LECTURE (1)

DIFFERENTIAL EQUATIONS (PART ONE)

A differential equation is an equation that involves one or more derivatives. They are classified by:

1- Type (ordinary, partial).
2- Order (the highest order derivative that occurs in the equation). 3- Degree (the highest power of the highest order derivative).

If y is a function of x, where y is called the dependent variable and x is called the independent variable, thus, differential equation is a relation between x and y which includes at least one derivative of y with respect to x .

If the differential equation involves only a single independent variable , this derivative is called ORDINARY DERIVATIVE \& the equation is called ORDINARY DIFFERENTIAL EQUATION (ODE).

If the differential equation involves two or more independent variables, this derivative is called PARTIAL DERIVATIVE \& the equation is called PARTIAL DIFFERENTIAL EQUATION (PDE).

$$
\begin{gathered}
\square \mathbf{y}=\mathbf{f}(\mathbf{x , t}) \\
\frac{\partial 2 \mathrm{y}}{\partial \mathrm{t}^{2}}=\mathrm{c}^{2}\left(\frac{\partial 2 \mathrm{y}}{\partial \mathrm{x}^{2}}\right) \quad\left(2^{\text {nd }} \text { order } ; 1^{\text {st }} \text { degree }\right) \\
\square \mathbf{y}=\mathbf{f}(\mathbf{x}) \\
\frac{d y}{d x}=3 \mathrm{x}+5 \quad\left(1^{\text {st }} \text { order } ; 1^{\text {st }} \text { degree }\right) \\
\left(\frac{d 3 y}{d x^{3}}\right)^{2}+\left(\frac{d 2 y}{d x^{2}}\right)^{4}=0 \quad\left(3^{\text {rd }} \text { order } ; 2^{\text {nd }} \text { degree }\right) \\
5 \frac{d 3 y}{d x^{3}}+\cos \frac{d 2 y}{d x^{2}}+2 \mathrm{xy}=0 \quad\left(3^{\text {rd }} \text { order } ; 1^{\text {st }} \text { degree }\right)
\end{gathered}
$$

SOLUTION OF DIFFERENTIAL EQUATIONS:

1- GENERAL SOLUTION.
2- PARTICULAR SOLUTION.
$\mathrm{y}=\mathrm{x}+\mathrm{c}$ (general solution)
If $y=2 \& x=1$, then
$2=1+c ; c=1$
$\mathrm{y}=\mathrm{x}+1 \quad$ (particular solution)
The differential equation may be linear or non-linear depending on the presence of the dependent variable y and its derivatives in one term of the equation.
$\frac{d 2 y}{d x^{2}}+4 \mathbf{x} \frac{d y}{d x}+2 \mathbf{y}=0 \quad$ (linear equation)
$\frac{d 2 y}{d x^{2}}+4 \mathbf{y} \frac{d y}{d x}+2 \mathbf{y}=0 \quad$ (non-linear equation)
$\frac{d 2 y}{d x^{2}}+\sin y=0$ (non- linear equation since it contains $\sin \boldsymbol{y}$ which is non-linear

The complexity of solving differential equations increases with the order.

1) SOLUTION OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS:

1. Variable Separable Equation.
2. Homogenous Equation.
3. Exact Equation.
4. Linear Equation.
5. Bernoulli's Equation.

1. Variable Separable Equation.

A first order Ordinary Differential Equation has the form:

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=0
$$

In theory, at least, the method of algebra can be used to write it in the form:

$$
\mathrm{y}^{\prime}=\mathrm{G}(\mathrm{x}, \mathrm{y}) .
$$

If $\mathrm{G}(\mathrm{x}, \mathrm{y})$ can be factored to give:

$$
G(x, y)=M x . N y,
$$

then the equation is called separable.
To solve the separable equation $y^{\prime}=M x . N y$, we rewrite it in the form

$$
f(y) y^{`}=g(x) .
$$

Integrating both sides gives:

$$
\begin{gathered}
\int f(y) y^{\prime} d x=\int g(x) d x \\
\int f(y) d y=\frac{d y}{d x} d x
\end{gathered}
$$

Ex (1) Solve the equation $y \frac{d y}{d x}+x y^{2}=x$.

Solution:

$$
\begin{gathered}
\mathrm{y} \frac{d y}{d x}+\mathrm{x} \mathrm{y}^{2}-\mathrm{x}=0 \\
\mathrm{y} \frac{d y}{d x}+\left(\mathrm{y}^{2}-1\right) \mathrm{x}=0 \\
\left(\frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) \frac{d y}{d x}+\left(\frac{\mathrm{y}^{2}-1}{\mathrm{y}^{2}-1}\right) \mathrm{x}=0 \\
\left(\frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) d y+\mathrm{x} \cdot d x=0 \\
\left.\int \frac{\mathrm{y}}{\mathrm{y}^{2}-1}\right) d y+\int \mathrm{x} \cdot d x=0 \\
\frac{1}{2} \ln \left(\mathrm{y}^{2}-1\right)+\frac{\mathrm{x}^{2}}{2}+\mathrm{c}=0
\end{gathered}
$$

Ex (2) Solve the equation $\frac{d y}{d x}=\left(1+y^{2}\right) e^{x}$.
Solution:

$$
\begin{gathered}
\frac{d y}{1+y^{2}}=e^{x} d x \\
e^{x} d x-\frac{d y}{1+y^{2}}=0 \\
\int e^{x} d x-\int \frac{d y}{1+y^{2}}=0 \\
e^{x}-\tan ^{-1} y=c \\
y=\tan \left(e^{x}-c\right)
\end{gathered}
$$

Ex (3) Solve the equation $\frac{d y}{d x}=\cos (x+y)$.

Solution:

Let $\mathrm{u}=\mathrm{x}+\mathrm{y}$

$$
\frac{d u}{d x}=1+\frac{d y}{d x} \quad \rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}-1
$$

Sub. for $\frac{d y}{d x}$ in the main equation

$$
\begin{gathered}
\frac{d u}{d x}-1=\cos (u) \\
\frac{d u}{d x}=\cos (u)+1 \rightarrow d x=\frac{d u}{1+\cos (u)} \\
\int \frac{(1-\cos u)}{(1-\cos u)(1+\cos u)} d u=\int d x \\
\int \frac{(1-\cos u)}{\left(1-\cos ^{2} u\right)} d u=\int d x \\
\int \frac{1}{\left(\sin ^{2} u\right)} d u-\int \frac{\cos u}{\sin ^{2} u} d u=\int d x \\
\int \csc ^{2} u \cdot d u-\int \cot u \cdot \csc u d u=\int d x \\
\rightarrow-\cot (x+y)+\csc (x+y)= \\
x+c
\end{gathered}
$$

2- Homogenous Equation:

$$
A(x, y) d x+B(x, y) d y=0
$$

where the functions $\mathrm{A}(\mathrm{x}, \mathrm{y}) \& \mathrm{~B}(\mathrm{x}, \mathrm{y})$ are of the same degree.
The equation can be put in the form:

$$
\begin{equation*}
\frac{d y}{d x}=\mathrm{F}\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

Such equation is called homogenous

$$
\begin{array}{r}
\text { Let } \mathrm{v}=\frac{y}{x} \quad \ldots \ldots \ldots \ldots \ldots \\
\frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x} \ldots \ldots \ldots \tag{3}\\
F(v)=\mathrm{v}+x \frac{d v}{d x} \\
\frac{d x}{x}+\frac{d v}{\mathrm{v}-F(\mathrm{v})}=0
\end{array}
$$

Examples:

1) $y \cdot d x+x \cdot d y=0 \quad$ (homogenous/ same degree)
2) $y^{2} \cdot d x+x y \cdot d y=0 \quad$ (homogenous/ same degree)
3) $y \cdot d x+d y=0$ (not homogenous)
4) $(y+1) d x+d y=0$ (not homogenous)
5) $\left(y+\sin \frac{y}{x}\right) d x+x . d y=0 \quad$ (not homogenous)
6) $\left(\mathrm{y}+x \cdot \sin \frac{y}{x}\right) \mathrm{dx}+\mathrm{x} \cdot \mathrm{dy}=0$ (homogenous/ same degree)
7) $(x+y) d y+x . d x=0$ (homogenous/same degree)
8) $\mathrm{x} . \mathrm{dy}+$ siny $. \mathrm{dx}=0 \quad$ (not homogenous)

EX (1) Solve the equation $(x+y) . d y-(x-y) . d x=0$.
Solution:
the equation is homogenous; $\mathrm{v}=\frac{y}{x}$

$$
\begin{gathered}
\mathrm{F}(\mathrm{v})=\frac{d y}{d x}=\frac{x-y}{x+y}=\frac{1-\frac{y}{x}}{1+\frac{y}{x}}=\frac{1-v}{1+v} \\
\frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x} ; \text { (homogenous) } \rightarrow \rightarrow \frac{1-v}{1+v}=\mathrm{v}+x \frac{d v}{d x}
\end{gathered}
$$

$$
\begin{gathered}
\frac{d x}{x}-\frac{d v}{\frac{1-v}{1+v}-v}=0 \quad \rightarrow \rightarrow \quad \frac{d x}{x}-\frac{d v}{\frac{1-v-v-v^{2}}{1+v}}=0 \\
\int \frac{d x}{x}-\int \frac{(1+v) d v}{1-r v-v^{2}}=0 \rightarrow \quad \ln x+\frac{1}{2} \ln \left(1-r v-v^{2}\right)=\ln c \\
\ln x^{2}+\ln \left[1-\frac{2 y}{x}-\left(\frac{y}{x}\right)^{2}\right]=\ln c^{`} \\
x^{2}\left[1-\frac{2 y}{x}-\left(\frac{y}{x}\right)^{2}\right]=c^{\prime} \\
x^{2}-2 y x-y^{2}=c^{\prime}
\end{gathered}
$$

EX (2) Solve the equation $\left(x^{2}-y^{2}\right) . d x-2 x y . d y=0$.
Solution:
the equation is homogenous $; \mathrm{v}=\frac{y}{x} ; \frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x}$

$$
\begin{gathered}
\mathrm{F}(\mathrm{v})=\frac{d y}{d x}=-\left(\frac{x^{2}-y^{2}}{2 \mathrm{xy}}\right)=\left[\frac{1+\left(\frac{Y}{X}\right)^{2}}{2\left(\frac{Y}{X}\right)}\right] \\
\frac{d x}{x}+\frac{d v}{v+\frac{1+v^{2}}{2 v}}=0 \quad \rightarrow \rightarrow \rightarrow \quad \frac{d x}{x}+\frac{d v}{\frac{2 v^{2}+1+v^{2}}{2 v}}=0 \\
\frac{d x}{x}+\frac{2 v d v}{1+3 v^{2}}=0 \quad \int \frac{d x}{x}+\int \frac{2 v d v}{1+3 v^{2}}=0 \\
\ln x+\frac{1}{3} \ln \left(1+3 v^{2}\right)=\ln c \\
\ln x^{3}+\ln \left(1+3 v^{2}\right)=\ln c^{\prime} \\
x^{3}\left(1+3 v^{2}\right)=c^{\prime} \\
x^{3}\left(1+3 \frac{y^{2}}{x^{2}}\right)=c^{\prime} \\
x\left(x^{2}+3 y^{2}\right)=c^{\prime}
\end{gathered}
$$

LECTURE (2)

DIFFERENTIAL EQUATIONS
 PART TWO

3- Exact Equation

$$
A(x, y) \cdot d x+B(x, y) . d y=0
$$

on the condition that:

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x}
$$

Method of solution:
First we assume the solution is $\emptyset(x, y)=$ constant

$$
\begin{gathered}
\mathrm{A}=\frac{d \emptyset}{d x} \& \mathrm{~B}=\frac{d \emptyset}{d y} \\
\int d \emptyset=\int A d x \\
\emptyset=\int A d x \\
\frac{d \emptyset}{d y}=\frac{d}{d y} \int A d x=\mathrm{B} \\
\mathrm{~B}=\frac{d \emptyset}{d y}=\frac{d}{d y} \int A d x
\end{gathered}
$$

EX (1) Solve the equation: $\left(x^{3}-3 x^{2} y+2 x y^{2}\right) . \mathrm{dx}-\left(x^{3}-2 x^{2} y+y^{3}\right) \mathrm{dy}=0$
Solution:
First we must check if the equation is exact.

$$
\frac{\partial A(x, y)}{\partial y}=\frac{\partial B(x, y)}{\partial x}
$$

$$
\begin{gathered}
\mathrm{A}=x^{3}-3 x^{2} y+2 x y^{2} ; \mathrm{B}=-\left(x^{3}-2 x^{2} y+y^{3}\right) \\
\frac{\partial A}{\partial y}(\text { with respect to } \mathrm{x})=-3 x^{2}+4 \mathrm{xy} \\
\frac{\partial B}{\partial x}(\text { with respect to } \mathrm{y})=-3 x^{2}+4 \mathrm{xy}
\end{gathered}
$$

Thus the equation is exact

$$
\begin{gather*}
\emptyset=\int A d x=\int\left(x^{3}-3 x^{2} y+2 x y^{2}\right) \cdot \mathrm{dx} \\
\emptyset=\frac{x^{4}}{4}-x^{3} y+x^{2} y^{2}+\mathrm{Cy} \ldots \ldots \ldots \ldots \tag{1}
\end{gather*}
$$

where \mathbf{C} is constant that may be a function of \mathbf{y}.

$$
\begin{gather*}
\frac{d \emptyset}{d y}=-x^{3}+2 x^{2} y+\frac{\partial c}{\partial y} \quad ; \mathrm{B}=\frac{d \emptyset}{d y} \\
-\left(x^{3}-2 x^{2} y+y^{3}\right)=-x^{3}+2 x^{2} y+\frac{\partial c}{\partial y} \rightarrow \longrightarrow \rightarrow \frac{\partial c}{\partial y}=-y^{3} \\
\mathrm{Cy}=-\frac{y^{4}}{4}-\mathrm{D} \ldots \ldots \ldots \ldots \ldots .(2) \tag{2}
\end{gather*}
$$

Sub. Cy in the main equation (1);

$$
\emptyset=\frac{x^{4}}{4}-x^{3} y+x^{2} y^{2}-\frac{y^{4}}{4}-\mathrm{D}
$$

EX (2) Solve the equation: $\sin x . d y+y \cos x \cdot d x=0$
Solution:
First we must check if the equation is exact.

$$
\begin{gathered}
\frac{\partial \boldsymbol{A}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{y}}=\frac{\partial \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{x}} \\
\mathrm{A}=y \cos x ; \mathrm{B}=\sin x \\
\frac{\partial A}{\partial y}(\text { with respect to } \mathrm{x})=\cos x \\
\frac{\partial B}{\partial x}(\text { with respect to } \mathrm{y})=\cos x
\end{gathered}
$$

Thus the equation is exact

$$
\begin{array}{r}
\emptyset=\int A d x=\int y \cos x . \mathrm{dx} \\
\emptyset=y \sin x+\mathrm{Cy} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}
\end{array}
$$

$$
\begin{gather*}
\frac{d \emptyset}{d y}=\sin x+\frac{\partial c}{\partial y} \\
\mathrm{~B}=\frac{d \emptyset}{d y} ; \mathrm{B}=\sin x \\
\text { thus, } \sin x=\sin x+\frac{\partial c}{\partial y} \rightarrow \rightarrow \rightarrow \quad \frac{\partial c}{\partial y}=0 \\
\mathrm{Cy}=\mathrm{D} \quad \ldots \ldots \ldots \ldots \ldots \text { (2) } \tag{2}\\
\text { sub. in }(1) ; \quad \emptyset=y \sin x+\mathrm{D}
\end{gather*}
$$

4- Linear Equation

This type of equation has the general form:

$$
\begin{equation*}
\frac{d y}{d x}+P_{x} \cdot \mathrm{y}=\mathrm{Q}_{x} \tag{1}
\end{equation*}
$$

and solved by an integration factor (R), given by:

$$
\begin{equation*}
\mathrm{R}=e^{\int P_{x} \cdot \mathrm{dx}} \tag{2}
\end{equation*}
$$

and the solution is:

$$
\begin{equation*}
\text { R.y }=\int \text { R. } Q_{x} \cdot d x+C \tag{3}
\end{equation*}
$$

EX (1) Solve the equation: $x \cdot \frac{d y}{d x}-\mathrm{y}=x^{3}$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}-\frac{1}{x} \mathrm{y}=x^{2} \\
Q_{x}=x^{2} ; P_{x}=-\frac{1}{x} \\
\mathrm{R}=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln \frac{1}{x}}=\frac{1}{x} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
\frac{1}{x} \mathrm{y}=\int \frac{1}{x} x^{2} \cdot d x+\mathrm{C}=\int x \cdot d x+\mathrm{C} \\
\frac{1}{x} \mathrm{y}=\frac{x^{2}}{2}+\mathrm{C} \rightarrow \rightarrow \rightarrow \quad \mathrm{y}=\frac{x^{3}}{3}+x \mathrm{C}
\end{gathered}
$$

EX (2) Solve the equation: $x \cdot \frac{d y}{d x}+3 y=\frac{\sin x}{x^{2}}$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}+\frac{3}{x} \mathrm{y}=\frac{\sin x}{x^{3}} \rightarrow Q_{x}=\frac{\sin x}{x^{3}} ; P_{x}=\frac{3}{x} \\
\mathrm{R}=e^{\int \frac{3}{x} d x}=e^{3 \ln x}=e^{\ln x^{3}}=x^{3} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
x^{3} \cdot \mathrm{y}=\int x^{3} \cdot \frac{\sin x}{x^{3}} d x+\mathrm{C}=\int \sin x \cdot d x+\mathrm{C} \\
x^{3} \cdot \mathrm{y}=-\cos x+\mathrm{C} \\
\mathrm{y}=\frac{-\cos x}{x^{3}}+\frac{c}{x^{3}}
\end{gathered}
$$

5- Bernoulli's Equation

This type of equations has a general form:

$$
\frac{d y}{d x}+P_{x} \cdot \mathrm{y}=\mathrm{Q}_{x} \mathrm{y}^{\mathrm{n}} ;[\mathrm{n}>1]
$$

The solution starts by putting the equation as:

$$
\begin{equation*}
y^{-n}\left(\frac{d y}{d x}\right)+P_{x} \cdot y^{1-n}=\mathrm{Q}_{x} \tag{1}
\end{equation*}
$$

assume; $\quad \mathbf{y}^{\mathbf{1 - n}}=\mathrm{w}$
Differentiate with respect to \boldsymbol{x}

$$
\begin{aligned}
& (1-\mathrm{n}) \mathrm{y}^{-\mathrm{n}}\left(\frac{d y}{d x}\right)=\frac{d w}{d x} \\
& \boldsymbol{y}^{-\boldsymbol{n}}\left(\frac{d \boldsymbol{y}}{\boldsymbol{d} x}\right)=\frac{1}{(1-n)} \frac{d w}{d x}
\end{aligned}
$$

sub. in (1) ;

$$
\frac{1}{(1-n)} \frac{d w}{d x}+P_{x} \cdot \mathrm{~W}=\mathrm{Q}_{x}
$$

$$
\frac{d w}{d x}+(1-\mathrm{n}) P_{x} \cdot \mathrm{w}=(1-\mathrm{n}) \mathrm{Q}_{x} \ldots \ldots \ldots \ldots \ldots . \text { (2) } \quad \text { (Linear Equation) }
$$

EX (1) Solve the equation: $y\left(6 y^{2}-x-1\right) d x+2 x . d y=0$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}+\frac{y\left(6 y^{2}-x-1\right)}{2 x}=0 \\
\frac{d y}{d x}+\frac{-(x+1)}{2 x} y+\frac{6 y^{3}}{2 x}=0 \\
\frac{d y}{d x}-\frac{x+1}{2 x} y+\frac{3}{x} y^{3}=0 \\
\frac{d y}{d x}-\frac{x+1}{2 x} y=-\frac{3}{x} y^{3} \\
y^{-3} \frac{d y}{d x}-\frac{x+1}{2 x} y^{-2}=-\frac{3}{x} \\
\frac{d w}{d x}+(\mathbf{1}-\mathbf{n}) \boldsymbol{P}_{x} \cdot \boldsymbol{w}=(1-\mathrm{n}) \mathrm{Q}_{x} \text { (main equation) } \\
\mathbf{w}=\boldsymbol{y}^{-2} \\
\frac{d w}{d x}=-\mathbf{2} \boldsymbol{y}^{-3} \frac{d y}{d x}
\end{gathered}
$$

Sub. in the main equation:

$$
\begin{gathered}
-\frac{1}{2} \frac{d w}{d x}-\frac{x+1}{2 x} w=-\frac{3}{x} \\
\frac{d w}{d x}+\frac{x+1}{x} w=\frac{6}{x} \quad \text { Linear Equation }
\end{gathered}
$$

Solving as linear equation;

$$
\begin{gathered}
\mathrm{R}=e^{\int P_{x} \cdot \mathrm{dx}}=e^{\int \frac{x+1}{x} \cdot \mathrm{dx}}=e^{\int \mathrm{dx}+\int \frac{d x}{x}} \\
=e^{x+\ln x}=e^{x} \cdot e^{\ln x}=x e^{x} \\
\mathrm{R}=x e^{x} \\
\mathrm{R} \cdot y=\int R \cdot Q_{x} \cdot d x+\mathrm{C} \\
\mathrm{w}=y^{-2} ; Q_{x}=\frac{6}{x} \\
x e^{x} \cdot w=\int x e^{x} \cdot \frac{6}{x} \cdot d x+\mathrm{C}
\end{gathered}
$$

$$
\begin{gathered}
x e^{x} \cdot w=6 \int e^{x} \cdot d x+\mathrm{C} \\
x e^{x} \cdot w=6 e^{x}+\mathrm{C} \\
x e^{x} \cdot y^{-2}=6 e^{x}+\mathrm{C}
\end{gathered}
$$

EX (2) Solve the equation: $6 y^{2} d x-x\left(2 x^{3}+y\right) d y=0$
Solution:

$$
\begin{aligned}
& 6 y^{2} d x=x\left(2 x^{3}+y\right) d y \\
& \frac{d x}{d y}=\frac{x\left(2 x^{3}+y\right)}{6 y^{2}}=\frac{\left(2 x^{4}+x y\right)}{6 y^{2}}=\frac{2 x^{4}}{6 y^{2}}+\frac{x y}{6 y^{2}} \\
& \frac{d x}{d y}-\frac{x}{6 y}=\frac{x^{4}}{3 y^{2}} \quad \text { (Bernoulli's Equation) } \\
& x^{-4} \cdot \frac{d x}{d y}-\frac{x^{-3}}{6 y}=\frac{1}{3 y^{2}} \\
& \mathrm{~W}=x^{-3} \rightarrow \rightarrow \frac{d w}{d y}=-3 x^{-4} \frac{d x}{d y} \\
& \frac{d x}{d y}=-\frac{1}{3 x^{-4}} \frac{d w}{d y} \\
& \text { sub. in (1) } \quad-\frac{1}{3} \frac{d w}{d y}-\frac{w}{6 y}=\frac{1}{3 y^{2}} \\
& \frac{d w}{d y}-\frac{3 w}{6 y}=\frac{-3}{3 y^{2}} \\
& \frac{d w}{d y}+\frac{w}{2 y}=\frac{-1}{y^{2}} \quad \text { (Linear Equation) } \\
& \mathrm{R}=e^{\int \frac{1}{2 y} \mathrm{dx}}=e^{\frac{1}{2} \ln y}=y^{\frac{1}{2}} \\
& w=x^{-3} ; Q_{y}=\frac{-1}{y^{2}} \\
& y^{\frac{1}{2}} \cdot w=\int y^{\frac{1}{2}} \cdot \frac{-1}{y^{2}} \cdot d y+\mathrm{C}=-\frac{y^{-\frac{1}{2}}}{-\frac{1}{2}}+\mathrm{C}=2 y^{\frac{-1}{2}}+\mathrm{C} \\
& y^{\frac{1}{2}} \cdot x^{-3}=2 y^{\frac{-1}{2}}+\mathrm{C}
\end{aligned}
$$

Partial Differential Equations:
Partial differential equations are differential equations containing one dependent variable and two or more in dependent variables. There are many methods of solution for the ese equations.

1. Method of Direct Integration.
2. Separation of Variables (Foxier Transforms).
3. Combination of Variables (Variation of Parameters).
4. Laplace Transforms.

Method of Direct Integration:
Ex: Solve the partial differential equation,

$$
\frac{\partial^{2} u}{\partial x^{2}}=x e^{y}
$$

For the boundary conditions,

$$
\begin{aligned}
& u(0, y)=y^{2} \\
& u(1, y)=\sin y \\
& \frac{\partial^{2} u}{\partial x^{2}}=x e^{y} \Rightarrow \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=x e^{y}
\end{aligned}
$$

Integrating with respect to x

$$
\frac{\partial u}{\partial x}=e^{y} \frac{x^{2}}{2}+F_{1}(y)
$$

Integrating again,

$$
u(x, y)=e^{y} \frac{x^{3}}{6}+x F_{1}(y)+F_{2}(y)
$$

$F_{1}(y)$ and $F_{2}(y)$ are constants of integration with respect to x, but may be functions of y.

$$
\begin{aligned}
& x=0 \Rightarrow u=y^{2} \\
& u(0, y)=F_{2}(y)=y^{2} \\
& u(x, y)=\frac{x^{3} e^{y}}{6}+x F_{1}(y)+y^{2} \\
& x=1 \Rightarrow u=\sin y \\
& u(1, y)=\frac{e^{y}}{6}+F_{1}(y)+y^{2}=\sin y \\
& \therefore F_{1}(y)=\sin y-y^{2}-\frac{e^{y}}{6} \\
& u(x, y)=\frac{x^{3} e^{y}}{6}+x\left(\sin y-y^{2}-\frac{e^{y}}{6}\right)+y^{2}
\end{aligned}
$$

Separation of Variables:
The solution starts by assuming the solution is a product of functions of the independent variables.

Ex: Find the general solutions for the equation:

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

Assume: $\quad C(x, t)=X(x) \cdot T(t)$

$$
\frac{\partial c}{\partial t}=X \cdot T^{\prime}
$$

$$
\begin{aligned}
& \frac{\partial C}{\partial x}=T \cdot X^{\prime} \& \frac{\partial^{2} C}{\partial x^{2}}=T \cdot X^{\prime \prime} \\
& X T^{\prime}=D X^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{T}=D \frac{X^{\prime \prime}}{X}=\text { constant } \\
& \frac{T^{\prime}}{T}=D \frac{x^{\prime \prime}}{x}=k
\end{aligned}
$$

There are three cases for k
Case (1): $K>0 \Rightarrow K=\alpha^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=\alpha^{2} \Rightarrow \ln T=\alpha^{2} t+\ln \bar{C} \Rightarrow \ln T-\ln \bar{C}=\alpha^{2} t \\
& \ln \frac{T}{\bar{C}}=\alpha^{2} t \Rightarrow \frac{T}{\bar{C}}=e^{\alpha^{2} t} \Rightarrow T=\bar{C} e^{\alpha^{2} \cdot t} \\
& D \frac{x^{\prime \prime}}{X}=\alpha^{2} \Rightarrow x^{\prime \prime}=\frac{\alpha^{2}}{D} x \Rightarrow x^{\prime \prime}-\frac{\alpha^{2}}{D} x=0 \\
& m^{2}-\frac{\alpha^{2}}{D}=0 \Rightarrow m=\bar{x} \frac{\alpha}{\sqrt{D}} \\
& X=\bar{A} e^{\frac{\alpha}{\sqrt{D}} x}+\bar{B} e^{-\frac{\alpha}{\sqrt{D} x}} \\
& C(x, t)=\bar{C} e^{\alpha^{2} \cdot t}\left(\bar{A} e^{\frac{\alpha}{\sqrt{D}} x}+\bar{B} e^{-\frac{\alpha}{\sqrt{D}} x}\right) \\
& C(x, t)=e^{X^{2} \cdot t}\left(A e^{\frac{\alpha}{\sqrt{D}} x}+B e^{-\frac{\alpha}{\sqrt{D}} x}\right)
\end{aligned}
$$

case (2): $K=0$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=0 \Rightarrow T^{\prime}=0 \Rightarrow T^{\prime}=\bar{A} \\
& D \frac{x^{\prime \prime}}{X}=0 \Rightarrow X^{\prime \prime}=0 \Rightarrow X^{\prime}=\bar{B} \Rightarrow X=\bar{B} X+\bar{C} \\
& C(x,+)=\bar{A}(\bar{B} x+\bar{C}) \Rightarrow C(x,+)=A x+B
\end{aligned}
$$

case (3): $K<0 \Rightarrow K=-\beta^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=-\beta^{2} \Rightarrow \ln T=-\beta^{2} \cdot t+\ln \bar{C} \\
& \ln \frac{T}{\bar{C}}=-\beta^{2} \cdot t \Rightarrow T=\bar{C} e^{-\beta^{2} \cdot t} \\
& D \frac{x^{\prime \prime}}{x}=-\beta^{2} \Rightarrow x^{\prime \prime}=\frac{-\beta^{2}}{D} x \Rightarrow x^{\prime \prime}+\frac{\beta^{2}}{D} x=0 \\
& m^{2}+\frac{\beta^{2}}{D}=0 \Rightarrow m^{2}=-\frac{\beta^{2}}{D} \Rightarrow m=\mp i \frac{\beta}{\sqrt{D}} \\
& x=\bar{A} \cos \frac{\beta}{\sqrt{D}} x+\bar{B} \sin \frac{\beta}{\sqrt{D}} x \\
& C(x, t)=\bar{C} e^{-\beta^{2} \cdot t}\left(\bar{A} \cos \frac{\beta}{\sqrt{D}} x+\bar{B} \sin \frac{\beta}{\sqrt{D}} x\right) \\
& C(x, t)=e^{-\beta^{2} t}\left(A \cos \frac{\beta}{\sqrt{D}} x+B \sin \frac{\beta}{\sqrt{D}} x\right)
\end{aligned}
$$

Ex: Solve the partial differential equation,

$$
\frac{\partial \theta}{\partial t}=h^{2} \frac{\partial^{2} \theta}{\partial x^{2}}
$$

for the following conditions,
i) $t=0$

$$
\theta=100^{\circ} \mathrm{C}
$$

ii) $x=0 \quad \theta=0 \quad{ }^{\circ} \mathrm{C}$
iii) $\begin{array}{ll}x=1 & \theta=0\end{array}{ }^{\circ} \mathrm{C}$

Assume: $\theta(x, t)=X(x) \cdot T(t)$

$$
\frac{\partial \theta}{\partial t}=X \cdot T^{\prime}
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial x}=T \cdot x^{\prime} \& \frac{\partial^{2} \theta}{\partial x^{2}}=T \cdot X^{\prime \prime} \\
& X T^{\prime}=h^{2} x^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{T}=h^{2} \frac{x^{\prime \prime}}{x}=\text { constant } \\
& \frac{T^{\prime}}{T}=h^{2} \frac{x^{\prime \prime}}{x}=k
\end{aligned}
$$

Case (3) $: k<0 \Rightarrow k=-\beta^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=-\beta^{2} \Rightarrow T=\bar{c} e^{-\beta^{2} \cdot t} \\
& h^{2} \frac{x^{\prime \prime}}{x}=-\beta^{2} \Rightarrow X=\bar{A} \cos \frac{\beta}{h} x+B \sin \frac{\beta}{h} x \\
& \theta(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h} x+B \sin \frac{\beta}{h} x\right)
\end{aligned}
$$

T find the constants A, B, β :

$$
\begin{aligned}
& B . C \cdot 1 \quad x=0 \quad \theta=0 \\
& 0=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h}(0)+B \sin \frac{\beta}{h}(0)\right) \\
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=A e^{-\beta^{2} \cdot t} \\
& e^{-\beta^{2} \cdot t} \neq 0 \Rightarrow A=0 \\
& \theta=e^{-\beta^{2} \cdot t} B \sin \frac{\beta}{h} x \\
& B \cdot C \cdot 2 \quad x=1 \quad \theta=0 \\
& 0=e^{-\beta^{2} \cdot t} B \sin \frac{\beta}{h}(1)
\end{aligned}
$$

$$
\begin{aligned}
& e^{-\beta^{2} t} \neq 0, \beta \neq 0 \\
& \therefore \sin \frac{\beta}{h}=0 \\
& \frac{\beta}{h}=n \pi \\
& \theta=e^{-(n \pi h)^{2} \cdot t} \cdot \beta \sin n \pi x
\end{aligned}
$$

Ex: Solve the partial differential equation,

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

for the following conditions:
i) $C(x, 0)=C_{0}$
ii) $C(0, t) \equiv C_{\text {i }}$
iii) $C(L, t)=C_{i}$
case (3): $K<0 \Rightarrow K=-\beta^{2}$

$$
C(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{\sqrt{D}} x+\beta \sin \frac{\beta}{\sqrt{D}} x\right)
$$

Let $\bar{C}=C_{-}$.

$$
\frac{\partial \bar{C}}{\partial t}=D \frac{\partial^{2} \bar{C}}{\partial x^{2}}
$$

i) $\bar{c}(x, 0)=c_{0}-c_{i}$
ii) $\vec{C}(0, t)=c_{i}-c_{i}=0$
(ii) $\bar{C}(L, t)=C_{i}-C_{i}=0$

$$
\begin{aligned}
& \bar{C}(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{\sqrt{D}} x+B \sin \frac{\beta}{\sqrt{D}} x\right) \\
& B \cdot C \cdot x: x=0 \quad \bar{C}=0 \\
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=A e^{-\beta^{2} \cdot t} \\
& e^{-\beta^{2} \cdot t} \neq 0 \Rightarrow A=0 \\
& \bar{C}(x, t)=e^{-\beta^{2} \cdot t} \cdot B \sin \frac{\beta}{\sqrt{D}} x
\end{aligned}
$$

$$
B \cdot C \cdot 2: \quad x=1 \quad \bar{C}=0
$$

$$
0=e^{-\beta^{2}+} \cdot B \sin \frac{\beta}{\sqrt{D}} L
$$

$$
e^{-\beta^{2} t} \neq 0, B \neq 0 \Rightarrow \sin \frac{\beta}{\sqrt{D}} L=0
$$

$$
\frac{\beta}{\sqrt{D}} L=n \pi \beta=\frac{n \cdot \pi \cdot \sqrt{D}}{L}
$$

$\bar{C}\left(x_{1} t\right)=e^{-\left(\frac{n \pi \sqrt{D}}{L}\right)^{2} \cdot t}\left(B \sin \frac{n \pi}{L} x\right)$

Ex: Solve the partial differential equation,

$$
\frac{\partial \theta}{\partial t}=h^{2} \frac{\partial^{2} \theta}{\partial x^{2}}
$$

for the conditions,
i) of $(0, t)=20$
ii) $t(20, t)=20$
iii)

$$
\begin{aligned}
& \text { i) } \theta(x, 0)= \begin{cases}120 & 0 \leqslant x \leqslant 15 \\
30 & 15 \leqslant x \leqslant 20 \\
\bar{\theta}=\theta-20 \quad & \bar{\theta}(x, t)=\theta(x, t)-20\end{cases}
\end{aligned}
$$

i) $\bar{\theta}(0, t)=20-20=0$
ii) $\bar{\theta}(20, t)=20-20=0$
iii) $\bar{\theta}(x, 0)= \begin{cases}120-20=100 & 0 \leqslant x \leqslant 15 \\ 30-20=10 & 15 \leqslant x \leqslant 20\end{cases}$

$$
\frac{\partial \bar{\theta}}{\partial t}=h^{2} \frac{\partial^{2} \bar{\theta}}{\partial x^{2}}
$$

The general solution

$$
\bar{\theta}(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h} x+\beta \sin \frac{\beta}{h} x\right)
$$

BC. $1 \quad \bar{x}=0 \quad \bar{Q}=0$

$$
\begin{aligned}
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=e^{-\beta^{2} t} A \\
& e^{-\beta^{2} t} \neq 0 \Rightarrow A=0 \\
& \bar{\theta}(x, t)=e^{-\beta^{2} \cdot t}\left(B \cdot \sin \frac{\beta}{h} x\right) \\
& B \cdot C \cdot 2: x-20 \quad \bar{\theta}=0 \\
& 0=e^{-\beta^{2} \cdot t} \cdot B \sin \frac{\beta}{h}(20) \\
& e^{-\beta^{2} \cdot t} \neq 0, B \neq 0 \Rightarrow \sin \frac{\beta}{h}(20)=0 \\
& \frac{\beta}{h} 20=n \pi \\
& \bar{\theta}(x, t)=B \sin \frac{n \pi}{20} x \cdot e^{-\left(\frac{n \pi h}{20}\right)^{2} \cdot t}
\end{aligned}
$$

Partial Differential Equations:
Partial differential equations are differential equations containing one dependent variable and two or more in dependent variables. There are many methods of solution for the ese equations.

1. Method of Direct Integration.
2. Separation of Variables (Foxier Transforms).
3. Combination of Variables (Variation of Parameters).
4. Laplace Transforms.

Method of Direct Integration:
Ex: Solve the partial differential equation,

$$
\frac{\partial^{2} u}{\partial x^{2}}=x e^{y}
$$

For the boundary conditions,

$$
\begin{aligned}
& u(0, y)=y^{2} \\
& u(1, y)=\sin y \\
& \frac{\partial^{2} u}{\partial x^{2}}=x e^{y} \Rightarrow \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=x e^{y}
\end{aligned}
$$

Integrating with respect to x

$$
\frac{\partial u}{\partial x}=e^{y} \frac{x^{2}}{2}+F_{1}(y)
$$

Integrating again,

$$
u(x, y)=e^{y} \frac{x^{3}}{6}+x F_{1}(y)+F_{2}(y)
$$

$F_{1}(y)$ and $F_{2}(y)$ are constants of integration with respect to x, but may be functions of y.

$$
\begin{aligned}
& x=0 \Rightarrow u=y^{2} \\
& u(0, y)=F_{2}(y)=y^{2} \\
& u(x, y)=\frac{x^{3} e^{y}}{6}+x F_{1}(y)+y^{2} \\
& x=1 \Rightarrow u=\sin y \\
& u(1, y)=\frac{e^{y}}{6}+F_{1}(y)+y^{2}=\sin y \\
& \therefore F_{1}(y)=\sin y-y^{2}-\frac{e^{y}}{6} \\
& u(x, y)=\frac{x^{3} e^{y}}{6}+x\left(\sin y-y^{2}-\frac{e^{y}}{6}\right)+y^{2}
\end{aligned}
$$

Separation of Variables:
The solution starts by assuming the solution is a product of functions of the independent variables.

Ex: Find the general solutions for the equation:

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

Assume: $\quad C(x, t)=X(x) \cdot T(t)$

$$
\frac{\partial c}{\partial t}=X \cdot T^{\prime}
$$

$$
\begin{aligned}
& \frac{\partial C}{\partial x}=T \cdot X^{\prime} \& \frac{\partial^{2} C}{\partial x^{2}}=T \cdot X^{\prime \prime} \\
& X T^{\prime}=D X^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{T}=D \frac{X^{\prime \prime}}{X}=\text { constant } \\
& \frac{T^{\prime}}{T}=D \frac{x^{\prime \prime}}{x}=k
\end{aligned}
$$

There are three cases for k
Case (1): $K>0 \Rightarrow K=\alpha^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=\alpha^{2} \Rightarrow \ln T=\alpha^{2} t+\ln \bar{C} \Rightarrow \ln T-\ln \bar{C}=\alpha^{2} t \\
& \ln \frac{T}{\bar{C}}=\alpha^{2} t \Rightarrow \frac{T}{\bar{C}}=e^{\alpha^{2} t} \Rightarrow T=\bar{C} e^{\alpha^{2} \cdot t} \\
& D \frac{x^{\prime \prime}}{X}=\alpha^{2} \Rightarrow x^{\prime \prime}=\frac{\alpha^{2}}{D} x \Rightarrow x^{\prime \prime}-\frac{\alpha^{2}}{D} x=0 \\
& m^{2}-\frac{\alpha^{2}}{D}=0 \Rightarrow m=\bar{x} \frac{\alpha}{\sqrt{D}} \\
& X=\bar{A} e^{\frac{\alpha}{\sqrt{D}} x}+\bar{B} e^{-\frac{\alpha}{\sqrt{D} x}} \\
& C(x, t)=\bar{C} e^{\alpha^{2} \cdot t}\left(\bar{A} e^{\frac{\alpha}{\sqrt{D}} x}+\bar{B} e^{-\frac{\alpha}{\sqrt{D}} x}\right) \\
& C(x, t)=e^{X^{2} \cdot t}\left(A e^{\frac{\alpha}{\sqrt{D}} x}+B e^{-\frac{\alpha}{\sqrt{D}} x}\right)
\end{aligned}
$$

case (2): $K=0$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=0 \Rightarrow T^{\prime}=0 \Rightarrow T^{\prime}=\bar{A} \\
& D \frac{x^{\prime \prime}}{X}=0 \Rightarrow X^{\prime \prime}=0 \Rightarrow X^{\prime}=\bar{B} \Rightarrow X=\bar{B} X+\bar{C} \\
& C(x,+)=\bar{A}(\bar{B} x+\bar{C}) \Rightarrow C(x,+)=A x+B
\end{aligned}
$$

case (3): $K<0 \Rightarrow K=-\beta^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=-\beta^{2} \Rightarrow \ln T=-\beta^{2} \cdot t+\ln \bar{C} \\
& \ln \frac{T}{\bar{C}}=-\beta^{2} \cdot t \Rightarrow T=\bar{C} e^{-\beta^{2} \cdot t} \\
& D \frac{x^{\prime \prime}}{x}=-\beta^{2} \Rightarrow x^{\prime \prime}=\frac{-\beta^{2}}{D} x \Rightarrow x^{\prime \prime}+\frac{\beta^{2}}{D} x=0 \\
& m^{2}+\frac{\beta^{2}}{D}=0 \Rightarrow m^{2}=-\frac{\beta^{2}}{D} \Rightarrow m=\mp i \frac{\beta}{\sqrt{D}} \\
& x=\bar{A} \cos \frac{\beta}{\sqrt{D}} x+\bar{B} \sin \frac{\beta}{\sqrt{D}} x \\
& C(x, t)=\bar{C} e^{-\beta^{2} \cdot t}\left(\bar{A} \cos \frac{\beta}{\sqrt{D}} x+\bar{B} \sin \frac{\beta}{\sqrt{D}} x\right) \\
& C(x, t)=e^{-\beta^{2} t}\left(A \cos \frac{\beta}{\sqrt{D}} x+B \sin \frac{\beta}{\sqrt{D}} x\right)
\end{aligned}
$$

Ex: Solve the partial differential equation,

$$
\frac{\partial \theta}{\partial t}=h^{2} \frac{\partial^{2} \theta}{\partial x^{2}}
$$

for the following conditions,
i) $t=0$

$$
\theta=100^{\circ} \mathrm{C}
$$

ii) $x=0 \quad \theta=0 \quad{ }^{\circ} \mathrm{C}$
iii) $\begin{array}{ll}x=1 & \theta=0\end{array}{ }^{\circ} \mathrm{C}$

Assume: $\theta(x, t)=X(x) \cdot T(t)$

$$
\frac{\partial \theta}{\partial t}=X \cdot T^{\prime}
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial x}=T \cdot x^{\prime} \& \frac{\partial^{2} \theta}{\partial x^{2}}=T \cdot X^{\prime \prime} \\
& X T^{\prime}=h^{2} x^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{T}=h^{2} \frac{x^{\prime \prime}}{x}=\text { constant } \\
& \frac{T^{\prime}}{T}=h^{2} \frac{x^{\prime \prime}}{x}=k
\end{aligned}
$$

Case (3) $: k<0 \Rightarrow k=-\beta^{2}$

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=-\beta^{2} \Rightarrow T=\bar{c} e^{-\beta^{2} \cdot t} \\
& h^{2} \frac{x^{\prime \prime}}{x}=-\beta^{2} \Rightarrow X=\bar{A} \cos \frac{\beta}{h} x+B \sin \frac{\beta}{h} x \\
& \theta(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h} x+B \sin \frac{\beta}{h} x\right)
\end{aligned}
$$

T find the constants A, B, β :

$$
\begin{aligned}
& B . C \cdot 1 \quad x=0 \quad \theta=0 \\
& 0=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h}(0)+B \sin \frac{\beta}{h}(0)\right) \\
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=A e^{-\beta^{2} \cdot t} \\
& e^{-\beta^{2} \cdot t} \neq 0 \Rightarrow A=0 \\
& \theta=e^{-\beta^{2} \cdot t} B \sin \frac{\beta}{h} x \\
& B \cdot C \cdot 2 \quad x=1 \quad \theta=0 \\
& 0=e^{-\beta^{2} \cdot t} B \sin \frac{\beta}{h}(1)
\end{aligned}
$$

$$
\begin{aligned}
& e^{-\beta^{2} t} \neq 0, \beta \neq 0 \\
& \therefore \sin \frac{\beta}{h}=0 \\
& \frac{\beta}{h}=n \pi \\
& \theta=e^{-(n \pi h)^{2} \cdot t} \cdot \beta \sin n \pi x
\end{aligned}
$$

Ex: Solve the partial differential equation,

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

for the following conditions:
i) $C(x, 0)=C_{0}$
ii) $C(0, t) \equiv C_{\text {i }}$
iii) $C(L, t)=C_{i}$
case (3): $K<0 \Rightarrow K=-\beta^{2}$

$$
C(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{\sqrt{D}} x+\beta \sin \frac{\beta}{\sqrt{D}} x\right)
$$

Let $\bar{C}=C_{-}$.

$$
\frac{\partial \bar{C}}{\partial t}=D \frac{\partial^{2} \bar{C}}{\partial x^{2}}
$$

i) $\bar{c}(x, 0)=c_{0}-c_{i}$
ii) $\vec{C}(0, t)=c_{i}-c_{i}=0$
(ii) $\bar{C}(L, t)=C_{i}-C_{i}=0$

$$
\begin{aligned}
& \bar{C}(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{\sqrt{D}} x+B \sin \frac{\beta}{\sqrt{D}} x\right) \\
& B \cdot C \cdot x: x=0 \quad \bar{C}=0 \\
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=A e^{-\beta^{2} \cdot t} \\
& e^{-\beta^{2} \cdot t} \neq 0 \Rightarrow A=0 \\
& \bar{C}(x, t)=e^{-\beta^{2} \cdot t} \cdot B \sin \frac{\beta}{\sqrt{D}} x
\end{aligned}
$$

$$
B \cdot C \cdot 2: \quad x=1 \quad \bar{C}=0
$$

$$
0=e^{-\beta^{2}+} \cdot B \sin \frac{\beta}{\sqrt{D}} L
$$

$$
e^{-\beta^{2} t} \neq 0, B \neq 0 \Rightarrow \sin \frac{\beta}{\sqrt{D}} L=0
$$

$$
\frac{\beta}{\sqrt{D}} L=n \pi \beta=\frac{n \cdot \pi \cdot \sqrt{D}}{L}
$$

$\bar{C}\left(x_{1} t\right)=e^{-\left(\frac{n \pi \sqrt{D}}{L}\right)^{2} \cdot t}\left(B \sin \frac{n \pi}{L} x\right)$

Ex: Solve the partial differential equation,

$$
\frac{\partial \theta}{\partial t}=h^{2} \frac{\partial^{2} \theta}{\partial x^{2}}
$$

for the conditions,
i) of $(0, t)=20$
ii) $t(20, t)=20$
iii)

$$
\begin{aligned}
& \text { i) } \theta(x, 0)= \begin{cases}120 & 0 \leqslant x \leqslant 15 \\
30 & 15 \leqslant x \leqslant 20 \\
\bar{\theta}=\theta-20 \quad & \bar{\theta}(x, t)=\theta(x, t)-20\end{cases}
\end{aligned}
$$

i) $\bar{\theta}(0, t)=20-20=0$
ii) $\bar{\theta}(20, t)=20-20=0$
iii) $\bar{\theta}(x, 0)= \begin{cases}120-20=100 & 0 \leqslant x \leqslant 15 \\ 30-20=10 & 15 \leqslant x \leqslant 20\end{cases}$

$$
\frac{\partial \bar{\theta}}{\partial t}=h^{2} \frac{\partial^{2} \bar{\theta}}{\partial x^{2}}
$$

The general solution

$$
\bar{\theta}(x, t)=e^{-\beta^{2} \cdot t}\left(A \cos \frac{\beta}{h} x+\beta \sin \frac{\beta}{h} x\right)
$$

BC. $1 \quad \bar{x}=0 \quad \bar{Q}=0$

$$
\begin{aligned}
& 0=e^{-\beta^{2} \cdot t}(A(1)+B(0)) \Rightarrow 0=e^{-\beta^{2} t} A \\
& e^{-\beta^{2} t} \neq 0 \Rightarrow A=0 \\
& \bar{\theta}(x, t)=e^{-\beta^{2} \cdot t}\left(B \cdot \sin \frac{\beta}{h} x\right) \\
& B \cdot C \cdot 2: x-20 \quad \bar{\theta}=0 \\
& 0=e^{-\beta^{2} \cdot t} \cdot B \sin \frac{\beta}{h}(20) \\
& e^{-\beta^{2} \cdot t} \neq 0, B \neq 0 \Rightarrow \sin \frac{\beta}{h}(20)=0 \\
& \frac{\beta}{h} 20=n \pi \\
& \bar{\theta}(x, t)=B \sin \frac{n \pi}{20} x \cdot e^{-\left(\frac{n \pi h}{20}\right)^{2} \cdot t}
\end{aligned}
$$

Combination of Variables

In this method we introduce a dummy variable, η, where the choice of η is given in the table below. We see that the bounded variable, egg., distance (x, y or r) appears in the numerator raised to the power 1, while the unbounded variable such as time (t).- appears in the denominator raised to the power ($1 / n$), where n equals the sum of powers of the bounded variable appearing in the equation.

$$
\begin{array}{ll}
\frac{\partial C}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} & \eta=\frac{x}{\sqrt{t}} \\
\frac{\partial T}{\partial t}=\alpha^{2}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) & \eta=\frac{x+y}{\sqrt{t}} \\
\frac{\partial c}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} c}{\partial y^{2}}+\frac{\partial^{2} c}{\partial z^{2}}\right) & \eta=\frac{x+y+z}{\sqrt{t}} \\
y \frac{\partial c}{\partial t}=\frac{\partial^{2} c}{\partial y^{2}} & \eta=\frac{y}{(t)^{1 / 3}} \\
x^{2} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} & \eta=\frac{x}{(t)^{1 / 4}}
\end{array}
$$

$E x:$ Solve the partial differential equation

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

i) $C(x, 0)=0$
(i) $C(0, t)=c_{i}$
iii) $C(\infty, t)=0$

We start by putting, $\quad \eta=\frac{x}{\sqrt{t}}$

$$
\begin{aligned}
& \frac{\partial c}{\partial t}=\frac{\partial c}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} \Rightarrow \frac{\partial c}{\partial t}=\frac{\partial c}{\partial \eta}\left[-\frac{1}{2} x t^{-3 / 2}\right] \\
& \frac{\partial c}{\partial t}=\frac{\partial c}{\partial \eta}\left[-\frac{1}{2} x \frac{1}{\sqrt{t}} \cdot t\right] \Rightarrow \frac{\partial c}{\partial t}=\frac{\partial c}{\partial \eta}\left[-\frac{1}{2} \frac{\eta}{t}\right] \\
& \therefore \frac{\partial c}{\partial t}=-\frac{1}{2} \frac{\eta}{t} \frac{\partial c}{\partial \eta} \\
& \frac{\partial c}{\partial x}=\frac{\partial c}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} \Rightarrow \frac{\partial c}{\partial x}=\frac{\partial c}{\partial \eta}\left[\frac{1}{\sqrt{t}}\right] \Rightarrow \frac{\partial c}{\partial x}=\frac{1}{\sqrt{t}} \frac{\partial c}{\partial \eta} \\
& \frac{\partial^{2} c}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial c}{\partial x}\right) \Rightarrow \frac{\partial^{2} c}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{t}} \frac{\partial c}{\partial \eta}\right) \\
& \frac{\partial^{2} c}{\partial x^{2}}=\frac{\partial}{\partial \eta} \cdot \frac{\partial^{\eta}}{\partial x}\left(\frac{1}{\sqrt{t}} \cdot \frac{\partial c}{\partial \eta}\right) \Rightarrow \frac{\partial^{2} c}{\partial x^{2}}=\frac{1}{\sqrt{t}} \frac{\partial}{\partial \eta}\left(\frac{1}{\sqrt{t}} \cdot \frac{\partial c}{\partial \eta}\right) \\
& \frac{\partial^{2} c}{\partial x^{2}}=\frac{1}{t} \frac{\partial^{2} c}{\partial \eta}
\end{aligned}
$$

Sub in equation:

$$
\begin{aligned}
& -\frac{1}{2} \frac{\eta}{t} \frac{\partial C}{\partial \eta}=D \frac{1}{t} \frac{\partial 2 C}{\partial \eta^{2}} \\
& D \frac{\partial^{2} C}{\partial \eta^{2}}+\frac{1}{2} \eta \frac{\partial C}{\partial \eta}=0 \Rightarrow D \frac{d^{2} C}{d \eta^{2}}+\frac{1}{2} \eta \frac{d C}{d \eta}=0
\end{aligned}
$$

This is a second order ordinary differential equation where the dependent variable is not explicit.

$$
\begin{aligned}
& P=A e^{-\frac{1}{4} \frac{\eta^{2}}{D}} \Rightarrow \frac{d C}{d \eta}=A e^{-\frac{1}{4} \frac{\eta^{2}}{D}} \\
& d c=A e^{-\frac{1}{4} \frac{\eta^{2}}{D}} d \eta \Rightarrow c=A \int e^{-\frac{1}{4} \frac{\eta^{2}}{D}} d \eta \\
& C=A \operatorname{erf} \sqrt{\frac{\eta^{2}}{4 D}}+B \Rightarrow C=A \operatorname{erf} \frac{\eta}{\sqrt{4 \bar{D}}}+B \\
& C=A \operatorname{erf} \frac{x}{\sqrt{4 D t}}+B \text {-. general silution } \\
& B \cdot C \cdot 1, x=0 \\
& C_{i}=A \operatorname{erf}(0)+B+ \\
& \operatorname{erf}(0)=0 \Rightarrow B=C_{i} \\
& \text { B.C. } 2 \quad x=\infty \quad C=0 \\
& 0=A \operatorname{erf}(\infty)+B, \operatorname{erf}(\infty)=1 \Rightarrow A=-B \\
& \therefore A=-C_{\text {; }} \\
& c=-c_{i} \operatorname{erf} \frac{x}{\sqrt{4 D t}}+c_{i} \\
& c=c_{i}\left(1-\operatorname{erf} \frac{x}{\sqrt{4 D t}}\right) \\
& c=c_{i} \operatorname{erfc} \frac{x}{\sqrt{4 D t}}
\end{aligned}
$$

E_{x} : Solve the partial differential equation

$$
\frac{\partial \theta}{\partial t}=h^{2} \frac{\partial^{2} \theta}{\partial x^{2}}
$$

For the conditions
i) $\theta(x, 0)=0$
ii) $\theta(0, t)=100$
(ii) $\frac{\partial \theta}{\partial x}(1, t)=0$

We start by putting $\quad \eta=\frac{x}{2 h \sqrt{t}}$

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}=\frac{-x}{2 h \cdot 2 t^{3 / 2}}=\frac{-x}{4 h t \sqrt{t}}=\frac{-\eta}{2 t} \\
& \frac{\partial \eta}{\partial x}=\frac{1}{2 h \sqrt{t}} \\
& \frac{\partial \theta}{\partial t}=\frac{\partial \theta}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} \Rightarrow \frac{\partial \theta}{\partial t}=\frac{-\eta}{2 t} \frac{\partial \theta}{\partial \eta} \\
& \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \theta}{\partial x}\right) \Rightarrow \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x}\left(\frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial x}\right) \\
& \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{2 h \sqrt{t}} \frac{\partial}{\partial \eta}\left(\frac{1}{2 h \sqrt{t}} \frac{\partial \theta}{\partial \eta}\right) \\
& \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{4 h^{2} t} \frac{\partial^{2} \theta}{\partial \eta^{2}}
\end{aligned}
$$

sub. in equation

$$
\begin{aligned}
& \frac{-\eta}{2 t} \frac{\partial \theta}{\partial \eta}=h^{2} \frac{1}{4 h^{2} t} \frac{\partial{ }^{2} \theta}{\partial \eta^{2}} \\
& \frac{\partial^{2} \theta}{\partial \eta^{2}}+2 \eta \frac{\partial \theta}{\partial \eta}=0 \Rightarrow \frac{d^{2} \theta}{d \eta^{2}}+2 \eta \frac{d \theta}{d \eta}=0
\end{aligned}
$$

This is a second order ordinary differential equation where the dependent variable is not explicit.

$$
\begin{aligned}
& P=\frac{d \theta}{d \eta}, \quad \frac{d P}{d \eta}=\frac{d^{2} \theta}{d \eta^{2}} \\
& \frac{d p}{d \eta}+2 \eta p=0 \Rightarrow \frac{d p}{p}+2 \eta d \eta=0 \\
& \ln \frac{P}{A}=-\eta^{2} \Rightarrow P=A e^{-\eta^{2}} \Rightarrow \frac{d \theta}{d \eta}=A e^{-\eta^{2}} \\
& d \theta=A e^{-\eta^{2}} d \eta \\
& \theta(x, t)=A \operatorname{erf} \eta+B \\
& \theta(x, t)=A \operatorname{erf} \frac{x}{2 h \sqrt{t}}+B \quad \text { general solution } \\
& \text { BiC. } 1 \quad x=0 \quad \theta=100 \\
& \theta(0,+)=A \operatorname{erf}(0)+B=100, \operatorname{erf}(0)=0 \\
& \therefore B=100 \\
& \theta(x,+)=A \operatorname{erf} \frac{x}{2 h \sqrt{t}}+100 \\
& \text { I. C. } \quad t=0 \quad \theta=0 \\
& \theta(x, 0)=A \operatorname{erf} \frac{x}{2 h \sqrt{0}}+100=0 \\
& A \operatorname{erf}(\infty)+100=0, \operatorname{erf}(\infty)=1 \\
& A=-100 \\
& \theta(x, t)=-100 \operatorname{erf} \frac{x}{2 h \sqrt{t}}+100
\end{aligned}
$$

$$
\begin{aligned}
& \theta(x, t)=100\left(1-\operatorname{erf} \frac{x}{2 h \sqrt{t}}\right) \\
& \theta(x, t)=100 \operatorname{erfc} \frac{x}{2 h \sqrt{t}}
\end{aligned}
$$

Ex: Solve the partial differential equation

$$
y \frac{\partial C_{A}}{\partial z}=\frac{\partial^{2} C_{A}}{\partial y^{2}}
$$

For the following conditions

$$
\begin{array}{ll}
z=0 & C_{A}=0 \\
y=0 & C_{A}=C_{A} \\
y=\infty & C_{A}=0
\end{array}
$$

We start by putting

$$
\eta=\frac{y}{z^{1 / 3}}
$$

$$
\begin{aligned}
& \frac{\partial \eta}{\partial y}=\frac{1}{z^{1 / 3}} \\
& \frac{\partial \eta}{\partial z}=-\frac{1}{3} y z^{-4 / 3} \Rightarrow \frac{\partial \eta}{\partial z}=-\frac{y}{z^{1 / 3}} \frac{1}{3 z} \Rightarrow \frac{\partial \eta}{\partial z}=-\frac{\eta}{3 z} \\
& \frac{\partial C_{A}}{\partial z}=\frac{\partial C_{A}}{\partial \eta} \frac{\partial \eta}{\partial z}=-\frac{\eta}{3 z} \frac{\partial C_{A}}{\partial \eta} \\
& \frac{\partial C_{A}}{\partial y}=\frac{\partial C_{A}}{\partial \eta} \frac{\partial \eta}{\partial y} \\
& \frac{\partial^{2} C_{A}}{\partial y^{2}}=\frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y}\left(\frac{\partial C_{A}}{\partial \eta} \frac{\partial \eta}{\partial y}\right) \\
& \frac{\partial^{2} C_{A}}{\partial y^{2}}=\frac{\partial}{\partial \eta}\left(\frac{1}{z^{1 / 3}}\right)\left(\frac{\partial C_{A}}{\partial \eta}\left(\frac{1}{z^{1 / 3}}\right)\right) \\
& \frac{\partial^{2} C_{A}}{\partial y^{2}}=\frac{1}{z^{2 / 3}} \frac{\partial^{2} C_{A}}{\partial \eta^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& y\left(-\frac{\eta}{32} \frac{\partial C_{A}}{\partial \eta}\right)=\frac{1}{2^{2 / 3}} \frac{\partial^{2} C_{A}}{\partial \eta^{2}} \\
& \frac{\partial^{2} C_{A}}{\partial \eta^{2}}+\frac{1}{3} \eta^{2} \frac{\partial C_{A}}{\partial \eta}=0 \Rightarrow \frac{d^{2} C_{A}}{d \eta^{2}}+\frac{1}{3} \eta^{2} \frac{d C_{A}}{d \eta}=0 \\
& P=\frac{d C_{A}}{d \eta}, \frac{d P}{d \eta}=\frac{d^{2} C_{A}}{d \eta^{2}} \\
& \frac{d P}{d \eta}+\frac{1}{3} \eta^{2} p=0 \Rightarrow \frac{d P}{P}+\frac{1}{3} \eta^{2} d \eta=0 \\
& \ln P+\frac{1}{9} \eta^{3}-\ln A=0 \Rightarrow P=A e^{-\eta^{3} / q} \\
& \frac{d C_{A}}{d \eta}=A e^{-\eta^{3} / q} \Rightarrow \int_{C}^{0} d C_{A}=A \int_{\eta}^{\infty} e^{-\eta^{3} / q} d \eta \\
& C_{A}=A \int_{\eta}^{\infty} e^{-\eta^{3} / q} d \eta+B
\end{aligned}
$$

BC. $1 \quad y=0 \quad C_{A}=C_{A} \quad \eta=0$
$B C . \quad y=\infty \quad C_{A}=0 \quad \eta=\infty$
Apply B.C.2 $\quad \eta=\infty \quad C_{A}=0$

$$
\begin{aligned}
& B=A \int_{\infty}^{\infty} e^{-\eta^{3} / q} d \eta+B \Rightarrow B=0 \\
& \therefore C_{A}=-A \int_{\eta}^{\infty} e^{-\eta^{3} / q} d \eta
\end{aligned}
$$

Apply B.C. $\quad \eta=0 \quad C_{A}=C_{1}$

$$
C_{A_{0}}=A \int_{0}^{\infty} e^{-\eta^{3} / 9} d \eta
$$

This integration is the Coma function (Γ).

Let $\beta=\frac{\eta^{3}}{9}$

$$
\begin{aligned}
& d \beta=3\left(\frac{\eta^{2}}{9}\right) d \eta \Rightarrow d \eta=\frac{1}{3}\left(\frac{\eta^{2}}{9}\right)^{-1} d \beta \\
& C_{A-}=-A \int_{0}^{\infty} e^{-\beta} \frac{1}{3}\left(\frac{\eta^{2}}{9}\right)^{-1} d \beta
\end{aligned}
$$

Partial Differential Equations by Laplace Transformation:
Example: Solve the PDE by using:

1. Separation of variable method.
2. Caplace transform method.

$$
\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \varphi}{\partial x^{2}}
$$

For the boundary condition
i) $\theta(0, t)=0$
ii) $\theta(1, t)=0$
iii) $\hat{\theta}(x, 0)=3 \sin 2 \pi x$

1. Separation of variable:

$$
\begin{aligned}
& \theta(x, t)=e^{-\beta^{2} t}(A \cos \beta x+B \sin \beta x) \\
& B \cdot C \cdot 1 \quad x=0, \theta=0 \\
& 0=e^{-\beta^{2} t}(A(1)+B(\theta)) \Rightarrow A=0 \\
& \theta(x,+)=B e^{-\beta^{2} t} \sin \beta x \\
& B \cdot C \cdot 2 \quad x=1, \theta=0 \\
& 0=B e^{-\beta^{2} t} \sin \beta(1) \Rightarrow \beta=n \pi \\
& \theta(x, t)=B e^{-(n \pi)^{2} t} \sin n \pi x \\
& I C . \quad t=0, \theta=3 \sin 2 \pi x
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sin 2 \pi x=B \sin n \pi x \\
& \therefore B=3 \quad \& \quad n=2 \\
& \theta(x, t)=3 e^{-4 \pi^{2} t} \sin 2 \pi x
\end{aligned}
$$

2. Laplace transform:

$$
\begin{aligned}
& \mathcal{L} \frac{\partial \theta}{\partial t}=\mathcal{L} \frac{\partial^{2} \theta}{\partial x^{2}} \\
& s \bar{\theta}(s)-\theta(0)=\frac{d^{2} \bar{\theta}(s)}{d x^{2}} \\
& s \bar{\theta}(s)-3 \sin 2 \pi x=\frac{d^{2} \bar{\theta}(s)}{d x^{2}} \\
& \frac{d^{2} \bar{\theta}(s)}{d x^{2}}-s \bar{\theta}(s)=-3 \sin 2 \pi x \\
& \left(D^{2}-s\right) \bar{\theta}(s)=-3 \sin 2 \pi x \\
& m^{2}-s=0 \Rightarrow m=\mp \sqrt{s} \\
& \bar{\theta}(s) c=C_{1} e^{\sqrt{s} x}+C_{2} e^{-\sqrt{s} x} \\
& \bar{\theta}(s) p=\frac{-3 \sin 2 \pi x}{D^{2}-s} \\
& y_{p}=\frac{1}{F\left(D^{2}\right)} \sin (a x+b)=\frac{1}{F\left(-a^{2}\right)} \sin (a x+b) \\
& \bar{\theta}(s) p=-\frac{-3 \sin 2 \bar{u} x}{-(2 \pi)^{2}-s} \\
& \bar{\theta}(s) p=-3 \sin 2 \pi x \\
& 4 \pi^{2}+s
\end{aligned}
$$

$$
\bar{\theta}(s)=c_{1} e^{\sqrt{s} x}+c_{2} e^{-\sqrt{s} x}+\frac{3 \sin 2 \pi x}{s+4 \pi^{2}}
$$

B.C. $1 \quad x=0, \theta=0 \Rightarrow \bar{\theta}(s)=0$

$$
\begin{aligned}
& 0=C_{1}(1)+C_{2}(1)+0, \quad \sin (0)=0 \\
& \therefore C_{1}=-C_{2}
\end{aligned}
$$

B.C. $2 \quad x=1, \quad \theta=0 \Rightarrow \bar{\theta}(s)=0$

$$
\begin{aligned}
& 0=c_{1} e^{\sqrt{s}}+c_{2} e^{-\sqrt{5}}+0, \sin (2 \pi)=0 \\
& 0=-c_{2} e^{\sqrt{s}}+c_{2} e^{-\sqrt{s}} \\
& 0=c_{2}\left(-e^{\sqrt{s}}+e^{-\sqrt{s}}\right) \Rightarrow c_{2}=0 \\
& c_{1}=c_{2} \Rightarrow c_{1}=0 \\
& \therefore \bar{Q}_{2}(s)=\frac{3 \sin 2 \pi x}{5+4 \pi^{2}} \\
& \mathcal{L}^{-1} \bar{Q}(s)=3 \sin 2 \pi x \mathcal{L}^{-1} \frac{1}{s+4 \pi^{2}} \\
& \theta(x+t)=3 \sin 2 \pi x e^{-4 \pi^{2} t}
\end{aligned}
$$

Example: Solve the PDE

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

For the boundary condition

$$
\begin{aligned}
& \text { i) } C(x, 0)=0 \\
& \text { ic) } C(0, t)=C \\
& \text { iii) } C(\infty, t)=0 \\
& \mathcal{L} \frac{\partial C}{\partial t}=D \mathcal{L} \frac{\partial^{2} C}{\partial x^{2}} \\
& s \bar{C}(s)-C(0)=D \frac{d^{2} \bar{C}(s)}{d x^{2}} \\
& s \bar{C}(s)=D \frac{d^{2} \bar{C}(s)}{d x^{2}} \\
& \frac{d^{2} \bar{C}(s)}{d x^{2}}-\frac{s}{D} \bar{C}(s)=0 \\
& m^{2}-\frac{s}{D}=0 \Rightarrow m=\mp \sqrt{\frac{S}{D}} \\
& \bar{C}(s)=C_{1} e^{\sqrt{\frac{s}{D} x}+C_{2} e^{-\sqrt{\frac{s}{D}} x}}
\end{aligned}
$$

$$
\text { BC. } 1 \quad x=0, C=C_{i} \Rightarrow \bar{C}(s)=\frac{C_{i}}{s}
$$

$$
\frac{C_{i}}{s}=C_{1}+C_{2}
$$

$$
B . C \cdot 2 x=\infty, C=0 \Rightarrow \bar{C}(s)=0
$$

$$
\begin{aligned}
& 0=C_{1}(\infty)+C_{2}(0), e^{\infty}=\infty \& e^{-\infty}=0 \\
& C_{1}=0, \frac{C_{i}}{s}=C_{1}+C_{2} \Rightarrow C_{2}=\frac{C_{1}}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{C}(s)=\frac{C_{i}}{s} e^{-\sqrt{\frac{S}{D}} x} \\
& \mathcal{L}^{-1} \frac{1}{s} e^{-k \sqrt{s}}=\operatorname{erfc} \frac{K}{2 \sqrt{t}} \quad, K=\frac{x}{\sqrt{D}}
\end{aligned}
$$

$$
c=c_{i} \operatorname{erfc} \frac{x}{2 \sqrt{D} \sqrt{t}}
$$

$$
c=c_{i} \operatorname{erfc} \frac{x}{\sqrt{4 D t}}
$$

LECTURE (2)

SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

PART ONE

Second order differential equations may be classified as:

(1) Non-Linear Differential Equations:

1- Equations with dependent variable missing.
2- Equations with independent variable missing.
3- Homogenous equations.
(2) Linear Differential Equations:

1- Equations with constant coefficient.
2- Equations with constant coefficients as a function of the independent variable.

Examples:

1- $\frac{\boldsymbol{d} 2 \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}^{2}}+2 \sin y \quad$ Non-linear D.E. because the dependent variable appears as $\boldsymbol{\operatorname { s i n }} \boldsymbol{y}, \boldsymbol{\operatorname { c o s }} \boldsymbol{y}, \boldsymbol{\operatorname { t a n }} \boldsymbol{y}, \boldsymbol{e}^{\boldsymbol{y}}, \boldsymbol{y}^{2}, \ldots .$.
$2-\frac{d 2 y}{d x^{2}}-x\left(\frac{d y}{d x}\right)^{2}+y=0 \quad$ Non-linear D.E. because $\left(\frac{d y}{d x}\right)^{2}$
$3-\frac{d 2 y}{d x^{2}}+4 y \frac{d y}{d x}+2 y=\cos x$ Non-linear D.E. because $y \frac{d y}{d x}$
$4-\frac{d 2 y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=\cos x \quad$ Linear D.E.
$5-\frac{d 2 y}{d x^{2}}+x \frac{d y}{d x}=e^{3 x} \quad$ Linear D.E.
$6-\frac{d 2 y}{d x^{2}}+y=x^{2} \quad$ Linear D.E.
(1) Non-Linear Differential Equations:

1- Equations with dependent variable (y) missing.

$$
\mathrm{P}=\frac{d y}{d x} \rightarrow \rightarrow \frac{d p}{d x}=\frac{d 2 y}{d x^{2}}
$$

$\operatorname{EX}(1)$ Solve the equation: $\quad x \frac{d 2 y}{d x^{2}}-\frac{d y}{d x}=0$

Solution:

$$
\mathrm{P}=\frac{d y}{d x} \& \frac{d p}{d x}=\frac{d 2 y}{d x^{2}}
$$

Sub in the main equation: $\quad \boldsymbol{x} \frac{d p}{d x}-\mathrm{P}=0 \rightarrow \rightarrow \int \frac{d p}{p}-\int \frac{d x}{x}=0$

$$
\ln p-\ln x-\ln c_{1}=0
$$

$$
\begin{gathered}
\mathrm{P}=c_{1} \boldsymbol{x}=\frac{d y}{d x} \rightarrow \rightarrow \int c_{1} \boldsymbol{x} \cdot d x=\int d y \\
y=\frac{c_{1}}{2} x^{2}+c_{2}
\end{gathered}
$$

$\operatorname{EX}(2)$ Solve the equation: $\quad \frac{d 2 y}{d x^{2}}-x \frac{d y}{d x}=0$
Solution:

$$
\begin{gathered}
\mathrm{P}=\frac{d y}{d x} \& \frac{d p}{d x}=\frac{d 2 y}{d x^{2}} \\
\frac{d p}{d x}-x \mathrm{P}=0 \rightarrow \rightarrow \int \frac{d p}{p}-\int x d x=0 \\
\ln p=\frac{-x^{2}}{2}+\ln c_{1} \rightarrow \rightarrow \ln p-\ln c_{1}=\frac{-x^{2}}{2} \rightarrow \ln \frac{p}{c_{1}}=\frac{-x^{2}}{2} \\
\mathrm{P}=c_{1} \boldsymbol{e}^{\frac{-x^{2}}{2}}=\frac{d y}{d x} \rightarrow \rightarrow d y=c_{1} \boldsymbol{e}^{\frac{-x^{2}}{2}} \cdot d x
\end{gathered}
$$

$$
\int d y=c_{1} \int e^{\frac{-x^{2}}{2}} \cdot d x \rightarrow \rightarrow y=c_{1} \int e^{\frac{-x^{2}}{2}} \cdot d x
$$

2- EQUATIONS WITH INDEPENDENT VARIABLE (x) MISSING.

$$
\begin{aligned}
& \mathrm{P}=\frac{d y}{d x} \rightarrow \rightarrow \frac{d p}{d x}=\frac{d 2 y}{d x^{2}} \\
& \frac{d p}{d x}=\frac{d p}{d y} \cdot \frac{d y}{d x}=\frac{d p}{d y} \cdot \mathrm{P} \quad \text { (chain Rule) }
\end{aligned}
$$

$\operatorname{EX}(1)$ Solve the equation: $\quad y \frac{d 2 y}{d x^{2}}+1=\left(\frac{d y}{d x}\right)^{2}$

Solution:

$$
\begin{aligned}
\mathrm{P} & =\frac{d y}{d x} \& \frac{d p}{d x}=\frac{d 2 y}{d x^{2}} \\
\frac{d p}{d x} & =\frac{d p}{d y} \cdot \frac{d y}{d x}=\frac{d p}{d y} \cdot \mathrm{P}
\end{aligned}
$$

Sub. in the main equation: $\quad y . p \cdot \frac{d p}{d y}+1=p^{2}$

$$
\begin{gathered}
\int \frac{d y}{y}=\int \frac{p \cdot d p}{p^{2}-1} \\
\ln y+\ln c_{1}=\frac{1}{2} \ln \left(p^{2}-1\right) \\
c_{1}{ }^{2} \cdot y^{2}=p^{2}-1 \rightarrow \rightarrow\left(c_{1}{ }^{2} \cdot y^{2}\right)+1=p^{2} \\
\mathrm{P}=\sqrt{\left(c_{1}{ }^{2} \cdot y^{2}\right)+1}=\frac{d y}{d x} \\
\int d x=\int \frac{d y}{\sqrt{\left(c_{1}{ }^{2} \cdot y^{2}\right)+1}} \\
x=\frac{1}{c_{1}} \sinh { }^{-1}\left(c_{1} y\right)+c_{2} \\
y=\frac{1}{c_{1}} \sinh \left(c_{1} x+c_{1} c_{2}\right)
\end{gathered}
$$

3- HOMOGENOUS EQUATIONS.

This is defined and recognized by the form:

$$
\begin{gather*}
x \cdot \frac{d 2 y}{d x^{2}}=f\left(\frac{d y}{d x}, \frac{y}{x}, \frac{x}{y}\right) \\
y=v \cdot x \ldots \ldots \ldots \ldots(1) \tag{1}\\
\frac{d y}{d x}=v+x \frac{d v}{d x} \ldots \ldots \ldots . .(2) \tag{2}\\
\frac{d 2 y}{d x^{2}}=\frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}}+\frac{d v}{d x} \\
\frac{d 2 y}{d x^{2}}=2 \frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}} \ldots \ldots \ldots \ldots \tag{3}
\end{gather*}
$$

Substitute (1), (2), and (3) in D.E. , this leads to Euler's equation:

$$
x^{2} \cdot \frac{d 2 y}{d x^{2}}=f\left(x \frac{d y}{d x}, y\right) \text { or } x^{2} \cdot \frac{d 2 y}{d x^{2}}=f\left(x \frac{d v}{d x}, v\right)
$$

Which is solved by substitute:

$$
\begin{gather*}
x=e^{t} \rightarrow \rightarrow \mathrm{t}=\ln x ; \frac{d t}{d x}=\frac{1}{x} \ldots \ldots \ldots \text { (4) } \tag{4}\\
\frac{d v}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\frac{1}{x} \cdot \frac{d v}{d t} \ldots \ldots \ldots \ldots . . \text { (5) } \tag{5}\\
\frac{d 2 v}{d x^{2}}=-\frac{1}{x^{2}} \frac{d v}{d t}+\frac{1}{x} \cdot \frac{d}{d x}\left(\frac{d v}{d t}\right)=-\frac{1}{x^{2}} \cdot \frac{d v}{d t}+\frac{1}{x} \cdot \frac{d t}{d x} \frac{d}{d t}\left(\frac{d v}{d t}\right)=-\frac{1}{x^{2}} \cdot \frac{d v}{d t}+\frac{1}{x^{2}} \cdot \frac{d 2 v}{d t^{2}} \\
x^{2} \cdot \frac{d 2 v}{d x^{2}}=\frac{d 2 v}{d t^{2}}-\frac{d v}{d t} \ldots \ldots \ldots \text { (6) }
\end{gather*}
$$

$\operatorname{EX}(1)$ Solve the equation: $\quad 2 x^{2} y \cdot \frac{d 2 y}{d x^{2}}+y^{2}=x^{2}\left(\frac{d y}{d x}\right)^{2}$
Solution: divided by (2xy)

$$
\begin{gather*}
x \cdot \frac{d 2 y}{d x^{2}}+\frac{1}{2} \frac{y}{x}=\frac{1}{2} \frac{x}{y}\left(\frac{d y}{d x}\right)^{2} \quad \text { (Homogenous D.E.) } \\
y=v \cdot x \ldots \ldots \ldots . . \text { (1) } \tag{1}\\
\frac{d y}{d x}=v+x \frac{d v}{d x} \ldots \ldots \ldots . . \text { (2) } \\
\frac{d 2 y}{d x^{2}}=\frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}}+\frac{d v}{d x} \tag{2}\\
\frac{d 2 y}{d x^{2}}=2 \frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}} \ldots \ldots \ldots . . \text { (3) }
\end{gather*}
$$

Substitute (1), (2), and (3) in the main equation:

$$
\begin{gathered}
2 x^{3} v \cdot\left[2 \frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}}\right]+v^{2} x^{2}=x^{2}\left[v+x \frac{d v}{d x}\right]^{2} \\
4 x^{3} v \cdot \frac{d v}{d x}+2 x^{4} v \cdot \frac{d 2 v}{d x^{2}}+v^{2} x^{2}=x^{2}\left[v^{2}+2 v x \frac{d v}{d x}+x^{2}\left(\frac{d v}{d x}\right)^{2}\right] \\
4 x^{3} v \cdot \frac{d v}{d x}+2 x^{4} v \cdot \frac{d 2 v}{d x^{2}}+v^{2} x^{2}=v^{2} x^{2}+2 v x^{3} \frac{d v}{d x}+x^{4}\left(\frac{d v}{d x}\right)^{2} \\
2 v x^{3} \frac{d v}{d x}+2 x^{4} v \cdot \frac{d 2 v}{d x^{2}}=x^{4}\left(\frac{d v}{d x}\right)^{2}
\end{gathered}
$$

Divided by x^{2} :

$$
\begin{gather*}
2 x v \cdot \frac{d v}{d x}+2 x^{2} v \cdot \frac{d 2 v}{d x^{2}}=x^{2}\left(\frac{d v}{d x}\right)^{2} \quad \text { Euler equation } \\
x=e^{t} \rightarrow \rightarrow \mathrm{t}=\ln x ; \frac{d t}{d x}=\frac{\mathbf{1}}{x} \ldots \ldots \text { (4) } \tag{4}\\
\frac{d v}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\frac{\mathbf{1}}{x} \cdot \frac{d v}{\boldsymbol{d t}} \ldots \ldots \ldots \ldots . . \text { (5) } \tag{5}\\
x^{2} \cdot \frac{d 2 v}{d x^{2}}=\frac{d 2 v}{d t^{2}}-\frac{d v}{d t} \ldots \ldots \ldots . .(6) \tag{6}
\end{gather*}
$$

Sub. in the above Euler Equation :

$$
\begin{gathered}
2 v \cdot \frac{d v}{d t}+2 v\left(\frac{d 2 v}{d t^{2}}-\frac{d v}{d t}\right)=\left(\frac{d v}{d t}\right)^{2} \\
2 v \cdot \frac{d v}{d t}+2 v \cdot \frac{d 2 v}{d t^{2}}-2 v \cdot \frac{d v}{d t}=\left(\frac{d v}{d t}\right)^{2}
\end{gathered}
$$

$$
\begin{gathered}
2 v \cdot \frac{d 2 v}{d t^{2}}-\left(\frac{d v}{d t}\right)^{2}=\mathbf{0} \ldots . . \text { (7) } \\
p=\frac{d v}{d t} \& \frac{d p}{d t}=\frac{d 2 v}{d t^{2}} \\
\frac{d p}{d t}=\frac{d p}{d v} \cdot \frac{d v}{d t}=\mathrm{p} \cdot \frac{d p}{d v} \operatorname{sub} . \operatorname{in}(7) \\
2 v p \cdot \frac{d p}{d v}-p^{2}=0 \rightarrow \rightarrow \rightarrow \frac{d p}{p}=\frac{d v}{2 v} \\
\ln p=\frac{1}{2} \ln v+\ln c_{1} \rightarrow \rightarrow \rightarrow p=c_{1} v^{\frac{1}{2}}=\frac{d v}{d t} ; \quad\left(p=\frac{d v}{d t}\right) \\
v^{\frac{-1}{2}} \cdot d v=c_{1} d t \rightarrow \rightarrow \rightarrow 2 v^{\frac{1}{2}}=c_{1} \mathrm{t}+c_{2} \rightarrow \rightarrow \rightarrow v^{\frac{1}{2}}=\frac{c_{1}}{2} \cdot \mathrm{t}+\frac{c_{2}}{2} \\
v^{\frac{1}{2}}=c_{1}{ }^{`} \cdot \mathrm{t}+c_{2}{ }^{`} \rightarrow \rightarrow \rightarrow \quad v=\left(c_{1}{ }^{`} \cdot \mathrm{t}+c_{2}{ }^{`}\right)^{2} \rightarrow \rightarrow \rightarrow \frac{y}{x}=\left(c_{1}{ }^{`} \cdot \ln x+c_{2}\right)^{2}
\end{gathered}
$$

$\operatorname{EX}(2)$ Solve the equation: $\quad x^{2} \cdot \frac{d 2 y}{d x^{2}}+y=x \frac{d y}{d x}$

Solution:

$$
\begin{gather*}
x \cdot \frac{d 2 y}{d x^{2}}+\frac{y}{x}=\frac{d y}{d x} \quad \text { (Homogenous D.E.) } \\
y=v \cdot x \ldots \ldots \ldots . . \text { (1) } \\
\frac{d y}{d x}=v+x \frac{d v}{d x} \ldots \ldots \ldots . \text { (2) } \tag{1}\\
\frac{d 2 y}{d x^{2}}=\frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}}+\frac{d v}{d x} \tag{2}\\
\frac{d 2 y}{d x^{2}}=2 \frac{d v}{d x}+x \cdot \frac{d 2 v}{d x^{2}} \ldots \ldots \ldots \ldots . \text { (3) }
\end{gather*}
$$

Substitute (1), (2), and (3) in D.E.

$$
2 x \cdot \frac{d v}{d x}+x^{2} \cdot \frac{d 2 v}{d x^{2}}+v=v+x \frac{d v}{d x} \quad \text { Euler equation }
$$

$$
\begin{gathered}
2 x \cdot \frac{d v}{d x}+x^{2} \cdot \frac{d 2 v}{d x^{2}}+v-v-x \frac{d v}{d x}=0 \rightarrow \rightarrow \rightarrow x^{2} \cdot \frac{d 2 v}{d x^{2}}+x \cdot \frac{d v}{d x}=0 \rightarrow \rightarrow \rightarrow \\
x\left(x \cdot \frac{d 2 v}{d x^{2}}+\frac{d v}{d x}\right)=0 \\
\text { either } x=0 \text { or } x \cdot \frac{d 2 v}{d x^{2}}+\frac{d v}{d x}=0 \\
p=\frac{d v}{d x} \& \frac{d p}{d x}=\frac{d 2 v}{d x^{2}} \\
x \cdot \frac{d p}{d x}+p=0 \rightarrow \rightarrow \rightarrow \frac{d p}{p}+\frac{d x}{x}=0 \\
\ln p+\ln x=\ln c_{1} \rightarrow \rightarrow \rightarrow p=\frac{c_{1}}{x}=\frac{d v}{d x} \\
c_{1} \cdot \frac{d x}{x}=d v \\
c_{1} \ln x=v-c_{1} \ln c_{2} \rightarrow \rightarrow \rightarrow c_{1} \ln x+c_{1} \ln c_{2}=v \\
c_{1}\left(\ln x+\ln c_{2}\right)=v=\frac{y}{x} \\
c_{1}\left(\ln x c_{2}\right)=\frac{y}{x} \quad \rightarrow \rightarrow \rightarrow \quad y=c_{1} x \ln x c_{2}
\end{gathered}
$$

LECTURE (2)

SECOND ORDER DIFFERENTIAL EQUATIONS

PART TWO

(2) Linear Differential Equations:

1- Equations with constant coefficient.

2- Equations with constant coefficients as a function of the independent variable.

1- Equations with constant coefficient.
The general second order linear differential equation is:

$$
\mathrm{A} \frac{d 2 y}{d x^{2}}+\mathrm{B} \frac{d y}{d x}+C_{y}=\mathbf{f}(\mathbf{x})
$$

where $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ are constants $\& f(x)$ may a function of x or constant.
It is clear that equation has two solutions:

1) Complementary solution $\left(y_{c}\right)$.
2) Particular solution $\left(y_{p}\right)$.

The general solution is:

$$
\left(y=y_{c}+y_{p}\right)
$$

1) Complementary solution $\left(y_{c}\right)$:

We start with

$$
\mathrm{A} \frac{d 2 y}{d x^{2}}+\mathrm{B} \frac{d y}{d x}+C_{y}=0
$$

Putting this equation in the form of D -Operator ($\left.\mathrm{A} D^{2}+\mathrm{B} D+C\right) \mathrm{y}=0$
Substitute for \mathbf{D} by the constant \mathbf{m}, we find that:
Either $\mathrm{y}=0$ (not possible)
Or $\mathrm{A}^{2}+\mathrm{B} m+C=0 \quad$ (auxiliary equation)

1. The roots are real and different $\left(\boldsymbol{m}_{1} \& \boldsymbol{m}_{2}\right)$

$$
y_{c=}=\mathrm{A} \cdot e^{m_{1} x}+\text { B. } \cdot e^{m_{2} x}
$$

2. The roots are equal $\left(m_{1}=m_{2}=\mathbf{m}\right)$

$$
y_{c=} e^{m x}(\mathrm{~A}+\mathrm{B} x)
$$

3. The roots are complex $\left(m_{1}=\alpha+i \beta \& m_{2}=\alpha-i \beta\right)$

$$
y_{c=} e^{\alpha x}(\mathrm{~A} \cdot \sin \beta x+\mathrm{B} \cdot \cos \beta x)
$$

EX (1) Solve the equation: $\frac{d 2 y}{d x^{2}}-2 \frac{d y}{d x}-3 y=0$
Solution:

$$
\begin{gathered}
\mathbf{A} \boldsymbol{m}^{2}+\mathbf{B} \boldsymbol{m}+\boldsymbol{C}=\mathbf{0} \\
m^{2}-2 m-3=0 \\
(m-3)(m+1)=0
\end{gathered}
$$

$m_{1}=3 ; m_{2}=-1 \quad\left(\right.$ The roots are real and different $\left.\left(\boldsymbol{m}_{1} \& \boldsymbol{m}_{2}\right)\right)$

$$
\begin{aligned}
& y_{c=}=\text { A } \cdot e^{m_{1} x}+\text { B. } e^{m_{2} x} \\
& =\text { A. } e^{3 x}+\text { B. } e^{-x}
\end{aligned}
$$

EX (2) Solve the equation: $\frac{d 2 y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0$
Solution: $\quad \mathrm{A} m^{2}+\mathrm{B} m+C=0$

$$
\begin{gathered}
m^{2}+4 \mathrm{~m}+4=0 \\
(\mathrm{~m}+2)(\mathrm{m}+2)=0 \\
m_{1}=-2 ; m_{2}=-2 \quad\left(\text { The roots are equal }\left(\boldsymbol{m}_{\mathbf{1}}=\boldsymbol{m}_{\mathbf{2}}=\mathbf{m}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
y_{c} & =e^{m x}(\mathrm{~A}+\mathrm{B} x) \\
& =e^{-2 x}(1+4 x)
\end{aligned}
$$

EX (3) Solve the equation: $\frac{d 2 y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0$

Solution:

$$
\begin{gathered}
\mathbf{A} \boldsymbol{m}^{2}+\mathbf{B} \boldsymbol{m}+\boldsymbol{C}=\mathbf{0} \\
m^{2}-4 \mathrm{~m}+5=0 \\
\mathrm{~m}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\frac{-(4) \pm \sqrt{(4)^{2}-4(1)(5)}}{2(1)} \\
\mathrm{m}= \pm i \quad(\mathrm{~m}=\alpha \pm \mathrm{i} \beta) \\
y_{c=}=e^{\alpha x}(\mathrm{~A} \cdot \sin \beta x+\mathrm{B} \cdot \cos \beta x) \\
=e^{2 x}(\mathrm{~A} \cdot \sin x+\mathrm{B} \cdot \cos x)
\end{gathered}
$$

2) Particular solution $\left(y_{p}\right)$:

There are many methods to find the particular solution, here, we consider two of the most common ones.

1. Method of undetermined coefficient.

2. The inverse D-operator method.

1.Method of undetermined coefficient:

In this method, we select the form of the particular solution then we calculate the coefficient in the function. If the particular solution is similar to a term in the complementary solution then we multiply the particular solution by the independent variable (x) and if this is, still, similar to another term we multiply by (x) again. This steps will be repeated until is no similarity.

EX (1) Solve the equation: $\frac{d 2 y}{d x^{2}}+2 \frac{d y}{d x}=3 e^{x}$

Solution:

$$
\begin{gathered}
m^{2}+2 \mathrm{~m}=0 \\
m_{1}=0 ; m_{2}=-2 \quad \text { (The roots are real and different) } \\
y_{c=\mathrm{A}} \cdot e^{m_{1} x}+\mathrm{B} \cdot e^{m_{2} x}=A+\mathrm{B} \cdot e^{-2 x}
\end{gathered}
$$

when the function is $\left(\propto e^{x}\right)$ (where \propto is a constant) then:

$$
y=\text { A. } e^{x} ; \frac{d y}{d x}=\text { A. } e^{x} ; \frac{d 2 y}{d x^{2}}=\text { A. } e^{x}
$$

Sub. in the main equation: A. $e^{x}+2$ A. $e^{x}=3$ A. e^{x}

$$
\begin{gathered}
\mathrm{A}=1 ; y_{p=\mathrm{A} \cdot \mathrm{e}^{x}=\boldsymbol{e}^{x}}^{y=\boldsymbol{y}_{c}+y_{p}=\left(\boldsymbol{A}+\mathrm{B} \cdot \boldsymbol{e}^{-2 x}\right)+\boldsymbol{e}^{x}}
\end{gathered}
$$

EX (2) Solve the equation: $\frac{d 2 y}{d x^{2}}+y=\sin x$

Solution:

$$
\begin{gathered}
m^{2}+1=0 \\
m= \pm \sqrt{-1}(m=\alpha \pm i \beta) \\
\alpha=0 ; \beta=1 \\
y_{c}=e^{\alpha x}(A \cdot \sin \beta x+B \cdot \cos \beta x) \\
y_{c=}=A \sin x+B \cos x
\end{gathered}
$$

when $\boldsymbol{f}(\boldsymbol{x})$ is expressed by $(\alpha \sin \boldsymbol{x})$ (where \propto is a constant) then:

$$
\begin{array}{r}
y_{p=}=A \sin x+B \cos x \\
\quad\left(y_{c} \text { is similar to } y_{p}\right)
\end{array}
$$

thus we multiply the particular solution by the independent variable (\boldsymbol{x}) :

$$
\begin{gathered}
\boldsymbol{y}_{\boldsymbol{p}=}(A \sin x+B \cos x) \cdot x=A x \sin x+B x \cos x \\
\frac{\boldsymbol{d y}}{\boldsymbol{d} \boldsymbol{p}}=A \sin x+A x \cos x+B \cos x-B x \sin x \\
\frac{\boldsymbol{d} 2 \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{p}^{2}}=A \cos x+A \cos x-A x \sin x-B \sin x-B \sin x-B x \cos x \\
\frac{\boldsymbol{d} 2 \boldsymbol{y}}{\boldsymbol{d \boldsymbol { p } ^ { 2 }}}=2 A \cos x-2 B \sin x-A x \sin x-B x \cos x
\end{gathered}
$$

Sub. in the main equation: $\quad \frac{d 2 y}{d x^{2}}+\boldsymbol{y}=\sin x$
$(2 A \cos x-2 B \sin x-A x \sin x-B x \cos x)+(A x \sin x+$ $B x \cos x)=\sin x$
$2 A \cos x-2 B \sin x-A x \sin x-B x \cos x+A x \sin x+B x \cos x=$ $\sin x$

$$
\begin{gathered}
2 A \cos x-2 B \sin x=\sin x \\
\sin x \rightarrow \rightarrow \rightarrow \quad-2 B=1 \rightarrow \rightarrow \rightarrow B=-\frac{1}{2} \\
\cos x \rightarrow \rightarrow \rightarrow \quad 2 A=0 \rightarrow \rightarrow \rightarrow A=0 \\
y_{p}=(A x \sin x+B x \cos x)=-\frac{1}{2} x \cos x \\
\text { Now, }\left(y_{\mathrm{c}} \text { is not similar to } \mathbf{y}_{\mathrm{p}}\right) \text { thus: }
\end{gathered}
$$

$$
\begin{gathered}
y=y_{c}+y_{p} \\
y=A \sin x+B \cos x-\frac{1}{2} x \cos x
\end{gathered}
$$

The Inverse D-operator Method:
Definitions:

$$
\begin{aligned}
& D=\frac{d}{d x} \Rightarrow D y=\frac{d y}{d x} \quad * D y \neq y D \\
& D^{2}=\frac{d^{2}}{d x^{2}} \Rightarrow D^{2} y=\frac{d^{2} y}{d x^{2}} \\
& D^{3}=\frac{d^{3}}{d x^{3}} \Rightarrow D^{3} y=\frac{d^{3} y}{d x^{3}}
\end{aligned}
$$

$D^{n}=\frac{d^{n}}{d x^{n}}$ means n number of differentiation.
$\frac{1}{D}=\int$ means integration.
$\frac{1}{D^{n}} \quad$ means n number of integration.
Several cases can be used to find a particular solution:
First Rule:

$$
\left.y_{p}=\frac{1}{F(D)} e^{a x}=\frac{1}{F(a)} e^{a x} \right\rvert\, \quad F(a) \neq 0
$$

This rule is used when the right hand of D.E are:

1. $e^{a x}$
2. $A e^{a x}$
3. A
E_{x} : Solve the equation:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=e^{2 x} \\
m^{2}-m-6=0 \Rightarrow(m-3)(m+2)=0 \\
m_{1}=3 \quad \& \quad m_{2}=-2 \\
31
\end{gathered}
$$

$$
\begin{aligned}
& y_{c}=A e^{3 x}+B e^{-2 x} \\
& \left(D^{2}-D-6\right) y=e^{2 x} \\
& y_{p}=\frac{1}{D^{2}-D-6} e^{2 x} \Rightarrow y_{p}=\frac{1}{(2)^{2}-2-6} e^{2 x} \\
& y_{p}=\frac{-1}{4} e^{2 x} \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{3 x}+B e^{-2 x}-\frac{1}{4} e^{2 x}
\end{aligned}
$$

Ex: Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=3 e^{2 x} \\
& m^{2}-m-6=0 \Rightarrow(m-3)(m+2)=0 \Rightarrow m_{1}=3 \& m_{2}=-2 \\
& y_{c}=A e^{3 x}+B e^{-2 x} \\
& \left(D^{2}-D-6\right) y=3 e^{2 x} \\
& y_{p}=\frac{1}{D^{2}-D-6} 3 e^{2 x} \Rightarrow y_{p}=\frac{1}{4-2-6} 3 e^{2 x} \\
& y_{p}=-\frac{1}{4} 3 e^{2 x} \Rightarrow y_{p}=-\frac{3}{4} e^{2 x} \\
& y=y c+y p \Rightarrow y=A e^{3 x}+B e^{-2 x}-\frac{3}{4} e^{2 x}
\end{aligned}
$$

Ex: Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=9 \\
& m^{2}+4 m+3=0 \Rightarrow(m+3)(m+1)=0 \\
& m_{1}=-3-8 m_{2}=-1 \\
& y_{c}=A e^{-3 x}+B e^{-x} \\
& \left(D^{2}+4 D+3\right) y=9 \\
& y_{p}=\frac{1}{D^{2}+4 D+3} \\
& y_{p}=\frac{1}{3}=9 \Rightarrow y_{p}=\frac{1}{(0)^{2}+4(0)+3} \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{-3 x}+B e^{-x}+3
\end{aligned}
$$

Second Rule.

$$
y_{p}=\frac{1}{F(D)} e^{a x} F(x)=e^{a x} \frac{1}{F(D+a)} F(x)
$$

This rule is used when the right hand of D, E is $\left(e^{a x} \cdot F(x)\right)$ and when the first rule is faller $(F(a)=0)$.

Ex: Solve the equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-y=e^{x} \\
& m^{2}-1=0 \Rightarrow(m-1)(m+1)=0 \Rightarrow m_{1}=1 \text { \& } m_{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& y_{c}=A e^{x}+B e^{-x} \\
& \left(D^{2}-1\right) y=e^{x} \\
& y_{p}=\frac{1}{D^{2}-1} e^{x} \Rightarrow F(a)=0 \\
& y_{p}=e^{x} \frac{1}{(D+1)^{2}-1} 1 \Rightarrow y_{p}=e^{x} \frac{1}{D^{2}+2 D+1-1} \cdot 1 \\
& y_{p}=e^{x} \frac{1}{D(D+2)} 1 \\
& y_{p}=e^{x} \frac{1}{D}\left[\frac{1}{2}-\frac{1}{4} D+\frac{1}{8} D^{2}\right] \cdot 1 \\
& y_{p}=e^{x}\left[\frac{x}{2}-\frac{1}{4}+\frac{1}{8} D\right] \\
& y_{p}=e^{x}\left(\frac{x}{2}-\frac{1}{4}\right) \\
& y_{p}=\frac{x}{2} e^{x}-\frac{1}{4} e^{x}-\frac{1}{4} D+\frac{1}{8} D^{2} \\
& y=y_{c}+y_{p} \Rightarrow \frac{1}{2} D \pm \frac{1}{2} D \\
& y=A e^{x}+B e^{-x}+\frac{1}{4} D^{2} \\
& \frac{1}{4} D^{2}+\frac{1}{8} D^{3}
\end{aligned}
$$

ϵ_{x} : Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{3 x} \\
& m^{2}-5 m+6=0 \Rightarrow(m-3)(m-2)=0 \Rightarrow m_{1}=3 \text { \& } m_{2}=2 \\
& y_{c}=A e^{3 x}+B e^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \left(D^{2}-5 D+6\right) y=e^{3 x} \\
& y_{p}=\frac{1}{D^{2}-5 D+6} e^{3 x}, F(a)=0 \\
& y_{p}=e^{3 x} \frac{1}{(D+3)^{2}-5(D+3)+6} \cdot 1 \Rightarrow y_{p}=e^{3 x} \frac{1}{D^{2}+D} \cdot 1 \\
& y_{p}=e^{3 x} \frac{1}{D(D+1)} 1 \Rightarrow y_{p}=e^{3 x} \frac{1}{D}(1+D)^{-1} \cdot 1
\end{aligned}
$$

Note: $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}$

$$
\begin{aligned}
& (1-D)^{-2}=1+(-2)(-D)+\frac{(-2)(-3)}{2!}(-D)^{2}+\frac{(-2)(-3)(-4)}{3!}(-D)^{3} \\
& (1+D)^{-1}=1-D+\frac{(-1)(-2)}{2!} D^{2}+\frac{(-1)(-2)(-3)}{3!} D^{3}+\cdots \\
& \therefore y_{p}=e^{3 x} \frac{1}{D}\left(1-D+D^{2}\right) \cdot 1 \\
& y_{p}=e^{3 x}\left(\frac{1}{D}-1+D\right) \cdot 1 \Rightarrow y_{p}=e^{3 x}(x-1+0) \\
& y_{p}=x e^{3 x}-e^{3 x} \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{3 x}+B e^{2 x}+x e^{3 x}
\end{aligned}
$$

Another solution:

$$
\begin{array}{lc}
y_{p}=e^{3 x} \frac{1}{D(D+1)} 1 & 1-D+D^{2} \\
y_{p}=e^{3 x} \frac{1}{D}\left(1-D+D^{2}\right) 1 & \pm 1 \mp D \\
\text { then continue... } & \pm-D \\
& \pm D^{2} \pm D^{2} \\
& +D^{2} \\
\hline & \pm D^{2}+D^{3}
\end{array}
$$

Ex: Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=x e^{2 x} \\
& m^{2}+4 m+4=0 \Rightarrow(m+2)^{2}=0 \Rightarrow m_{1}=m_{2}=m=-2 \\
& y_{c}=e^{-2 x}(A+B x) \\
& \left(D^{2}+4 D+4\right) y=x e^{2 x} \\
& y_{p}=\frac{1}{D^{2}+4 D+4} x e^{2 x} \\
& y_{p}=e^{2 x} \frac{1}{(D+2)^{2}+4(D+2)+4} x \\
& y_{p}=e^{2 x} \frac{1}{D^{2}+8 D+16} x \\
& \therefore y_{p}=e^{2 x}\left[\frac{1}{16}-\frac{D}{32}\right] x \\
& y_{p}=e^{2 x}\left[\frac{x}{16}-\frac{1}{32}\right] \\
& \left.y_{p}=\frac{1}{16} x e^{2 x}-\frac{1}{32} e^{2 x}+8 D+16\right] 1 \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{-2 x}+B x e^{-2 x}+\frac{1}{16} x e^{2 x}-\frac{1}{32} e^{2 x}
\end{aligned}
$$

Third Rule:

$$
y_{p}=\frac{1}{F(D)} x^{n}=\left(a_{0}+a_{1} D+a_{2} D^{2}+\cdots+a_{n} D^{n}\right) x^{n}
$$

This rule is used when the right hand of D.E are $\left(x^{n}\right)$ or constant (A).

Ex: Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=2 x^{2} \\
& m^{2}+4 m+4=0 \Rightarrow(m+2)^{2}=0 \Rightarrow m_{1}=m_{2}=m=-2 \\
& y_{c}=e^{-2 x}(A+B x) \\
& \left(D^{2}+4 D+4\right) y=2 x^{2} \\
& y_{p}=\frac{1}{D^{2}+4 D+4} 2 x^{2} \\
& D^{2}+4 D+4 \\
& \frac{1}{4}-\frac{D}{4}+\frac{3}{16} D^{2} \\
& y_{p}=\left(\frac{1}{4}-\frac{D}{4}+\frac{3}{16} D^{2}\right) 2 x^{2} \\
& \frac{\mp \mp D \mp \frac{1}{4} D^{2}}{-D-\frac{1}{4} D^{2}} \\
& y_{p}=\frac{x^{2}}{2}-\frac{4 x}{4}+\frac{3}{16}-4 \\
& \frac{ \pm D \pm D^{2} \pm \frac{D^{3}}{4}}{\frac{3}{4} D^{2}+\frac{D^{3}}{4}} \\
& y_{p}=\frac{x^{2}}{2}-x+\frac{3}{4} \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{-2 x}+B x e^{-2 x}+\frac{x^{2}}{2}-x+\frac{3}{4}
\end{aligned}
$$

E_{x} : Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \\
& m^{2}-2 m+1=0 \Rightarrow(m-1)^{2}=0 \Rightarrow m_{1}=m_{2}=m=1 \\
& y_{c}=e^{x}(A+B x) \\
& \left(D^{2}-2 D+1\right) y=x \\
& y_{p}=\frac{1}{D^{2}-2 D+1} x \Rightarrow y_{p}=\frac{1}{(D-1)^{2}} x
\end{aligned}
$$

or $y_{p}=\frac{1}{(1-D)^{2}} x \Rightarrow y_{p}=(1-D)^{-2} x$

$$
\begin{aligned}
& (1-D)^{-2}=1+(-2)(-D)+\frac{(-2)(-3)}{2!}(-D)^{2}+\cdots \\
& (1-D)^{-2}=1+2 D+3 D^{2}+\cdots \\
& \therefore y_{p}=\left(1+2 D+3 D^{2}+\cdots\right) x \\
& y_{p}=x+2 \\
& y=y++y_{p} \Rightarrow y=A e^{x}+B x e^{x}+x+2
\end{aligned}
$$

Another solution:

$$
\begin{array}{rl}
D^{2}-2 D+1 & 1+2 D+3 D^{2} \\
& \frac{1}{+1 \pm 2 D \mp D^{2}} \\
& +2 D-D^{2} \\
& +3 D^{2}-2 D^{2} \mp 2 D^{3}
\end{array}
$$

$$
\begin{aligned}
& y_{p}=\frac{1}{D^{2}-2 D+1} x \\
& y_{p}=\left(1+2 D+3 D^{2}\right) x
\end{aligned}
$$

then continue...

Fourth Rule:

$$
\begin{aligned}
& y_{p}=\frac{1}{F\left(D^{2}\right)} \sin (a x+b)=\frac{1}{F\left(-a^{2}\right)} \sin (a x+b), \\
& y_{p}=\frac{1}{F\left(-a^{2}\right)} \neq 0 \\
& \quad \cos (a x+b)=\frac{1}{F\left(-a^{2}\right)} \cos (a x+b), \\
& F\left(-a^{2}\right) \neq 0
\end{aligned}
$$

This rule is used when the right hand of D.E. are $\sin (a x+b)$ or $\cos (a x+b)$ and $E\left(-a^{2}\right) \neq 0$.
$E x:$ Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-4 y=\cos (2 x+3) \\
& m^{2}-4=0 \Rightarrow(m-2)(m+2)=0 \Rightarrow m_{1}=2 \text { e } m_{2}=-2 \\
& y_{c}=A e^{2 x}+B e^{-2 x} \\
& \left(D^{2}-4\right) y=\cos (2 x+3) \\
& y_{p}=\frac{1}{D^{2}-4} \cos (2 x+3) \\
& y_{p}=\frac{1}{-(2)^{2}-4} \cos (2 x+3) \\
& y_{p}=\frac{1}{-8} \cos (2 x+3) \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{2 x}+B e^{-2 x}-\frac{1}{8} \cos (2 x+3)
\end{aligned}
$$

E_{x} : Solve the equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-4 y=\sin 2 x \\
& m^{2}+3 m-4=0 \Rightarrow(m+4)(m-1)=0 \Rightarrow m_{1}=-4 \& m_{2}=1 \\
& y_{c}=A e^{-4 x}+B e^{x} \\
& \left(D^{2}+3 D-4\right) y=\sin 2 x \\
& y_{p}=\frac{1}{D^{2}+3 D-4} \sin 2 x \\
& y_{p}=\frac{1}{-4+3 D-4} \sin 2 x \Rightarrow y_{p}=\frac{1}{3 D-8} \sin 2 x \\
& y_{p}=\frac{(3 D+8)}{(3 D-8)(3 D+8)} \sin 2 x \Rightarrow y_{p}=\frac{3 D+8}{9 D^{2}-64} \sin 2 x \\
& y_{p}=\frac{3 D+8}{9(-4)-64} \sin 2 x \Rightarrow y_{p}=\frac{3 D+8}{100} \sin 2 x \\
& y_{p}=\frac{6 \cos 2 x+8 \sin 2 x}{100} \\
& y_{p}=-\frac{6}{100} \cos 2 x-\frac{8}{100} \sin 2 x \\
& y_{p}=-\frac{3}{50} \cos 2 x-\frac{2}{25} \sin 2 x \\
& y=y \in+y_{p} \Rightarrow y=A e^{-4 x}+B e^{x}-\frac{3}{50} \cos 2 x-\frac{2}{25} \sin 2 x
\end{aligned}
$$

Fifth Rule:

$$
\begin{gathered}
y_{p}=\frac{1}{F\left(D^{2}\right)} \sin (a x+b)=\frac{1}{F\left(-(a+h)^{2}\right)} \sin ((a+h) x+b), \\
F\left(-a^{2}\right)=0 \\
y_{p}=\frac{1}{F\left(D^{2}\right)} \cos (a x+b)=\frac{1}{F\left(-(a+h)^{2}\right)} \cos ((a+h) x+b), \\
F\left(-a^{2}\right)=0
\end{gathered}
$$

This rule is used when the right hand of D. E. are $\sin (a x+b)$ or $\cos (a x+b)$ and $F\left(-a^{2}\right)=0$ (when the fourth rule is faller).

Ex: Solve the equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+4 y=\cos 2 x \\
& m^{2}+4=0 \Rightarrow m^{2}=-4 \Rightarrow m=\mp \sqrt{-4} \Rightarrow m=\mp 2 i \\
& y_{c}=A \cos 2 x+B \sin 2 x, \quad \alpha=0 \\
& \left(D^{2}+4\right) y=\cos 2 x \\
& y_{p}=\frac{1}{D^{2}+4} \cos 2 x, \quad F\left(-a^{2}\right)=0 \\
& y_{p}=\frac{1}{-(2+h)^{2}+4} \cos (2+h) x \\
& y_{p}=\frac{1}{-\left(4+4 h+h^{2}\right)+4} \cos (2+h) x
\end{aligned}
$$

$$
\begin{array}{r}
y_{p}=\frac{1}{-h(4+h)} \cos (2+h) x \\
\\
F(h)=F\left(h_{0}\right)+\left.\frac{d F}{d h}\right|_{h_{0}}\left(h-h_{0}\right)+\cdots .
\end{array}
$$

Note: $F(x)=F\left(x_{0}\right)+\left.\frac{d F}{d x}\right|_{x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2!} \frac{d^{2} F}{d x^{2}}\right|_{x_{0}}\left(x-x_{0}\right)^{2}+\cdots$

$$
\begin{aligned}
\cos (2+h) x & =\cos \left(2+h_{0}\right) x+\left(-\sin \left(2+h_{0}\right) x \cdot x\right)\left(h-h_{c}\right) \\
& \left.=\cos e^{2} x-h x \sin 2 x \quad \text { (repeated in } y_{c}\right) \\
& =-h x \sin 2 x \\
\therefore y_{p}=\frac{1}{-h(4+h)} & (-h x \sin 2 x) \Rightarrow y_{p}=\frac{x \sin 2 x}{4} \\
y=y_{c}+y_{p} & \Rightarrow y=A \cos 2 x+B \sin 2 x+\frac{1}{4} x \sin 2 x
\end{aligned}
$$

Sixth Rule:

$$
y_{p}=\frac{1}{F(D)} \times F(x)=x \frac{1}{F(D)} F(x)-\frac{F(D)}{[F(D)]^{2}} F(x)
$$

This rule is used when the right hand of D.E. is xF(or). Ex: Solve the equation:

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x \sin 2 x
$$

$$
\begin{aligned}
& m^{2}+3 m+2=0 \Rightarrow(m+2)(m+1)=0 \Rightarrow m_{1}=-28 m_{2}=-1 \\
& y_{c}=A e^{-2 x}+B e^{-x} \\
& \left(D^{2}+3 D+2\right) y=x \sin 2 x \\
& y_{p}=\frac{1}{D^{2}+3 D+2} x \sin 2 x \\
& y_{p}=x \frac{1}{D^{2}+3 D+2} \sin 2 x-\frac{2 D+3}{\left(D^{2}+3 D+2\right)^{2}} \sin 2 x \\
& y_{p}=x-\frac{1}{-4+3 D+2} \sin 2 x-\frac{2 D+3}{(-4+3 D+2)^{2}} \sin 2 x \\
& y_{p}=x \frac{1}{3 D-2} \sin 2 x-\frac{2 D+3}{(3 D-2)^{2}} \sin 2 x \\
& y_{p}=x \frac{(3 D+2)}{(3 D-2)(3 D+2)} \sin 2 x-\frac{2 D+3}{9 D^{2}-12 D+4} \sin 2 x \\
& y_{p}=x \frac{3 D+2}{9 D^{2}-4} \sin 2 x-\frac{2 D+3}{9(-4)-12 D+4} \sin 2 x \\
& y_{p}=x \frac{3 D+2}{9(-4)-4} \sin 2 x-\frac{2 D+3}{4(-8-3 D)} \sin 2 x \\
& y
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}=\frac{x}{-40}(3 D+2) \sin 2 x+\frac{(2 D+3)(3 D-8)}{4(3 D+8)(3 D-8)} \sin 2 x \\
& y_{p}=\frac{x}{-40}(3 D+2) \sin 2 x+\frac{1}{4} \frac{(3 D-8)(2 D+3)}{9 D^{2}-64} \sin 2 x \\
& y_{p}=\frac{x}{-40}(3(2) \cos 2 x+2 \sin 2 x)+\frac{1}{4} \frac{\left(6 D^{2}-7 D-24\right)}{9(-4)-64} \sin 2 x \\
& y_{p}=-\frac{x}{20}(3 \cos 2 x+\sin 2 x)+\frac{1}{4} \frac{-24 \sin 2 x-7(2) \cos 2 x-24 \sin 2 x}{-100} \\
& y_{p}=-\frac{x}{20}(3 \cos 2 x+\sin 2 x)+\frac{24 \sin 2 x+7 \cos 2 x}{200} \\
& y_{p}=-\frac{3}{20} x \cos 2 x-\frac{1}{20} x \sin 2 x+\frac{6}{50} \sin 2 x+\frac{7}{200} \cos 2 x \\
& y=y e+y_{p} \\
& y=A e^{-2 x}+B e^{-x}-\frac{3}{20} x \cos 2 x-\frac{1}{20} x \sin 2 x+\frac{6}{50} \sin 2 x+\frac{7}{200} \cos 2 x
\end{aligned}
$$

Simultaneous Differential Equation :

1. Systematic Elimination:- in this method we eliminate the variables and their derivatives alge braically until we obtain an equation with only one dependent variable.
E_{x} : Solve the two simultaneous differential equations

$$
\begin{aligned}
& \frac{d x}{d t}+5 x+\frac{d y}{d t}+3 y=e^{-t} \\
& 2 \frac{d x}{d t}+x+\frac{d y}{d t}+y=3 \\
& \frac{d x}{d t}+5 x+\frac{d y}{d t}+3 y=e^{-t} \\
& \mp 10 \frac{d x}{d t} \mp 5 x \mp 5 \frac{d y}{d t} \mp 5 y=\mp 15 \\
& -9 \frac{d x}{d t}-4 \frac{d y}{d t}-2 y=e^{-t}-15 \\
& +2 \frac{d x}{d t}+10 x+2 \frac{d y}{d t}+6 y=+2 e^{-t} \\
& \mp 2 \frac{d x}{d t} \mp x \mp \frac{d y}{d t} \mp y=\mp 3 \\
& +9 x+\frac{d y}{d t}+5 y=+2 e^{-t}-3
\end{aligned}
$$

Differentiate with respect to t

$$
\begin{aligned}
& 9 \frac{d x}{d t}+\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}=-2 e^{-t} \\
& -9 \frac{d x}{d t}-4 \frac{d y}{d t}-2 y=+e^{-t}-15 \\
& \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=-e^{-t}-15
\end{aligned}
$$

$$
\begin{aligned}
& m^{2}+m-2=0 \Rightarrow(m+2)(m-1)=0 \\
& m_{1}=-2 \& m_{2}=1 \\
& y_{\epsilon}=C_{1} e^{-2 t}+C_{2} e^{t} \\
& \left(D^{2}+D-2\right) y=-e^{-t}-15 \\
& y_{p}=\frac{1}{D^{2}+D-2}\left(-e^{-t}\right) \quad \frac{D^{2}+D-2}{}
\end{aligned}
$$

2. D-Operator: Using the algebraic property of the D -operator.

Ex: Solve the two simultaneous differential equations

$$
\begin{aligned}
& 2 \frac{d x}{d t}+5 x-2 \frac{d y}{d t}-3 y=t \\
& \frac{d x}{d t}-2 x+\frac{d y}{d t}+2 y=0 \\
& (2 D+5) x-(2 D+3) y=t \quad *(D+2) \\
& (D-2) x+(D+2) y=0 \quad *(2 D+3) \\
& (D+2)(2 D+5) x-(D+2)(2 D+3) y=(D+2) \cdot t \\
& (D-2)(2 D+3) x+(D+2)(2 D+3) y=(2 D+3) \cdot 0 \\
& (D+2)(2 D+5) x+(D-2)(2 D+3) x=(D+2) t \\
& \left(2 D^{2}+9 D+(0) x+\left(2 D^{2}-D-6\right) x=(D+2) \cdot t\right. \\
& \left(4 D^{2}+8 D+4\right) x=(D+2) \cdot t \\
& \left(4 D^{2}+8 D+4\right) x=1+2 t \\
& 4 m^{2}+8 m+4=0 \Rightarrow m^{2}+2 m+1=0 \\
& (m+1)(m+1)=0 \Rightarrow m_{1}=m_{2}=m=-1 \\
& x_{c}=e^{-t}(A t+B) \\
& E(x)=1+2 t \\
& x_{p}=c_{1} t+c_{2}, x_{p}^{\prime}=c_{1}, \quad x_{p}^{\prime \prime}=0 \\
& \left(4 D^{2}+8 D+4\right) x=1+2 t \\
& \left(4(0)+8 C_{1}+4\right)\left(C_{1} t+C_{2}\right)=1+2 t
\end{aligned}
$$

$$
\begin{aligned}
& 4 C_{1} t+8 C_{1}+4 C_{2}=1+2 t \\
& 8 C_{1}+4 C_{2}=1 \quad 4 C_{1}=2 \Rightarrow C_{1}=\frac{1}{2} \\
& \therefore C_{2}=-\frac{3}{4} \\
& x_{p}=C_{1} t+C_{2} \Rightarrow x_{p}=\frac{1}{2} t-\frac{3}{4} \\
& x=x_{c}+x_{p} \Rightarrow x=e^{-t}(A t+B)+\frac{1}{2} t-\frac{3}{4}
\end{aligned}
$$

Ex: Solve the two simultaneous differential equations

$$
\begin{aligned}
& (D+2) x+(D+4) y=1 \\
& (D+1) x+(D+5) y=2 \\
& (D+1)(D+2) x+(D+1)(D+4) y=(D+1) \cdot 1=0+1=1 \\
& \mp(D+2)(D+1) x \mp(D+2)(D+5) y=\mp(D+2) \cdot 2=0 \mp 4=\mp 4 \\
& (D+1)(D+4) y-(D+2)(D+5) y=-3 \\
& \left(D^{2}+5 D+4\right) y-\left(D^{2}+7 D+10\right) y=-3 \\
& \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+4 y-\frac{d^{2} y}{d t^{2}}-7 \frac{d y}{d t}-10 y=-3 \\
& -2 \frac{d y}{d t}-6 y=-3 \Rightarrow \frac{d y}{d t}=\frac{3}{2}-3 y \Rightarrow \frac{d y}{\frac{3}{2}-3 y}=d t \\
& -\frac{1}{3} \ln \left(\frac{3}{2}-3 y\right)=t \Rightarrow \ln \left(\frac{3}{2}-3 y\right)^{-\frac{1}{3}}=t \\
& \left(\frac{3}{2}-3 y\right)^{-\frac{1}{3}}=e^{t} \Rightarrow \frac{3}{2}-3 y=e^{-3 t} \Rightarrow 3 y=\frac{3}{2}-e^{-3 t} \\
& y=\frac{1}{2}-\frac{1}{3} e^{-3 t}
\end{aligned}
$$

Higher Order Differential Equations:
i. The roots are different $\left(m_{1} \neq m_{2} \neq m_{3} \neq \ldots\right)$

$$
y_{e}=A e^{m_{1} x}+B e^{m_{2} x}+C e^{m_{3} x}+\ldots
$$

2. The roots are equal $\left(m=m_{1}=m_{2}=m_{3}=\ldots\right)$

$$
y_{c}=e^{m x}\left(A+B x+C x^{2}+\cdots\right)
$$

3. De roots are complex

$$
y_{c}=e^{\alpha x}(A \cos \beta x+\beta \sin \beta x)
$$

Ex: Solve the equation

$$
\begin{aligned}
& \frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}+9 \frac{d y}{d x}+5 y=3 e^{2 x} \\
& m^{3}+5 m^{2}+9 m+5=0 \quad \text { (Auxiliary equation). } \\
& m=-1 \text { (By inspection). } \\
& (-1)^{3}+5(-1)^{2}+9(-1)+5=0 \Rightarrow 0=0 \\
& (m+1)\left(m^{2}+4 m+5\right)=0 \\
& m^{2}+4 m+5 \\
& m+1=0 \Rightarrow m_{1}=-1 \\
& m+1 \\
& m^{3}+5 m^{2}+4 m+5 \\
& m^{2}+4 m+5=0 \\
& m=\frac{-4 \mp \sqrt{(4)^{2}-4(1)(5)}}{2(1)} \\
& m=\frac{-4 \mp 2 i}{2} \Rightarrow m=-2 \mp i \\
& \frac{ \pm m^{3}+m^{2}}{4 m^{2}+9 m} \\
& \frac{74 m^{2}+4 m}{5 m+5} \\
& \frac{75 m+5}{0} \\
& m_{2}=-2+i \text { \& } m_{3}=-2-i \\
& 45
\end{aligned}
$$

$$
\begin{aligned}
& y_{c}=C_{1} e^{m_{1} x}+e^{\alpha x}\left(C_{2} \cos \beta x+C_{3} \sin \beta x\right) \\
& y_{c}=C_{1} e^{-x}+e^{-2 x}\left(C_{2} \cos x+C_{3} \sin x\right) \\
& y_{p}=A e^{2 x}, \frac{d y}{d x}=2 A e^{2 x}, \frac{d^{2} y}{d x^{2}}=4 A e^{2 x}, \\
& \frac{d^{3} y}{d x^{3}}=8 A e^{2 x} \\
& 8 A e^{2 x}+5\left(4 A e^{2 x}\right)+9\left(2 A e^{2 x}\right)+5\left(A e^{2 x}\right)=3 e^{2 x} \\
& (8 A+20 A+18 A+5 A) e^{2 x}=3 e^{2 x} \\
& \therefore A=1 / 17 \\
& y_{p}=\frac{1}{17} e^{2 x} \\
& y=y_{c}+y_{p} \Rightarrow y=C_{1} e^{-x}+e^{-2 x}\left(C_{2} \cos x+C_{3} \sin x\right)+\frac{1}{17} e^{2 x}
\end{aligned}
$$

E_{x} : Solve the equation

$$
\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{3 x}
$$

$m^{3}-2 m^{2}-5 m+6=0$ (Auxiliary equation). $m=1$ (By inspection).

$$
(1)^{3}-2(1)^{2}-5(1)+6=0 \Rightarrow 0=0
$$

$$
(m-1)\left(m^{2}-m-6\right)=0
$$

$$
(m-1)(m-3)(m+2)=0
$$

$$
m_{1}=1
$$

$$
m_{2}=3
$$

$$
m_{3}=-2
$$

$\frac{m-1 \frac{m^{2}-m-6}{m^{3}-2 m^{2}-5 m+6}}{\frac{ \pm m^{3} \pm m^{2}}{-m^{2}-5 m}} \frac{\frac{-m^{2} \pm m}{ \pm m+6}}{0}$

$$
\begin{aligned}
& y_{c}=A e^{m_{1} x}+B e^{m_{2} x}+C e^{m_{3} x} \\
& y_{c}=A e^{x}+B e^{3 x}+C e^{-2 x} \\
& \left(D^{3}-2 D^{2}-5 D+6\right) y=e^{3 x} \\
& y_{p}=\frac{1}{D^{3}-2 D^{2}-5 D+6} e^{3 x}, F(a)=0 \\
& y_{p}=e^{3 x} \frac{1}{(D+3)^{3}-2(D+3)^{2}-5(D+3)+6}
\end{aligned}
$$

Note: $\quad(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

$$
\begin{aligned}
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& \therefore y_{p}=e^{3 x} \frac{1}{D^{3}+7 D^{2}+10 D} \cdot 1 \\
& y_{p}=e^{3 x} \frac{1}{D\left(D^{2}+7 D+10\right)} \cdot 1 \\
& y_{p}=e^{3 x} \frac{1}{D} \cdot \frac{1}{10} \\
& y_{p}=e^{3 x} \frac{x}{10} \\
& y=y_{c}+y_{p} \\
& y=A e^{x}+B e^{3 x}+C e^{-2 x}+\frac{1}{10} x e^{3 x}
\end{aligned}
$$

Another Solution:

$$
y_{P}=\frac{1}{D^{3}-2 D^{2}-5 D+6} e^{3 x}
$$

$$
\begin{aligned}
& y_{p}=\frac{1}{(D-1)(D-3)(D+2)} e^{3 x} \\
& y_{p}=\frac{1}{(D-3)(3-1)(3+2)} e^{3 x} \Rightarrow y_{p}=\frac{1}{(D-3)(10)} e^{3 x} \\
& y_{p}=e^{3 x} \frac{1}{10(D+3-3)} \cdot 1 \Rightarrow y_{p}=e^{3 x} \frac{1}{D} \cdot \frac{1}{10} \\
& y_{p}=\frac{1}{10} x e^{3 x} \\
& y=y_{c}+y_{p} \Rightarrow y=A e^{x}+B e^{3 x}+C e^{-2 x}+\frac{1}{10} x e^{3 x}
\end{aligned}
$$

Ex: Solve the equation:

$$
\begin{aligned}
& \frac{d^{4} y}{d x^{4}}+2 \frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}=x^{2}+3 e^{2 x} \\
& m^{4}+2 m^{3}-3 m^{2}=0 \\
& m^{2}\left(m^{2}+2 m-3\right)=0 \\
& m^{2}(m+3)(m-1)=0 \\
& m_{1}=0, m_{2}=0, m_{3}=-3, m_{4}=1 \\
& y_{c}=e^{m x}(A+B x)+C e^{m x}+E e^{m x} \\
& y_{c}=A+B x+C e^{-3 x}+E e^{x} \\
& \left(D^{4}+2 D^{3}-3 D^{2}\right) y=x^{2}+3 e^{2 x} \\
& y_{p}=\frac{1}{D^{4}+2 D^{3}-3 D^{2}} x^{2}+D^{4}+2 D^{3}-3 D^{2} 3 e^{2 x}
\end{aligned}
$$

Factorial Function

The classical case of the integer form of the factorial function, n !, consists of the product of n and all integers less than n, down to 1 , as follows

$$
n!= \begin{cases}n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1 & n=1,2,3, \ldots \tag{1.1}\\ 1 & n=0\end{cases}
$$

where by definition, $0!=1$.

Gamma Function

The factorial function can be extended to include non-integer arguments through the use of Euler's second integral given as

$$
\begin{equation*}
z!=\int_{0}^{\infty} e^{-t} t^{z} d t \tag{1.7}
\end{equation*}
$$

Equation 1.7 is often referred to as the generalized factorial function.
Through a simple translation of the \boldsymbol{z} - variable we can obtain the familiar gamma function as follows

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t=(z-1)! \tag{1.8}
\end{equation*}
$$

The gamma function is one of the most widely used special functions encountered in advanced mathematics because it appears in almost every integral or series representation of other advanced mathematical functions.

Let's first establish a direct relationship between the gamma function given in Eq. 1.8 and the integer form of the factorial function given in Eq. 1.1. Given the gamma function $\Gamma(z+1)=z$! use integration by parts as follows:

$$
\int u d v=u v-\int v d u
$$

where from Eq. 1.7 we see

$$
\begin{array}{r}
u=t^{z} \Rightarrow d u=z t^{z-1} d t \\
d v=e^{-t} d t \Rightarrow v=-e^{-t}
\end{array}
$$

which leads to

$$
\Gamma(z+1)=\int_{0}^{\infty} e^{-t} t^{z} d t=\left[-e^{-t} t^{z}\right]_{0}^{\infty}+z \int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

Given the restriction of $\boldsymbol{z}>\mathbf{0}$ for the integer form of the factorial function, it can be seen that the first term in the above expression goes to zero since, when

$$
\begin{gathered}
t=0 \Rightarrow t^{n} \rightarrow 0 \\
t=\infty \Rightarrow e^{-t} \rightarrow 0
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\Gamma(z+1)=z \underbrace{\int_{0}^{\infty} e^{-t} t^{z-1} d t}_{\Gamma(z)}=z \Gamma(z), \quad z>0 \tag{1.9}
\end{equation*}
$$

When $z=1 \Rightarrow t^{z-1}=t^{0}=1$, and

$$
\Gamma(1)=0!=\int_{0}^{\infty} e^{-t} d t=\left[-e^{-t}\right]_{0}^{\infty}=1
$$

and in turn

$$
\begin{aligned}
& \Gamma(2)=1 \Gamma(1)=1 \cdot 1=1! \\
& \Gamma(3)=2 \Gamma(2)=2 \cdot 1=2! \\
& \Gamma(4)=3 \Gamma(3)=3 \cdot 2=3!
\end{aligned}
$$

In general we can write

$$
\Gamma(n+1)=n!\quad n=1,2,3, \ldots
$$

The gamma function constitutes an essential extension of the idea of a factorial, since the argument \boldsymbol{z} is not restricted to positive integer values, but can vary continuously.

From Eq. 1.9, the gamma function can be written as

$$
\Gamma(z)=\frac{\Gamma(z+1)}{z}
$$

From the above expression it is easy to see that when $\boldsymbol{z}=0$, the gamma function approaches ∞ or in other words $\Gamma(0)$ is undefined.

Given the recursive nature of the gamma function, it is readily apparent that the gamma function approaches a singularity at each negative integer.

However, for all other values of $\boldsymbol{z}, \Gamma(\boldsymbol{z})$ is defined and the use of the recurrence relationship for factorials, i.e.

$$
\Gamma(z+1)=z \Gamma(z)
$$

effectively removes the restriction that x be positive, which the integral definition of the factorial requires. Therefore,

$$
\begin{equation*}
\Gamma(z)=\frac{\Gamma(z+1)}{z}, \quad z \neq 0,-1,-2,-3, \ldots \tag{1.11}
\end{equation*}
$$

A plot of $\Gamma(z)$ is shown in Figure 1.1.
Several other definitions of the Γ-function are available that can be attributed to the pioneering mathematicians in this area

Other forms of the gamma function are obtained through a simple change of variables, as follows

$$
\begin{array}{ll}
\Gamma(z)=2 \int_{0}^{\infty} y^{2 z-1} e^{-y^{2}} d y & \text { by letting } t=y^{2} \\
\Gamma(z)=\int_{0}^{1}\left(\ln \frac{1}{y}\right)^{z-1} d y & \text { by letting } e^{-t}=y \tag{1.16}
\end{array}
$$

Relations Satisfied by the Γ-Function

Recurrence Formula

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{1.17}
\end{equation*}
$$

Duplication Formula

$$
\begin{equation*}
2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 z) \tag{1.18}
\end{equation*}
$$

Reflection Formula

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z} \tag{1.19}
\end{equation*}
$$

Some Special Values of the Gamma Function

Using Eq. 1.15 or Eq. 1.19 we have

$$
\begin{equation*}
\Gamma(1 / 2)=(-1 / 2)!=2 \underbrace{\int_{0}^{\infty} e^{-y^{2}} d y}_{I}=\sqrt{\pi} \tag{1.20}
\end{equation*}
$$

where the solution to \boldsymbol{I} is obtained from Schaum's Handbook of Mathematical Functions (Eq. 18.72).

$$
\begin{aligned}
& \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \\
& \Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} \mathrm{~d} t \\
& \Gamma(x+1)=x \Gamma(x) \\
& \Gamma(x)=(x-1) \Gamma(x-1) \\
& \Gamma(1)=1 \\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \\
& \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2} \\
& \Gamma(x)=\frac{\Gamma(x+1)}{x} \\
& \Gamma\left(-\frac{3}{2}\right)=\frac{\Gamma\left(-\frac{1}{2}\right)}{-\frac{3}{2}}=\frac{\Gamma\left(\frac{1}{2}\right)}{\left(-\frac{3}{2}\right)\left(-\frac{1}{2}\right)}=\frac{4}{3} \sqrt{\pi}
\end{aligned}
$$

(a) For n a positive integer

$$
\Gamma(n+1)=n \Gamma(n)=n!
$$

$$
\Gamma(1)=1 ; \quad \Gamma(0)=\infty ; \quad \Gamma(-n)= \pm \infty
$$

(b) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$;
$\Gamma\left(-\frac{1}{2}\right)=-2 \sqrt{\pi}$

$$
\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}
$$

$$
\Gamma\left(-\frac{3}{2}\right)=\frac{4}{3} \sqrt{\pi}
$$

$$
\Gamma\left(\frac{5}{2}\right)=\frac{3 \sqrt{\pi}}{4}
$$

$$
\Gamma\left(-\frac{5}{2}\right)=-\frac{8}{15} \sqrt{\pi}
$$

$$
\Gamma\left(\frac{7}{2}\right)=\frac{15 \sqrt{\pi}}{8}
$$

$$
\Gamma\left(-\frac{7}{2}\right)=\frac{16}{105} \sqrt{\pi}
$$

$$
y=\Gamma(x)
$$

x	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$\Gamma(x)$	∞	1.772	1.000	0.886	1.000	1.329	2.000	3.323	6.000

x	-0.5	-1.5	-2.5	-3.5
$\Gamma(x)$	-3.545	2.363	-0.945	0.270

$$
\int_{0}^{\infty} x^{7} e^{-x} \mathrm{~d} x . \quad \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad \Gamma(v)=\int_{0}^{\infty} x^{v-1} e^{-x} \mathrm{~d} x \quad v=8
$$

$$
I=\Gamma(v)=\Gamma(8) \quad \Gamma(8)=7!=5040
$$

Evaluate $\int_{0}^{\infty} x^{3} e^{-4 x} \mathrm{~d} x$

$$
\begin{aligned}
& y=4 x \quad \mathrm{~d} y=4 \mathrm{~d} x \quad I=\frac{1}{4^{4}} \int_{0}^{\infty} y^{3} e^{-y} \mathrm{~d} y=\frac{1}{4^{4}} \Gamma(v) \quad v=4 \\
& I=\frac{1}{4^{4}} \Gamma(4) \quad I=\frac{3}{128}
\end{aligned}
$$

Evaluate $\int_{0}^{\infty} x^{1 / 2} e^{-x^{2}} \mathrm{~d} x$.

$$
\begin{gathered}
y=x^{2} \quad \mathrm{~d} y=2 x \mathrm{~d} x \\
I=\int_{0}^{\infty} y^{1 / 4} e^{-y} \mathrm{~d} y / 2 x=\int_{0}^{\infty} \frac{y^{1 / 4} e^{-y} \mathrm{~d} y}{2 y^{1 / 2}} \\
=\frac{1}{2} \int_{0}^{\infty} y^{-1 / 4} e^{-y} \mathrm{~d} y \\
=\frac{1}{2} \int_{0}^{\infty} y^{\nu-1} e^{-y} \mathrm{~d} y \quad \text { where } v=\frac{3}{4} \quad \therefore I=\frac{1}{2} \Gamma\left(\frac{3}{4}\right)
\end{gathered}
$$

The beta function

$$
\mathrm{B}(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} \mathrm{~d} x
$$

$$
\mathrm{B}(m, n)=\mathrm{B}(n, m)
$$

Alternative form

$$
\begin{aligned}
& \mathrm{B}(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta \mathrm{~d} \theta \\
& \mathrm{~B}(m, n)=\frac{(m-1)!(n-1)!}{(m+n-1)!} \\
& \mathrm{B}(4,3)=\frac{(3!)(2!)}{(6!)} \\
& \mathrm{B}(5,3)=\frac{(4!)(2!)}{(7!)} \\
& \mathrm{B}(k, 1)=\mathrm{B}(1, k)=\frac{1}{k} \\
& \mathbf{B}\left(\frac{1}{2}, \frac{1}{2}\right)=\pi
\end{aligned}
$$

Relation between the gamma and beta functions

$$
\begin{aligned}
& \mathrm{B}(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \\
& \mathrm{B}\left(\frac{3}{2}, \frac{1}{2}\right)=\frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(2)}=\frac{\sqrt{\pi} / 2 \times \sqrt{\pi}}{1}=\frac{\pi}{2}
\end{aligned}
$$

Evaluate $I=\int_{0}^{1} x^{5}(1-x)^{4} \mathrm{~d} x$

$$
\begin{array}{rr}
\mathrm{B}(m, n)=\int_{n}^{1} x^{m-1}(1-x)^{n-1} \mathrm{~d} x \\
m-1=5 & n-1=4 \\
m=6 & n=5
\end{array}
$$

$$
I=\mathrm{B}(6,5)=\frac{5!4!}{10!}=\frac{1}{1260}
$$

$$
\begin{aligned}
& I=\int_{0}^{1} x^{4} \sqrt{1-x^{2}} \mathrm{~d} x \\
& x^{2}=y \quad x=y^{\frac{1}{2}} \quad \mathrm{~d} x=\frac{1}{2} y^{-\frac{1}{2}} \mathrm{~d} y \\
& I=\int_{0}^{1} y^{2}(1-y)^{\frac{1}{2}} \frac{1}{2} y^{-\frac{1}{2}} \mathrm{~d} y=\frac{1}{2} \int_{0}^{1} y^{\frac{3}{2}}(1-y)^{\frac{1}{2}} \mathrm{~d} y \\
& m-1=\frac{3}{2} \\
& I=\frac{1}{2} \mathrm{~B}\left(\frac{5}{2}, \frac{3}{2}\right) \\
& \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2} \\
& I=\frac{1}{2} \frac{\Gamma\left(\frac{5}{2}\right) \Gamma\left(\frac{3}{2}\right)}{\Gamma(4)} \\
& I=\int_{0}^{3} \frac{x^{3} \mathrm{~d} x}{\sqrt{3-x}} . \\
& I=\int_{0}^{3} \frac{x^{3} \mathrm{~d} x}{\sqrt{3-x}=\frac{3 \sqrt{\pi}}{4}} \quad \Gamma(4)=3!\quad I=\frac{\pi}{32} \\
& \frac{x}{3}=y \quad x=3 y \quad \mathrm{~d} x=3 \mathrm{~d} y
\end{aligned}
$$

Limits: $x=0, y=0 ; \quad x=3, y=1$

$$
\begin{array}{l|l|l}
I=27 \sqrt{3} \int_{0}^{1} y^{3}(1-y)^{-\frac{1}{2}} \mathrm{~d} y & \begin{array}{l}
m-1=3 \\
n-1=-\frac{1}{2}
\end{array} & \begin{array}{c}
m=4 \\
n=\frac{1}{2}
\end{array}
\end{array}
$$

$$
I=27 \sqrt{3} \mathrm{~B}\left(4, \frac{1}{2}\right)=27 \sqrt{3} \frac{\Gamma(4) \Gamma\left(\frac{1}{2}\right)}{\Gamma(9 / 2)}
$$

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} ; \Gamma(9 / 2)=\frac{105 \sqrt{\pi}}{16} ; \Gamma(4)=3!
$$

$$
I=27 \sqrt{3} \times 6 \times \sqrt{\pi} \times \frac{16}{105 \sqrt{\pi}}=\frac{864 \sqrt{3}}{35}=42.76
$$

Evaluate $I=\int_{0}^{\pi / 2} \sin ^{5} \theta \cos ^{4} \theta \mathrm{~d} \theta$.

$$
\mathrm{B}(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta \mathrm{~d} \theta
$$

$$
2 m-1=5 \quad \therefore m=3 ; \quad 2 n-1=4 \quad \therefore n=5 / 2
$$

$$
\begin{aligned}
& I=\frac{1}{2} \mathrm{~B}(3,5 / 2)=\frac{1}{2} \cdot \frac{\Gamma(3) \Gamma(5 / 2)}{\Gamma(11 / 2)} \\
& =\frac{1}{2} \cdot \frac{2!(3 \sqrt{\pi}) / 4}{(945 \sqrt{\pi}) / 32}=\frac{3 \sqrt{\pi}}{4} \cdot \frac{32}{945 \sqrt{\pi}}=\frac{8}{315}
\end{aligned}
$$

Evaluate $I=\int_{0}^{\pi / 2} \sqrt{\tan \theta} \mathrm{~d} \theta$.

$$
\mathbf{B}(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta \mathrm{~d} \theta
$$

$$
I=\int_{0}^{\pi / 2} \sqrt{\tan \theta} \mathrm{~d} \theta=\int_{0}^{\pi / 2} \sin ^{\frac{1}{2}} \theta \cos ^{-\frac{1}{2}} \theta \mathrm{~d} \theta
$$

$$
\begin{aligned}
\therefore 2 m-1 & =\frac{1}{2} \quad \therefore m=\frac{3}{4} ; \quad 2 n-1=-\frac{1}{2} \quad \therefore n=\frac{1}{4} \\
\therefore I & =\frac{1}{2} \mathrm{~B}\left(\frac{3}{4}, \frac{1}{4}\right)=\frac{1}{2} \cdot \frac{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma(1)}
\end{aligned}
$$

$$
\Gamma(0.25)=3.6256 \text { and } \Gamma(0.75)=1.2254
$$

$$
I=\frac{1}{2} \cdot \frac{(1 \cdot 2254)(3 \cdot 6256)}{1 \cdot 0000}=2.2214
$$

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t \quad \int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2} \quad \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} \mathrm{~d} t=1
$$

$$
\begin{array}{r}
\operatorname{Lim}_{x \rightarrow \infty}(\operatorname{erf}(x))=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} \mathrm{~d} t=1 \\
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}
\end{array}
$$

$$
\begin{aligned}
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t \\
& =\frac{2}{\sqrt{\pi}} \int_{0}^{x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}\right) \mathrm{d} t \\
& =\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty}\left(\int_{0}^{x} \frac{(-1)^{n} t^{2 n}}{n!} \mathrm{d} t\right) \\
& =\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}
\end{aligned}
$$

$$
\operatorname{erf}(-x)=-\operatorname{erf}(x)
$$

erf (x) is an odd function.
The complementary error function erfc (x)

$$
\begin{aligned}
& \operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} \mathrm{~d} t \\
& \operatorname{erfc}(x)=1-\operatorname{erf}(x)
\end{aligned}
$$

In statistics the integral

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-m}^{x} e^{-t^{2} / 2} \mathrm{~d} t
$$

is the area beneath the Gaussian or normal probability distribution

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t= \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t=\frac{1}{\sqrt{2 \pi}}\left(2 \int_{0}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t\right)
\end{aligned}
$$

the integrand is even

$$
\Phi(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)
$$

$$
\begin{aligned}
\Phi(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} \mathrm{~d} t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{-t^{2} / 2} \mathrm{~d} t+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} \mathrm{~d} t \\
& =\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \times \sqrt{2} \int_{0}^{x / \sqrt{2}} e^{-u^{2}} \mathrm{~d} u \quad \text { where } u=t / \sqrt{2} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)
\end{aligned}
$$

Formulation of Chemical Engineering Problems:
The mathematical model is an expression that represent a phenomenon or an operation. When deriving the model we make use of the basic theoretical principles and the validity of the model is, then, tested experimentally.

The main problems to be solved are:

1. Storage tanks.
2. Mixing tanks.
3. Chemical reaction vessels.
4. Heat transfer problems.
5. Mass transfer problems.
6. Momentum transfer problems.
7. Process control systems.
8. Another problems.

Example: A vertical tank is filled with liquid to a height $\left(H_{0}\right)$. The base of the tank is connected to a valve, if the value is opens. Derive the equation which relate the variation of height with time, given that the flow through the value is laminar.

Material balance on the tank

$$
I_{n}=\text { Out + Accumulation }
$$

$$
\begin{aligned}
& 0=\rho q_{0}+\rho \frac{d v}{d t} \\
& 0=\rho q_{0}+\rho A \frac{d t}{d t}
\end{aligned}
$$

Laminar flow $\Rightarrow q_{0} \times H \Rightarrow q_{0}=K H, K=\frac{m^{3} / h_{r}}{m}=\frac{m^{2}}{h_{r}}$

$$
0+K H+A \frac{d H}{d t} \Rightarrow \frac{A}{K} \frac{d H}{d t}+H=0
$$

$\tau \frac{d H}{d t}+H=0 \quad$ Taking Laplace Transform

$$
\bar{C}[S \bar{H}(s)-H(0)]+\bar{H}(s)=0
$$

at $t=0 \quad H=H_{0}$

$$
\begin{aligned}
& \tau\left[s \bar{H}(s)-H_{0}\right]+\bar{H}(s)=0 \\
& (\tau s+1) \bar{H}(s)=\tau H_{0} \Rightarrow \bar{H}(s)=\frac{\tau H_{0}}{\tau s+1} \Rightarrow \bar{H}(s)=\frac{\tau H_{0}}{\tau\left(s+\frac{1}{\tau}\right)} \\
& \bar{H}(s)=\frac{H_{0}}{s+\frac{1}{\tau}} \quad \text { Taking Inverse Laplace Transform } \\
& H(t)=H_{0} e^{-\frac{1}{\tau} t} \Rightarrow H(t)=H_{0} e^{-\frac{t}{\tau}}
\end{aligned}
$$

Another solution.

$$
\begin{aligned}
& \tau \frac{d H}{d t}+H=0 \Rightarrow \int \frac{d H}{H}=-\int \frac{d t}{\tau} \\
& \ln H=-\frac{1}{\tau} t+\ln C \Rightarrow H=C e^{-t / \tau}
\end{aligned}
$$

at $t=0 \quad H=H_{0} \quad \Rightarrow \quad C=H_{0}$

$$
H=H_{0} e^{-t / \tau} \text { or } H(t)=H_{0} e^{-t / \tau}
$$

Example: Two tanks are connected as shown below. Tank 1 contain a liquid to height H_{0} and tank 2 is empty. The value between the two tanks is opened. Find the relation which relate the height in $\tan k 2$ with time. Assuming that all resistance to flow was due to the value and the flow is laminar.

Material balance on tank (1)
In $=$ Ont + Accumulation

$$
0=p q+p_{A_{1}} \frac{d H_{1}}{d t} \Rightarrow 0=q+A_{1} \frac{d H_{1}}{d t}
$$

Material balance on tank (2)

$$
\begin{aligned}
& \text { In }=\text { Out }+ \text { Accumulation } \\
& \rho q=0+\rho A_{2} \frac{d H_{2}}{d t} \Rightarrow q=0+A_{2} \frac{d H_{2}}{d t}
\end{aligned}
$$

The flow is laminar $\Rightarrow q \propto H \Rightarrow q=\mathrm{KH}$

$$
\text { or } \quad q=K\left(H_{1}-H_{2}\right)
$$

$$
\begin{aligned}
& 0=K\left(H_{1}-H_{2}\right)+A_{1} \frac{d H_{1}}{d t} \\
& K\left(H_{1}-H_{2}\right)=0+A_{2} \frac{d H_{2}}{d t}
\end{aligned}
$$

By taking Laplace Transform

$$
\begin{aligned}
& 0=K\left(\bar{H}_{1}(s)-\bar{H}_{2}(s)\right)+A_{1}\left(S \bar{H}_{1}(s)-H(0)\right) \\
& K\left(\bar{H}_{1}(s)-\bar{H}_{2}(s)\right)=0+A_{2}\left(S \bar{H}_{2}(s)-H(0)\right)
\end{aligned}
$$

At $t=0 \quad H=H_{0} \quad$ in tank (1)
At $t=0 \quad H=0 \quad$ in $\tan k$ (2)

$$
\begin{aligned}
& 0=K\left(\bar{H}_{1}(s)-\bar{H}_{2}(s)\right)+A_{1}\left(s \bar{H}_{1}(s)-H_{0}\right) \\
& K\left(\bar{H}_{1}(s)-\bar{H}_{2}(s)\right)=0+A_{2}\left(s \bar{H}_{2}(s)-0\right) \\
& K \bar{H}_{1}(s)-K \bar{H}_{2}(s)=A_{2} s \bar{H}_{2}(s) \\
& \bar{H}_{1}(s)=\bar{H}_{2}(s)+\frac{A_{2}}{K} s \bar{H}_{2}(s) \Rightarrow \bar{H}_{1}(s)=\left(\frac{A_{2}}{K} s+1\right) \bar{H}_{2}(s) \\
& \bar{H}_{2}(s)=\bar{H}_{1}(s)+\frac{A_{1}}{K}\left(s \bar{H}_{1}(s)-H_{0}\right) \\
& \bar{H}_{2}(s)=\left(\frac{A_{1}}{K} s+1\right) \bar{H}_{1}(s)-\frac{A_{1}}{K} H_{0} \\
& \vec{H}_{2}(s)=\left(\frac{A_{1}}{K} s+1\right)\left(\frac{A_{2}}{K} s+1\right) \bar{H}_{2}(s)-\frac{A_{1}}{K} H_{0}
\end{aligned}
$$

let $\tau_{1}=A_{1} / K \quad$ \& $\quad \tau_{2}=A_{2} / K$

$$
\begin{aligned}
& \vec{H}_{2}(s)=\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right) H_{2}(s)-\tau_{1} H_{0} \\
& \left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right) \bar{H}_{2}(s)-\bar{H}_{2}(s)=\tau_{1} H_{0} \\
& {\left[\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)-1\right] \bar{H}_{2}(s)=\tau_{1} H_{0}} \\
& \bar{H}_{2}(s)=\frac{\tau_{1} H_{0}}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)-1} \Rightarrow \bar{H}_{2}(s)=\frac{\tau_{1} H_{0}}{\tau_{1} \tau_{2} s^{2}+\tau_{1} s+\tau_{2} s+1-1} \\
& \tilde{H}_{2}(s)=\frac{\tau_{1} H_{0}}{s\left(\tau_{1} \tau_{2} s+\tau_{1}+\tau_{2}\right)} \Rightarrow \bar{H}_{2}(s)=\frac{\tau_{1} H_{0}}{s \tau_{1} \tau_{2}\left(s+\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}\right)}
\end{aligned}
$$

Let $k_{1}=\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}$

$$
\bar{H}_{z}(s)=\frac{H_{0}}{\tau_{2} S\left(s+K_{1}\right)} \Rightarrow
$$

Taking Inverse Laplace Transform

$$
\begin{aligned}
& H_{2}(t)=\frac{H_{0}}{\tau_{2} K_{1}}\left(1-e^{-K_{1} t}\right) \\
& H_{2}(t)=\frac{\bar{\tau}_{1} H_{0}}{\tau_{1}+\tau_{2}}\left(1-e^{-\left(\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}\right) t}\right)
\end{aligned}
$$

Example:- A tank holds 100 gal of water salt solution in which 416 of salt is dissolved. Water runs into the tank at the rate of $5 \mathrm{gal} / \mathrm{min}$ and salt solution overflows at the same rate. If the mixing in the tank is adequate to keep the concentration of salt in the tank uniform at all times, how much salt is in the tank at the end of 50 min ?

Salt material balance

$$
I n=O_{u t}+\text { Accumulation }
$$

$$
0=\frac{5 x}{100}+\frac{d x}{d t}
$$

Note: Out $=5 \frac{\mathrm{gal}}{\min } \times 16 \cdot \frac{1}{100 \mathrm{gai}}=\frac{5 x}{100} \frac{16}{\mathrm{~min}}$
where x is 16 of salt in solution

$$
\begin{aligned}
& \frac{d x}{d t}=-0.05 x \Rightarrow \int \frac{d x}{x}=-0.05 \int d t \\
& \text { At } t=0 \quad x=4 \\
& \& \quad t=50 \quad x=x \\
& \left.\left.\int_{4}^{x} \frac{d x}{x}=-0.05 \int_{0}^{50} d t \Rightarrow \ln x\right]_{4}^{x}=-0.05 t\right]_{0}^{50} \\
& \ln x-\ln 4=-0.05(50-0) \Rightarrow \ln \frac{x}{4}=-0.05(50) \\
& \ln \frac{x}{4}=-2.5 \Rightarrow x=0.328 \mathrm{lb} \text { salt. }
\end{aligned}
$$

Example: Water enter a mixing tank at a rate of $\omega=10 \mathrm{~kg} / \mathrm{hr}$ and solute added $s=1 \mathrm{Kg} / \mathrm{hr}$, the exit stream is $B=10 \mathrm{~kg} / \mathrm{hr}$. Initially, the tank containing $M_{0}=100 \mathrm{Kg}$ water. Find the relation between change in concentration of solution in the tank with time?

$$
\mathrm{er}_{w}=10 \mathrm{~kg} / \mathrm{hr}
$$

Overall material balance
$I_{n}=$ Ont $_{\text {+ }}$ Accumulation

$$
\begin{aligned}
& W+S=B+\frac{d M}{d t} \\
& 10+1=10+\frac{d M}{d t} \Rightarrow \frac{d M}{d t}=1 \\
& \int d M=\int d t
\end{aligned}
$$

At $t=0 \quad M=M_{0}=100$
At $t=t \quad M=M$

$$
\begin{aligned}
& \left.\left.\int_{100}^{M} d M=\int_{0}^{t} d t \Rightarrow M\right]_{100}^{M}=t\right]_{0}^{t} \Rightarrow M-100=t-0 \\
& M=100+t
\end{aligned}
$$

Solute material balance

$$
\begin{aligned}
& \text { In }=0 \text { ut }+A c \text { cumulation } \\
& W(0)+S(1)=B(x)+\frac{d(M x)}{d t} \\
& 1=10 x+x \frac{d M}{d t}+M \frac{d x}{d t} \\
& 1=10 x+x(1)+(100+t) \frac{d x}{d t} \\
& 1=11 x+(100+t) \frac{d x}{d t} \Rightarrow(1-11 x)=(100+t) \frac{d x}{d t} \\
& \int \frac{d x}{(1-11 x)}=\int_{(100+t)}^{d t} \\
& A+t=0 \\
& A t \quad t=t=0 \\
& \int_{0}^{x} \frac{d x}{(1-11 x)}=\int_{0}^{t} \frac{d t}{(100+t)} \\
& \left.\left.\frac{1}{11} \ln (1-11 x)\right]_{0}^{x}=\ln (100+t)\right]_{0}^{t} \\
& 1 \\
& \left.\left.\frac{1}{11} \ln \left(\frac{1}{1-11 x}\right)\right]_{0}^{x}=\ln (100+t)\right]_{0}^{t} \\
& \ln \left(\frac{1}{1-11 x}\right)^{1 / 11}=\ln \left(\frac{100+t}{100}\right) \Rightarrow\left(\frac{1-11 x}{1 / 11}=\frac{100+t}{100}\right.
\end{aligned}
$$

Example: Two mixer are connected in series, each of them contain $M \mathrm{~kg}$ of water. Intitially, $q(\mathrm{~kg} / \mathrm{hr})$ of water flows to the first mixer containing solute with x_{0}. Find the concentration in the second mixer when a step change Δx_{0} is take place in the inlet stream to mixer (1).

Solute material balance in tank (1)

$$
\begin{aligned}
& \text { In }=\text { Ont }+ \text { Accumulation } \\
& q x_{0}=q x_{1}+\frac{d M x_{1}}{d t} \\
& q x_{0}=q x_{1}+M \frac{M}{d x_{1}} \\
& \frac{M}{q} \frac{d x_{1}}{d t}+x_{1}=x_{0} \Rightarrow \tau \frac{d x_{1}}{d t}+x_{1}=x_{0}
\end{aligned}
$$

$\tau \frac{d x_{1}}{d t}+x^{\prime} x_{1}=\Delta x_{0} \quad$ Taking Laplace Transform

$$
\bar{c}\left(s \bar{x}_{1}(s)-x_{1}(0)\right)+\bar{x}_{1}(s)=\frac{\Delta x_{0}}{s}
$$

At $t=0 \quad x_{1}=0$ or $x^{\prime}=0$

$$
\begin{align*}
& \tau\left(s \bar{x}_{1}(s)-0\right)+\bar{x}_{1}(s)=\frac{\Delta x_{0}}{s} \\
& (\tau s+1) \bar{x}_{1}(s)=\frac{\Delta x_{0}}{s} \Rightarrow \bar{x}_{1}(s)=\frac{\Delta x_{0}}{s(\tau s+1)} \tag{1}
\end{align*}
$$

Solute material balance in tank (2)
$I_{n}=$ Out + Accumulation

$$
\begin{aligned}
& q x_{1}=q x_{2}+\frac{d M x_{2}}{d t} \Rightarrow q x_{1}=q x_{2}+M \frac{d x_{2}}{d t} \\
& \frac{M}{q} \frac{d x_{2}}{d t}+x_{2}=x_{1} \Rightarrow \tau \frac{d x_{2}}{d t}+x_{2}=c_{1}
\end{aligned}
$$

$\bar{\tau} \frac{d x_{2}}{d t}+\dot{x}_{2}=x^{\prime} x_{1} \quad$ Taking Laplace Transform

$$
\bar{\tau}\left(s \bar{x}_{2}(s)-\dot{x}_{2}(0)\right)+\bar{x}_{2}(s)=\bar{x}_{1}(s)
$$

At $t=0 \quad x_{2}=0$ or $x_{z}=0$

$$
(\tau s+1) \bar{x}_{2}(s)=\bar{x}_{1}(s) \Rightarrow \bar{x}_{2}(s)=\frac{\bar{x}_{1}(s)}{\tau s+1} \ldots(2)
$$

Substitute equation (1) in Uation (2)

$$
\begin{aligned}
& \bar{x}_{2}(s)=\frac{\Delta x_{0}}{s(\tau s+1)^{2}} \\
& \frac{1}{s\left(\tau_{s}+1\right)^{2}}=\frac{A}{s}+\frac{B}{\tau s+1}+\frac{C}{\left(\tau_{s}+1\right)^{2}} \\
& 1=A\left(\tau_{s}+1\right)^{2}+B s\left(\tau_{s}+1\right)+C s \\
& 1=A \tau^{2} S^{2}+2 A \tau S+A+B \tau S^{2}+B S+C S \\
& 1=\left(A \tau^{2}+B \tau\right) S^{2}+(2 A \tau+B+C) S+A \\
& A=1, A \tau^{2}+B \tau=0, \quad 2 A \tau+B+C=0 \\
& \therefore B=-\tau \& C=-\tau \\
& \frac{1}{s(\tau s+1)^{2}}=\frac{1}{s}-\frac{\tau}{\tau s+1}-\frac{\tau}{(\tau s+1)^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{s(\bar{c} s+1)^{2}}=\frac{1}{s}-\frac{\bar{c}}{\bar{c}\left(s+\frac{1}{\tau}\right)}-\frac{\bar{\tau}}{\tau^{2}\left(s+\frac{1}{\tau}\right)^{2}} \\
\frac{1}{s(\tau s+1)^{2}}=\frac{1}{5}-\frac{1}{s+\frac{1}{\tau}}-\frac{1}{\bar{c}\left(s+\frac{1}{\tau}\right)^{2}}
\end{gathered}
$$

Taking Inverse Laplace Transform

$$
\begin{aligned}
& x_{2}^{\prime}(t)=\Delta x_{0}\left(1-e^{-\frac{t}{\tau}}-\frac{t}{\tau} e^{-\frac{t}{\tau}}\right) \\
& x_{2}(t)-x_{2}(0)=\Delta x_{0}\left(1-e^{\frac{t}{\tau}}-\frac{t}{\tau} e^{-\frac{t}{\tau}}\right)
\end{aligned}
$$

Example: The first order reversible reaction $A \stackrel{K_{K_{2}}}{\stackrel{K_{1}}{\rightleftharpoons}} B$ occur in continuous stirred tank reactor. Find the differential equation which relate C_{A} with time?

Material Balance on A

$v \frac{d C_{A}}{d t}+\left(q+K_{1} v\right) C_{A}=q C_{A_{0}}+K_{2} C_{B} V$
$\overrightarrow{q, C_{A}, C_{B}}$
$\frac{V}{q+k_{1} V} d C_{A}+C_{A}=\frac{q}{q+k_{1} V} C_{A_{0}}+\frac{k_{2} V}{q+k_{1} V} C_{B}$
$\tau_{1} \frac{d C_{A}}{d t}+C_{A}=C_{1} C_{A_{0}}+C_{2} C_{B} \ldots(1)$
Material Balance on B

$$
\begin{align*}
& \text { In }+ \text { Generation }=\text { Out }+ \text { Consumption + Accumulation } \\
& 0+K_{1} C_{A} V=q C_{B}+K_{2} C_{B} V+\frac{d C_{B} V}{d t} \\
& V \frac{d C_{B}}{d t}+\left(q+K_{2} V\right) C_{B}=K_{1} C_{A} V \\
& V V=\frac{d C_{B}}{d t}+C_{B}=\frac{K_{1} V}{q+K_{2} V} C_{A} \\
& \tau_{2} \frac{d C_{B}}{d t}+C_{B}=C_{3} C_{A} \tag{2}
\end{align*}
$$

Divided equation (1) by C_{2}

$$
\frac{\tau_{1}}{C_{2}} \frac{d C_{A}}{d t}+\frac{1}{C_{2}} C_{A}-\frac{C_{1}}{C_{2}} C_{A 0}=C_{B}
$$

Differentiate with respect to t

$$
\begin{equation*}
\frac{\tau_{1}}{C_{2}} \frac{d^{2} C_{A}}{d t^{2}}+\frac{1}{C_{2}} \frac{d C_{A}}{d t}-\frac{C_{1}}{C_{2}}(0)=\frac{d C_{B}}{d t} \tag{4}
\end{equation*}
$$

Substitute equations (3) \& (4) in equation (2)

$$
\begin{aligned}
& \tau_{2}\left[\frac{\tau_{1}}{C_{2}} \frac{d^{2} C_{A}}{d t^{2}}+\frac{1}{C_{2}} \frac{d C_{A}}{d t}\right]+\frac{\tau_{1}}{C_{2}} \frac{d C_{A}}{d t}+\frac{1}{C_{2}} C_{A}-\frac{C_{1}}{C_{2}} C_{A_{0}}=C_{3} C_{A} \\
& \frac{\tau_{1} \tau_{2}}{C_{2}} \frac{d^{2} C_{A}}{d t^{2}}+\frac{\tau_{2}}{C_{2}} \frac{d C_{A}}{d t}+\frac{\tau_{1}}{C_{2}} \frac{d C_{A}}{d t}+\frac{1}{C_{2}} C_{A}-\frac{C_{1}}{C_{2}} C_{A}=C_{3} C_{A} \\
& \frac{\tau_{1} \tau_{2}}{C_{2}} \frac{d^{2} C_{A}}{d t^{2}}+\left(\frac{\tau_{1}+\tau_{2}}{C_{2}}\right) \frac{d C_{A}}{d t}+\left(\frac{1}{C_{2}} C_{3}\right) C_{A}=\frac{C_{1}}{C_{2}} C_{A_{0}} \\
& \frac{d^{2} C_{A}}{d t^{2}}+\left(\frac{\tau_{1}+\tau_{2}}{\tau_{1}}\right) \frac{d C_{A}}{d t}+\left(\frac{1-C_{2} C_{3}}{\tau_{1}}\right) C_{A}=\frac{C_{1}}{\tau_{1} \tau_{2}} C_{A O}
\end{aligned}
$$

Example: The first order reversible reaction $A \frac{k_{1}}{\underset{k_{2}}{2}} B$ occur in batch reactor. Find the differential equation which relate C_{A} with time?

Material Balance on A

$$
\begin{aligned}
& \text { In }+ \text { Generation }=0 \text { ut }+C_{\text {onsimption }}+\text { Accumulation } \\
& 0+K_{2} C_{B} V=0+K_{1} C_{A} V+V \frac{d C_{A}}{d t} \\
& K_{2} V C_{B}=K_{1} V C_{A}+V \frac{d C_{A}}{d t} \\
& K_{2} C_{B}=K_{1} C_{A}+\frac{d C_{A}}{d t}
\end{aligned}
$$

Material Balance on B
$I_{n}+$ Generation $=$ Out + Consumption + Accumulation

$$
\begin{aligned}
& 0+K_{1} V C_{A}=0+K_{2} V C_{B}+V \frac{d C_{B}}{d t} \\
& K_{1} V C_{A}=K_{2} V C_{B}+V \frac{d C_{B}}{d t} \\
& K_{1} C_{A}=K_{2} C_{B}+\frac{d C_{B}}{d t}
\end{aligned}
$$

From equation (1)

$$
\begin{aligned}
& \frac{d C_{A}}{d t}+K_{1} C_{A}=K_{2} C_{B} \Rightarrow\left(D+K_{1}\right) C_{A}=K_{2} C_{B} \\
& C_{B}=\frac{\left(D+K_{1}\right)}{K_{2}} C_{A}
\end{aligned}
$$

From equation (2)

$$
\begin{aligned}
& \frac{d C_{B}}{d t}+K_{2} C_{B}=K_{1} C_{A} \Rightarrow\left(D+K_{2}\right) C_{B}=K_{1} C_{A} \\
& \left(D+K_{2}\right) \frac{\left(D+K_{1}\right)}{K_{2}} C_{A}=K_{1} C_{A} \\
& \left(D+K_{2}\right)\left(D+K_{1}\right) C_{A}=K_{1} K_{2} C_{A} \\
& \left(D^{2}+K_{2} D+K_{1} D+K_{1} K_{2}\right) C_{A}=K_{1} K_{2} C_{A} \\
& \left(D^{2}+\left(K_{1}+K_{2}\right) D+K_{1} K_{2}\right) C_{A}=K_{1} K_{2} C_{A} \\
& \frac{d^{2} C_{A}}{d t^{2}}+\left(K_{1}+K_{2}\right) \frac{d C_{A}}{d t}+K_{1} K_{2} C_{A}=K_{1} K_{2} C_{A} \\
& \frac{d^{2} C_{A}}{d t^{2}}+\left(K_{1}+K_{2}\right) \frac{d C_{A}}{d t}=0 \\
& D^{2}+\lambda D=0 \\
& D(D+\lambda)=0 \Rightarrow K_{1}+K_{2} \\
& C_{A}=C_{1} e^{o t}+C_{2} e^{-\lambda t} \Rightarrow C_{A}=C_{1}+C_{2} e^{-\lambda t}
\end{aligned}
$$

$$
\begin{aligned}
\text { At } t & =0 & C_{A} & =C_{A_{0}} \\
t & =\infty & C_{A} & =C_{A C}
\end{aligned}
$$

$$
\begin{aligned}
& B C(1) \Rightarrow C_{A 0}=C_{1}+C_{2} \\
& B C(2) \Rightarrow C_{A C}=C_{1}+a \Rightarrow C_{A C}=C_{1} \\
& \therefore C_{2}=C_{A 0}-C_{A E} \\
& C_{A}=C_{1}+C_{2} e^{-\lambda t} \Rightarrow C_{A}=C_{A C}+\left(C_{A 0}-C_{A C}\right) e^{-\left(K_{1}+K_{2}\right) t}
\end{aligned}
$$

Example: A hot liquid flow through a pipe (insulated) with constant velocity u. Find the differential equation which describe the variation of liquid temperature in axial distance with time?

Heat Balance
$I_{n}=O u t$, Accumulation

$$
\begin{aligned}
& q x=q_{x} \delta x+M C_{p} \frac{\partial T}{\partial t} \\
& q x=q_{x}+\frac{\partial q_{x}}{\partial x} \delta x+M C_{p} \frac{\partial T}{\partial t} \\
& 0=\frac{\partial q_{x}}{\partial x} \delta x+M C_{p} \frac{\partial T}{\partial t} \\
& 0=\dot{m} C_{p} \frac{\partial T}{\partial x} \delta x+\rho V C_{p} \frac{\partial T}{\partial t} \\
& 0=\rho u A C_{p} \frac{\partial T}{\partial x} \delta x+\rho A \delta x C_{p} \frac{\partial T}{\partial t} \\
& 0=u \frac{\partial T}{\partial x}+\frac{\partial T}{\partial t} \Rightarrow \frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}=0
\end{aligned}
$$

Example: Derive heat transfer equation through a spherical body?

$$
I_{n}=\text { Out + Accumulation }
$$

$$
q_{r}\left(4 \pi r^{2}\right)=q_{r+\delta r}\left(4 \pi(r+\delta r)^{2}\right)+M C_{p} \frac{\partial \theta}{\partial t}
$$

$$
\begin{aligned}
q_{r}\left(4 \pi r^{2}\right)= & \left(q_{r}+\frac{\partial q_{r}}{\partial r} \delta r\right)\left(4 \pi r^{2}+8 \pi r \delta r+4 \pi \delta r^{2}\right)+4 \pi r^{2} \delta r \\
& p c_{p} \frac{\partial \theta}{\partial t} \\
q_{r}\left(4 \pi r^{2}\right)= & q_{r}\left(4 \pi r^{2}\right)+q_{r}(8 \pi r \delta r)+q_{r}\left(4 \pi \delta r_{r}^{2}\right)+\frac{\partial q_{r}}{\partial r} \delta r \\
& \left(4 \pi r^{2}\right)+\frac{\partial q_{r}}{\partial r} \delta_{r}^{2}(8 \pi r)+\frac{\partial q_{r}}{\partial r} \delta_{r}^{3}(4 \pi)+4 \pi r^{2} \delta r p c_{p} \frac{\partial \theta}{\partial t}
\end{aligned}
$$

δx is small, $\delta r^{2} \& \delta r^{3}$ are very small \Rightarrow neglected

$$
\begin{aligned}
& 0=2 q_{r}+r \frac{\partial q_{r}}{\partial r}+r \rho c_{p} \frac{\partial \theta}{\partial t} \div r \\
& 0=\frac{2}{r} q_{r}+\frac{\partial q_{r}}{\partial r}+\rho c_{p} \frac{\partial \theta}{\partial t} \\
& q_{r}=-k \frac{\partial \theta}{\partial r} \\
& 0=\frac{2}{r}\left(-k \frac{\partial \theta}{\partial r}\right)-k \frac{\partial^{2} \theta}{\partial r^{2}}+\rho_{C_{p}} \frac{\partial \theta}{\partial t} \\
& \frac{\partial \theta}{\partial t}=\frac{k}{\rho C_{p}}\left[\frac{\partial^{2} \theta}{\partial r^{2}}+\frac{2}{r} \frac{\partial \theta}{\partial r}\right] \\
& t=0 \quad \theta=\theta_{0} \\
& r=0 \quad \frac{\partial \theta}{\partial r}=0 \\
& r=R \quad \theta=\theta
\end{aligned}
$$

Example: A glass tube of cross -sectional (s) is filled with a volatile liquid to a certain level. The level is kept constant. It's open end is subjected to a stream air. Find the equation describing the rate of diffusion of the vapor of volatile liquid.

Mass Balance

$$
\begin{aligned}
& \text { In }=\text { Out }+ \text { Accumulation } \\
& N_{A} S=\left[N_{A}+\frac{\partial N_{A}}{\partial z} S_{z}\right] S+S S_{Z} \frac{\partial C_{A}}{\partial t} \\
& 0=\frac{\partial N_{A}}{\partial z} S_{2} S+S_{2} S \frac{\partial C_{A}}{\partial t} \\
& 0=\frac{\partial N_{A}}{\partial z}+\frac{\partial C_{A}}{\partial t} \Rightarrow \frac{\partial C_{A}}{\partial t}=-\frac{\partial N_{A}}{\partial z}
\end{aligned}
$$

$N_{A Z}+\delta z$

$N A_{2}=-D_{A} \frac{\partial C_{A}}{\partial 2}+U_{2} C_{A} \quad$ Fick's law
$U_{2} C_{A}$ is neglected $\Rightarrow N_{A}=D_{A} \frac{\partial C_{A}}{\partial Z}$

$$
\begin{array}{llll}
\frac{\partial C_{A}}{\partial t}=D_{A} \frac{\partial^{2} C_{A}}{\partial z^{2}} & \\
t=0 & C_{A}=0 & t=0 & C=0 \\
z=0 & C_{A}=C_{A}^{*} & x=0 & C=C_{i} \\
z=1 & C_{A}=0 & x=\infty & C=0
\end{array}
$$

Example: The liquid phase reaction $A \xrightarrow{K} B$ is carried out in tubular packed bed reactor. The liquid enters at constant velocity u and the concentration of A is $C_{A 0}$. The reactor initially has only inert material $\left(C_{A_{0}}=0\right)$. Find the differential equation which describe this system?

Material Balance on A

$$
\begin{aligned}
& I_{n}+C_{\text {generation }}=O_{n t}+C_{\text {consumption }}+A_{C C}, \quad 1 \\
& N_{A x}\left(\pi R^{2}\right)+0=N_{A x}+\delta x\left(\pi R^{2}\right)+K C_{A} V+V \frac{\partial C_{A}}{\partial t} \\
& N_{A x}\left(\pi R^{2}\right)=\left(N_{A x}+\frac{\partial N_{A x}}{\partial x} \delta x\right)\left(\pi R^{2}\right)+K C_{A} V+V \frac{\partial C_{A}}{\partial t} \\
& 0=\frac{\partial N_{A x}}{\partial x} \delta x\left(\pi R^{2}\right)+K C_{A}\left(\pi R^{2} \delta_{x}\right)+\left(\Pi R^{2} \delta x\right) \frac{\partial C_{A}}{\partial t} \\
& 0=\frac{\partial N_{A x}}{\partial x}+K C_{A}+\frac{\partial C_{A}}{\partial t} \Rightarrow \frac{\partial C_{A}}{\partial t}=-\frac{\partial N_{A x}}{\partial x}-K C_{A} \\
& N_{A x}=-D \frac{\partial C_{A}}{\partial x}+U_{x} C_{A} \\
& \frac{\partial N_{A x}}{\partial x}=-D \frac{\partial^{2} C_{A}}{\partial x^{2}}+U_{x} \frac{\partial C_{A}}{\partial x} \\
& \frac{\partial C_{A}}{\partial t}=D \frac{\partial^{2} C_{A}}{\partial x^{2}}+U_{x} \frac{\partial C_{A}}{\partial x}-K C_{A}
\end{aligned}
$$

D $\frac{\partial^{2} C_{A}}{\partial x^{2}}$ is neglected

$$
\therefore \frac{\partial C_{A}}{\partial t}=u_{x} \frac{\partial C_{A}}{\partial x}-k C_{A}
$$

