs.  

A Morphological Filters approach is proposed by Haralick et al. 
(1987) and Förstner (1982) and is based on the idea that -DSMs 
can be represented as a grayscale image with its pixel values 
indicating a height value. Treating the DSM as a grayscale 
image gives the opportunity to apply image processing 
technologies which can remove high (bright) areas from the 
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DSM. Namely, an opening filter consisting of erosion and 
dilation are used to eliminate non-ground points (e.g. buildings) 
from the DSM. For instance, (Krauß et al., 2011) first applies a 
minimum filtering with an approximated filter size higher than 
the cross section of a building. In this context, the filter size 

(diameter) is called a structural element (SE). As a result, all 
pixels containing non-ground information, e.g. roof pixels are 
replaced by minimum ground elevation heights within the SE. 
Next, a maximum filtering (dilation) is applied to restore edges 
of eroded terrain points. The main disadvantage of this method 
is the failure for DSMs containing roof objects smaller or larger 
than the implemented SE. Additionally, applying only classical 
opening on noisy DSMs containing negative outliers values 
leads to dominate these negative values in the resulting DTM 
(Krauß et al., 2011). Krauß et al. (2008) overcomes the noisy 
DSMs problem by applying low and high rank median filters 
instead of the erosion and dilation filters respectively. However, 
the decision of the rank of the low pass filter (e.g. 3%, 4% or 
5%) depends on the applied filter size SE and the density of the 
built-up areas within the area of interested. Therefore, manual 
iterative parameter estimation is required. Furthermore, this 
low-rank percentage might correspond to non-ground regions, 
especially in high density built up areas e.g. on top of buildings, 
leading to dominate non- ground values in the resulting DTM. 
Or, vice versa, this low percentage might belong to too low 
bare-ground regions leading to dominate too low values. 
 
Arefi et al. (2009) proposed a DTM extraction method named 
Geodesic Dilation which applies a vertical height threshold 
instead of the horizontal opening threshold. Again, as in the 
previous approach, the grey values correspond to the elevation 
heights. Two equal size images are required called mask (J) and 
marker image (I). The marker image grey values’ must be less 
than or equal to the mask image grey values’. The marker image 
is generated according to: 
 

𝐽(𝑖, 𝑗) = {
 𝐼(𝑖, 𝑗), 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑝(𝑖, 𝑗) 𝑙𝑜𝑐𝑎𝑡𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑘(𝐼)

min(𝐼) , otherwise
      

 
That means that the marker image has the same elevation values 
as the mask on its border and all other marker’s pixels have one 
value correspond to minimum value from the mask. At the 
beginning, the mask image has the same value as the original 
DSM. For each pixel in the evaluation process, 4 directional 
filters are conducted from each corner to the opposite site of the 
image, i.e. from upper left (UL) corner to lower right (LR), 
from LR to UL, from upper right (UR) to lower left (LL) and 
from LL to UR. For each evaluation process, three pixels values 
from the marker are compared with three pixels values from the 
mask along the scanline direction, and the height difference 
between them is calculated. A scanline denotes a one directional 
line where there are a number of pixels are positioned along the 
line within a specific window size in the raster DSM. Non-
ground objects are identified if the height difference is larger 
than a pre-defined threshold. However, when buildings are 
positioning close to the border of the image, the height 
difference is often lower than the threshold depending on the 
object surface properties. This can create non-satisfactory 
filtering result, especially in high resolution DSMs. 
Furthermore, the height difference between pixels belonging to 
raised bare-ground regions form the mask with their connected 
pixels from the marker is might be higher than the threshold, 
especially in sloped areas. As a result, these raised ground 
pixels will be eliminated from the resulting DTM. 
 
Krauß and Reinartz (2010) proposed a DTM extraction method 
called Steep Edge Detection. The idea is to apply two median 
filters with different filter sizes. The different filter sizes will 
show the occurrences of various sharp ends. For instance, a 
larger dimension median filter fills up small holes while a 
smaller median filter tracks the elevation structure of the 
original DSM more precisely. Afterwards, the median filter 
results are subtracted from each other using a vertical threshold 
set to the lowest values for possible sharp edges. The resulting 
regions normally correspond to the bare-ground regions which 

are then filled and interpolated to create the DTM. The main 
drawback of this method is that when some large objects are 
located on the building roofs, these objects maybe confused 
with buildings instead of being identified as part of the 
buildings leading to the lower roof pixels being incorrectly 
detected as ground pixels (Krauß et al., 2011). Secondly, when 
low vegetation such as small bushes are located in close 
proximity to buildings, these bushes might be also taken as 
ground points leading to decrease the accuracy of the generated 
DTM. 
 
Perko et al. (2015) developed a new DTM extraction algorithm 
for DSMs derived from very high resolution satellite images 
called Multi-directional and Slope Dependent (MSD). This 
algorithm is an extension of  the directional filtering approach 
introduced by (Meng et al., 2009). The main idea of the MSD 
algorithm is to specify points in the derived DSM which are 
positioned on bare ground regions and eliminate all other non-
ground points. First of all, a robust slope fitting is performed 
using 2D Gaussian smoothing filter in order to smooth and 
correct the local slope terrain. Then, points located on bare 
ground regions are determined by applying 4 directional 
scanlines which intersect at the pixel under evaluation in the 
middle of a pre-defined window (Figure 2a). The dimension of 
the window is defined by the filtering size. For each scanline in 
this window, the pixel value with the minimum elevation value 
is selected. During the evaluation process, the elevation of the 
point under examination is compared to this minimum value. If 
the height difference is larger than a pre-defined height 
threshold, the pixel under examination is classified as a non-
ground point. Otherwise, the slope difference between the 
current and the following pixel in the scanline direction will be 
calculated. If the slope is greater than a pre-defined slope 
threshold, this point is also labelled as a non-ground point. If the 
slope is less than the slope threshold and positive, the point is 
classified the same as the label of the previous point. If the 
slope is less than the slope threshold and negative, the point is 
labelled as a ground point. The process is repeated for all 4 
scanlines in two directions leading to a total of 8. Finally, a 
pixel is classified as a ground point if the results of more than 
five labels indicated this point as a ground point. Otherwise, the 
point is classified as a non-ground point. 
 
Beumier and Idrissa (2016) developed a DTM extraction 
method from DSMs based on photogrammetry. As a pre-
processing step, the input DSM is smoothed using a Mean-shift 
filter. Then, the segmentation followed by region filtering are 
implemented and repeated. The segmentation technique is 
implemented for separating the DSM into regions based on the 
height information. The region filtering is applied for rejecting 
parts that are locally higher, which typically corresponds to non-
ground objects such as buildings depending on neighbourhood 
analysis. The remaining regions are normally match roads, large 
surface or fields. Finally, holes resulted from rejecting non-
ground objects in the previous step is then interpolated using 
bilinear interpolation technique to generate final DTM.  
 
According to Meng et al. (2010) classification, the approach 
introduced by Beumier and Idrissa (2016) belongs to 
segmentation category. By contrast, our development approach 
is positioned in the context of directional scanning category. 
Hence, the next section will discuss the advantages and 
disadvantages of the directional scanning algorithms focusing 
on the MSD method because it belongs to the same class and in 
the context of DSMs based on photogrammetry. 
 

3. METHODOLOGY 

Based on the discussion of the main drawbacks of the MSD 
algorithm, we will introduce our NGPs method in detail, and 
will outline the different steps involve to improve its ability of 
overcome these drawbacks. 
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3.1 Problem Statement 

Generally, three major steps are required to extract a DTM from 
a DSM following the MSD method (Perko et al., 2015): 

1. Selecting pixels in the input DSM positioned on 
bare-ground areas. 

2. Eliminating all other non-bare-ground areas. 
3. Filling holes using an interpolation method. 

 
Drawback 1: No ground points in the scanlines  
According to (Perko et al., 2015), the most critical step of the 
approached is the determination of pixels that are positioned on 
the bare-ground areas. For each scanline within the extent of the 
filter area, a minimum of one point is required to be determined 
as belonging to the ground. The first drawback is given in the 
case that none of the points in the scanline is actually located on 
a bare-ground region is considered. However, this is easily 
possible and depends on the complexity of the structure in the 
area of interest, e.g. density of the built-up area, large building 
dimensions, very high resolution DSMs and the used filter size. 
If incorrect points are selected as minima, it will result in the 
incorrect classification of all other pixels within the filter size. 
Extending the filter size and therefore the length of the scanlines 
is not an ultimate solution to the problem because it can lead to 
some raised bare-ground pixels being incorrectly classified as a 
non-ground pixel, especially if the area of interest is not flat. 
Consequently, incorrect;y choosing the minimal value will 
influence the DTM extraction negatively.  
 
Drawback 2: Selection of correct minima in sloped areas 
The second drawback is related to the local slope correction, or 
in otherwords, the determination of correct minima in sloped 
areas. (Perko et al., 2015) uses terrain slope fitting by applying a 
2D Gaussian smoothing filter to solve this problem. However, 
such drawback cannot be overcome optimally in this way as the 
input DSM values were manipulated by the smoothing step. As 
a result, the incorrect choosing of minimal values could also 
occur in this case.  
 
Drawback 3: Slope angle as a measure in high resolution DSMs 
Assuming that the minimum point was determined correctly, the 
third drawback is given when the height difference w.r.t. the 
currently evaluated pixel is less than a pre-chosen vertical 
threshold in all directions. In this case, slope differences 
between the current and the following pixel in the scanline 
direction will be considered to make a classification decision 
whether the pixel is a ground or non-ground pixel. This 
drawback is especially present in high resolution DSMs as they 
are common when extracted from airborne images. Figure 1 
shows the pixel under evaluation in the centre highlighted in 
grey with its neighbours in original DSM (Figure 1a also called 
oDSM) and in the smoothed DSM (in Figure 1b also called 
sDSM) after the 2D Gaussian filter was applied. The evaluated 
pixel in the centre should get the classification result “ground 
point” as can be seen by the height values in the figure. Let’s 
assume that the previous pixels are classified as ground pixels, 
the slope threshold is set to 30 degree, and the GSD equals 0.14 
m. All of the assumptions are likely for a DSM of a city with 
some slopes. For the example in Figure 1a, the difference of the 
scanline pixel in the top left corner to the currently evaluated 
pixel in the centre (oDSMDiff) is: 

𝑜𝐷𝑆𝑀𝐷𝑖𝑓𝑓 =  8.2 − 8.37 = 0.17m 

 
And analogue for the smooth DSM sDSMDiff is: 

𝑠𝐷𝑆𝑀𝐷𝑖𝑓𝑓 =  8.2933 − 8.2939 = −0.0006m 
 
Calculating the difference of oDSMDiff and sDSMDiff gives us: 

∆ =  𝑜𝐷𝑆𝑀𝐷𝑖𝑓𝑓 − 𝑜𝐷𝑆𝑀𝑠𝐷𝑖𝑓𝑓 = −0.1694𝑚     (1) 
  
The calculation of the slope difference Ʌ based on Δ gives us: 

𝛬 =  atan(abs(∆)/GSD)  = 50.4251 𝑑𝑒𝑔𝑟𝑒𝑒𝑠     (2) 
 
And hence, Ʌ is larger than the pre-defined threshold of 30 
degrees indicating a non-ground point. 
 

For the scanline running horizontally between the evaluated 
pixel and the left side, Δ is 0.047m and Ʌ is -18.5535 degrees. 
As Ʌ is smaller than the pre-defined threshold (and smaller than 
zero) the given label would be “ground point”. Similarly, the 
local slope Ʌ between the evaluated pixel and the bottom left 
scanline is 10.7155 degrees, and will be labelled similarly to the 
previous pixel “ground point” with Ʌ being smaller than the 
threshold. When continuing with calculating the slopes to all 
directions, the label “ground point” is given 3 times and the 
label “non-ground point” is given 5 times. Accordingly, the 
evaluated pixel in the centre will be classified as a non-ground 
pixel. Increasing the slope threshold to e.g, 60 degrees is not an 
optimal solution because 60 degrees corresponds to a height 
change equal to 24cm over a 14cm distance. These height 
changes are unlikely to appear everywhere without transitioning 
areas from ground to non-ground or vice versa. As a conclusion: 
The slope angle as a measure introduced in (Meng et al., 2009; 
Perko et al., 2015) seems to be not suitable for the DTM 
generation based on DSMs with a resolution of less than 1m 
GSD. For this reason the slope angle measure will be excluded 
from the processing of DTM extraction in our approach and will 
be replaced by an alternative solution.  
 

 
                        (a)                                         (b) 
Figures (1) represents the evaluated pixel under evaluation in 
the centre within in the filter size with its 8 directions (a) 
showing the original DSM (oDSM) and (b) showing the 
smoothed DSM (sDSM). 
 
3.2 Proposed DTM Extraction Approach  

The drawbacks explained previously can be overcome by 
implementing the following enhancements:  

1. Designing a new filter structure in such way that well-
distributed ground points are selected. 

2. Adding a vertical threshold for choosing minimum 
pixels to be accepted. 

3. Building a network of accepted ground points as 
minima and storing them with their geo-reference 
positions of the original DSM in a 2D surface. 

4. Creating an initial DTM using an interpolation 
method to fill the gaps between the created NGPs in 
the 2D surface. 

5. Pixel to pixel comparison between the initial DTM 
and the original DSM for pairwise classification of 
ground and non-ground pixel by applying a second 
vertical threshold.  

6. Finally, removing non-ground pixels and filling the 
remaining holes. 

As one of the main contributions of the enhancement is the 
network of ground points, we will refer to the NGPs algorithm 
as our new proposed method. 
 
First of all, if the input DSM contains outliers due to occlusion 
or mismatches, these outliers have to be removed. These areas 
and gaps then have to be filled with an interpolation method.  
 
To overcome the first drawback, a new parameter is proposed to 
examine all points selected as minima in all executed scanlines. 
For example, for each executed scanline, there is one point 
selected as a ground point because it has a minimum value. The 
values of these points are sorted, and the first minimum value is 
eliminated in order to avoid points from too lower regions due 
to mismatches and the second value will be accepted instead. 
Afterwards, the height differences between the accepted point 
(second) and each of the remaining points are computed. If the 
height difference of a point is smaller than a pre-defined vertical 
threshold (1.1m in our case study), this point is also accepted. 
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Otherwise, it will be eliminated from the process because it 
might be a non-ground point.  
 
To overcome the second and third drawbacks in a more reliable 
manner, a novel technique is proposed. In order to reduce the 
computation procedure we work on the input DSM (i.e. no 
smoothing is applied) to obtain well-distributed ground points 
(GP). Furthermore, in addition to the 4 scanlines proposed in 
the MSD approach (Figure 2a), another 4 scanlines are proposed 
given us a total of 8 scanlines (Figure 2b) which yielded 8 
points. Pixels highlighted in an orange are excluded from the 
process to avoid scanlines sharing the same pixel as minimal 
values. The 8 points will be examined before they are accepted 
as a ground point as discussed previously. Figure 3a is shown of 
the original DSM which we estimated initial ground pixels from 
the previous step. Then, the accepted ground points are stored 
with their geo-reference position to build a network of ground 
points (NGPs) for one scanline. Further, an initial DTM is 
generated by filling the gaps between the created NGPs (Figure 
3b). Afterwards, a vertical pixel to pixel comparison between 
the initial DTM and the original DSM is performed by applying 
a vertical threshold shown in figure 3c. If the height difference 
is less than the chosen vertical threshold (e.g. absolute 0.4m), 
this pixel is classified as a ground pixel, otherwise, it is a non-
ground pixel. These classified ground pixels correspond to the 
ground mask shown as a red line in Figure 3d. Finally, the 
remaining gaps between the ground mask are filled through 
interpolation shown as a dash red in figure 3e. Because the pixel 
to pixel vertical height threshold between the initial DTM and 
the original DSM is a more reliable measure than the slope 
threshold, the NGPs algorithm is a powerful alternative 
solution.   
 

 
Figure (2). Directional scanlines for minimum point selection 
(a) MSD approach and (b) NGPs approach. 
 

4. EVALUATION 

4.1 Dataset 
For the evaluation, the Vaihingen (Germany) dataset provided 
by the former ISPRS working group III / 4 is used. This test 
dataset was chosen because: 

 the images were captured with high resolution 
airborne cameras,  

 reference data in the form of airborne laser scanning 
(ALS) data are available; and 

 the data represent a complex scene of a high dense 
urban area with many buildings, vegetation and cars 
as well as a slope of the terrain. 

 

The specifications of the dataset are as followed: 
 Airborne images (8 cm GSD) associated with their 

orientation parameters; acquired using the platform 
Intergraph/ZI DMC with 0.12 m focal length (Cramer, 
2010). The colour information consists of three bands: 
near infrared (NIR), red (R), and Green (G). The 
derived true orthophoto mosaic is provided.  

 Airborne Laser Scanning (ALS) data captured using a 
Leica ALS50 system with 4 points/m2 density average 
and its derived DSM with 25 cm GSD. 

 Digital surface models (DSMs) generated by dense 
matching using the Match-T software with 14 cm and 
9 cm spatial resolution. 

 

From this dataset, we especially focus on area 1 (“Inner City”) 
and area 2 (“High Riser”). While area 1 is especially suitable 

due to the sloped terrain covered with a complex irregular 
building structure including vegetation, area 2 was selected 
because of the existence of high raised buildings with larger 
objects located on top of some of those buildings. 
 

 
Figure (3). Logical steps of DTM generation by NGPs 
algorithm. Ground points (GPs) selected as minima on an 
artificial DSM (a), initial DTM (b), and vertical threshold limits 
(c), ground mask (d), and final DTM (e). 
 
4.2 Parameter settings 
The parameters used for the MSD approach are provided in 
Table 1, and for the NGPs approach accordantly in Table 2; the 
same parameters were used for both areas. The values for the 
filtering window size are fixed to 53m for both approaches and 
both tests. The filtering window size is based on the dimensions 
of the buildings in the scene. For the MSD approach, the height 
threshold is based on the absolute height difference between 
ground and buildings while the slope threshold is based on the 
height difference between the centre pixel and the one in 
scanline direction as well as on GSD. Regarding the NGPs 
approach, the first vertical threshold is based on the height 
difference between ground points selected as a minimum from 
different scanline. For non-flat areas, the value for this threshold 
should be increased by increasing the filtering window size and 
the angle of slope and vice versa. The second vertical threshold 
is based on the vertical height difference between the initial 
DTM and the original DSM. Increasing this threshold means 
capturing higher regions located between ground and non-
ground regions. 
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Filter size  53 m 

Height threshold 3 m 

Slope threshold 30 

            Table 1. Parameters’ values (MSD approach). 
 

Filter size  53 m 

Vertical threshold for accepting ground points 1.1 m 

Vertical threshold for detecting ground mask 0.4 m 

           Table 2. Parameters’ values (NGPs approach). 
 
For the creation of the nDSMs for both approaches and test sets 
a threshold of 2m is applied, i.e. only objects with a height of 
more than 2m is shown in the nDSMs. 
 
4.3 Qualitative Evaluation  
 
4.3.1 Area1: Figure 4 shows DSM derived from ALS data 
(a) and a reference DTM (b). The resulting DTMs using the 
MSD algorithm and the NGPs algorithm are presented in Figure 
5. The Figure shows the ortho image for Area 1 (a), the DSM 
with 14cm GSD based on image matching (b), the detected 
ground regions mask (c), the resulting DTM (d) and the created 
nDSM (e) using the MSD algorithm as well as the network of 
ground points accepted as minima values (f), the initial DTM 
(g), the detected ground regions mask (h), the extracted DTM (i) 
and the resulting nDSM using the NGPs algorithm (j). 
 
Obviously, when comparing the results of the ground masks 
(Figures 5c and h), details are lost by MSD approach as 
highlighted with yellow circles (Figure 5c), while larger regions 
belonging to bare-ground are successfully detected by the NGPs 
approach (Figure 5h). The NGPs approach is able to segment 
buildings, high vegetation, and even some cars, and excluded 
them from the ground mask.  
 
Furthermore, the second last row of images in Figure 5 show 
the resulting DTMs. There is one highlighted area in the 
generated DTMs of the MSD approach (Figures 5d) as well as 
in the NGPs approach (Figure 5i). This area indicates an error in 
the generated DTM whereas instead, it is actually due to an 
error in the input DSM. The cause of this error is unknown but 
can be seen more clearly in Figure 4. While in the LiDAR 
dataset a building within the highlighted area is clearly visible 
(Figure 4a), this area is classified as terrain in the DTM 
processed by LAStool (Figure 4b). 
 
Lastly, the normalised DSMs (also called nDSMs) are presented 
in the last row of Figure 5. The nDSMs are created by 
subtracting DTM from DSM. Then, by thresholding the nDSM 
(above 2m), all non-ground point, i.e. buildings and high 
vegetation will be obtained. The differences are clearly visible 
and are highlighted in the figure. While many raised bare-
ground regions were not detected by the MSD approach leading 
to a cluttered nDSM (Figure 5e), the nDSM created by NGPs 
represents the location of buildings more realistic (Figure 5j). 
This is mainly due to the successful identification of ground 
points (Figure 5f). 
 

 
Figure 4. Area1 DSM derived from LiDAR data (a) and the 
reference DTM (b). 

 
Figure 5. Ortho image for area1 (a) and input DSM (b). Ground 
mask (c), DTM (d), and nDSM (e) by MSD method. Network 
of ground points (f), initial DTM (g), ground mask (h), final 
DTM (i), and nDSM (j) by NGPs method. 
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4.3.2 Area2:  DSM derived from ALS data (a) and a 
reference DTM (b) are shown in Figure 6. Figure 7 presents the 
outputs of both algorithms. The Figure shows the ortho image 
for Area 2 (a), the DSM of 9cm GSD based on image matching 
(b). The resulting ground masks, DTMs and nDSMs are in the 
same order as for area 1. 
 
The difference in the created ground masks of the MSD 
approach (Figure 7c) to the NGPs approach (Figure 7h) is 
clearly visible. For instance, wide ground regions have been lost 
from the ground mask using the MSD approach and non-ground 
points are clustered together. In contrast, our proposed 
algorithm NGPs successfully detects those areas.  
 
Figures 7d and 7i show the DTMs created by MSD and NGPs 
approaches respectively. Both DTMs seem to be similar except 
the areas highlighted with red circles. NGPs DTM values in this 
area are clearly higher than the DTM created by MSD and even 
higher than LiDAR DTM as highlighted in figure 6b. In fact, 
the true height value for this ground area is higher than all 
created DTMs, as visible in the ortho image (Figure 7a) and in 
the DSM (Figure 7b). That means, DTM created by NGPs is the 
closet to the true value in this highlighted area.   
 
In spite of the significant improvements in the quality of the 
ground mask created by NGPs approach, the created DTMs 
(Figure 7d and 7i) and nDSMs (Figure 7e and 7j) from MSD 
and NGPs approaches look similar. This is due to the 
topographic surface of area 2 being nearly flat. The one 
difference which can be seen is highlighted with red circles. The 
high difference is up to 6 meters with a sudden change. Such 
case is very difficult to classify correctly because usually large 
height changes are used to actually distinguish between ground 
and non-ground regions. However, a smaller part in this area is 
incorrectly classified as non-ground region by NGPs (Figure 7j) 
in comparison to MSD (Figure 7e). 
 

 
Figure 6. Area1 DSM derived from LiDAR data (a) and the 
reference DTM. 
 
4.4 Quantitative Evaluation 

4.3.1 Area 1 
For the purpose of the quantitative evaluation, a reference DTM 
is created using LAStools software and subtracted from the 
DTMs created by the MSD and the NGPs methods (Figure 8). 
For both difference images, positive differences means created 
DTMs higher than LiDAR DTM and vice versa. For some areas 
the height difference reaches up to 4 m (red areas) which is too 
high. However, please note that the error inside of the areas 
highlighted with circles is related to the error in the original 
DSM as discussed earlier. The second error which is marked by 
red arrows is related to the interpolation technique used in both 
methods. While inward interpolation has been used in the MSD 
and NGPs method, the LAStools uses standard linear 
interpolation. 
 

 
Figure 7. Ortho image for area1 (a) and input DSM (b). Ground 
mask (c), DTM (d), and nDSM (e) by MSD method. Network 
of ground points (f), initial DTM (g), ground mask (h), final 
DTM (i), and nDSM (j) by NGPs method. 
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Figure 8. Area (1) height difference maps of the LiDAR DTM 
compared to the MSD (a) and the NGPs (b). 
 
The negative height differences are highlighted by black arrows 
in Figure 8 and are only presented in the DTM created by the 
MSD approach. Those differences are up to 4m and compared 
with the 2m by the NGPs approach will have to be flagged as 
gross errors. The major reason is that raised ground regions are 
lost from the ground mask as discussed in Figure 5c. Hence, the 
created DTM is interpolated under the ground instead of on the 
ground and therefore are highlighted as incorrect classified. 
Based on the difference DTMs and after excluding the gross 
errors, the mean-square error (MSE) and the standard division 
(SD) are computed and presented in Table 3.  

 
Table 3. Statistics of mean-square error (MSE) and standard 
division (SD) of the height differences between MSD and NGPs 
compared with the LiDAR DTM as well as the time required to 
execute the algorithms. 
 
For this evaluation step, we used the NGPs algorithm with 
different number of scanline directions: 4 (NGPs 4d) and 8 
(NGPs 8d). While the NGPs algorithm should be run with 8 
directions, 4 were also used in this experiment in order to 
evaluate how much the NGPs improves the results compared to 
the MSD approach by only using a different approach of 
determining the ground initially. Hence, we can analyse the 
impact of the successfully detected ground points and their 
distribution. The mean squared error decreases from the MSD to 
the NGPs 4d and then further to the NGPs 8d. Therefore, we 
can conclude to that the selection of the ground points improves 
the results. However, the introduction of additional scanlines 
seems to have a higher impact as the drop of the mean squared 
error is higher. This conclusion is also verified when looking at 
the standard division. Furthermore, the computation time 
required to execute the NGPs algorithm is significantly less than 
the MSD algorithm due to the reduced complexity as discussed 
previously. 
 
4.3.2 Area 2 
The height difference maps of the created reference DTMs 
compared to the MSD method (Figure 9a) and the NGPs 
method (Figure 9b) are both significantly better than the DTMs 
created for Area 1 (Figure 8). This is mainly due to the fact that 
the topographic surface is mostly flat, and due to that there are 
no visible errors in the original DSM. The highlighted area (red 
circle) in Figure 9a indicates large negative errors from up to 
2m in the MSD extracted DTM. The MSD approach is still 
facing the same challenge as highlighted and discussed 
previously in Figure 8, and hence confirming previous 
outcomes. In contrast, the maximum negative error in this area 
in the DTM created by the NGPs method is smaller by 
approximately 0.5m. While there are no significant lower 
sections in the NGPs there is one higher area by nearly 2.5m as 
shown in Figure 9b. This area is also highlighted previously in 
Figures 6a and 6b. In fact, the correct value for this area is 
higher than what our NGPs approach determines. Consequently, 

NGPs is significantly better and therefore the DTM values are 
the closest to the truth values.  
 

 
Figure 9. Area (2) height differences maps of the created DTMs 
with LiDAR DTM. MSD (a) and NGPs (b). 
 
 Table 4 shows the calculated Mean-squared errors (MSEs) and 
standard division (SD) of the height differences. The MSE and 
SD equal to 0.1942 and 0.1079 for DTMs created by MSD, 
0.1488 and 0.0873 for (NGPs 4d), and 0.1348 and 0.0879 for 
(NGPs 8d) respectively. Accordingly, the quality of the created 
DTM by NGPs is slightly improved in area 2 compared to area 
1 due to the fact that area 2 is rather flat. However, similar to 
area 1, NGPs algorithm requires significantly less time as 
concluded previously. 
 

 MSE SD Computation time 
MSD 0.1942 0.1079 5480.5 s 
NGPs 4d 0.1488 0.0873 319.47 s 
NGPs 8d 0.1348 0.0879 327.16 s 

 
Table 4. Statistics of mean-square error (MSE) and standard 
division (SD) of height differences between MSD and NGPs 
compared with the LiDAR DTM as well as the time required to 
execute the algorithms. 
 

5. CONCLUSION 

This paper presents a simple and powerful filtering algorithm 
for the DTM extraction from airborne stereo images derived 
DSMs. This algorithm is an enhancement of the MSD approach 
proposed by (Perko et al., 2015). In contrast, to the original 
approach, the newly proposed NGPs approach solves the local 
slope problem in a more reliable way and with less complexity 
using reliable and well distributed initial ground points. A 
further extension is the increase of the number of scanlines. 
Hence the quality of the generated DTMs and further the 
nDSMs are significantly improved. 
 
Two different datasets have been used to evaluate the NGPs 
method, and to compare the performance to the MSD method. 
In these tests similar filter size for both algorithms were used. 
The resulting DTMs were evaluated using qualitative and 
quantitative measurements. The visual inspection, as well as the 
objective measurements of the mean square error and the 
standard deviation, confirmed the efficiency and the robustness 
of the NGPs approach compared to the MSD approach.  
 
However, while the initial DTMs created by our NGPs approach 
are quite acceptable for certain applications, the introduction of 
further processing technique maybe required. The goal of those 
techniques are to simplify and therefore to speed up the 
processes of the NGPs selection. For instance, it is not 
necessary to move the filter one by one pixel along the x and y 
directions over the whole DSM. First experiments show that 
moving 5 pixels in both directions will very likely yielded 
similar results but will require less computing time. 
Furthermore, eliminating very small regions from the created 
ground regions mask could be a useful option for enhancing the 

 MSE SD Computation time 
MSD 0.8560 0.3660 556.06 s 

NGPs 4d 0.4574 0.2666 50.19 s 
NGPs 8d 0.3814 0.2492 52.60 s 
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created DTM accuracy because they might be incorrect (Perko 
et al., 2015).  

In addition, while the inward interpolation technique is so far 
used for filling holes in the ground mask produces satisfying 
results, the finally created DTM could be also smoothed by 
using an average, median, or any other smoothing filter to 
obtain smoother DTM surfaces. 
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