

 1

AL MUTHANNA UNIVERSITY

COLLEGE OF ENGINEERING

DEPARTMENT OF CHEMICAL
ENGINEERING

Computer Programming I

(Theory & Practical)

2nd Year

Session: 2019-2020

1st Semester

 2

Visual Basic 2012

1. Introduction

Microsoft launched Visual Basic 2012 in the year 2012. It is a fully object-
oriented programming language implemented on the .NET
Framework. Similar to the earlier version of VB.NET programming
languages, VB2012 is integrated with other Microsoft Programming
languages in an Integrated Development Environment "IDE" called Visual
Studio Express 2012.

Although Microsoft had launched a few newer versions of Visual Studio
until the latest Visual Studio 2017, you can still download the older version
Visual Studio 2012 Express Edition from the following link:

https://www.visualstudio.com/vs/older-downloads/

From the download link as shown in Figure 1.1, select the free Visual
Studio Express 2012 for Windows Desktop.

Figure 1.1 Visual Studio Express 2012 Download Link

https://www.vbtutor.net/index.php/vb2010-lesson-1-introduction/%22https:/www.visualstudio.com/vs/older-downloads/

 3

When you launch Visual Studio Express 2012, the start page will appear,
as shown in Figure 1.2 below.

Figure 1.2: Visual Studio 2012 Start Page

To start a new Visual Studio Express 2012 project, simply click on New
Project to launch the Visual Studio New Project page, as shown in Figure
1.3

 4

Figure 1.3: Visual Studio 2012 Project Page

The New Project Page comprises three templates, Visual Basic, Visual C#
and Visual C++. Since we are going to learn Visual Basic 2012, we shall
select Visual Basic. Visual Basic 2012 offers you four types of projects that
you can create. As we are going to learn to create Windows Applications,
we will select Windows Forms Application.

At the bottom of this dialog box, you can change the default project name
WindowsApplication1 to some other name you like, for example,
MyFirstProgram. After you have renamed the project, click OK to continue.
The following IDE Windows will appear; it is similar to Visual Basic 2010.
The Toolbox is not shown until you click on the Toolbox tab. When you
click on the Toolbox tab, the common controls Toolbox will appear.

 5

Figure 1.4 Visual Basic 2012 IDE

Visual Basic Express 2012 IDE comprises a few windows, the Form
window, the Solution Explorer window and the Properties window. It also
consists of a toolbox which contains many useful controls that allow a
programmer to develop his or her VB programs. The toolbox is shown in
Figure 1.5.

 6

Figure 1.5 Visual Basic 2012 Toolbox
Now, we shall proceed to show you how to create your first program.
First, change the text of the Form to My First Program in the properties
window, it will appear as the title of the program. Next, insert a Button
and change its text to OK. The design interface is shown in Figure 1.6

 7

Figure 1.6 The Design Interface

Now click on the OK Button to bring up the code window and enter the
following statement between Private Sub and End Sub procedure, as
shown in Figure 1.7.

MsgBox("My First Visual Basic 2012 Program")

 8

Figure 1.7 The Code Window

Now click on the Start on the toolbar to run the program then click on the
OK Button, a dialog box that displays the ″My First Visual Basic 2012
Program″ message will appear, as shown in Figure 1.8.

 9

Figure 1.8 The Message Box
The function MsgBox is a built-in function of Visual Basic 2012 and it will
display the text enclosed within the brackets.

2. Working with Controls

2.1 What are Controls

Controls in Visual Basic 2012 are objects that can be placed on the Form
to perform various tasks. The toolbox contains the controls, which are
categorized into Common Controls, Containers, Menus, Toolbars, Data,
Components, and Printings and Dialogs. At the moment, we will focus on
the common controls. Some frequently used common controls are Button,
Label, ComboBox, ListBox, PictureBox, and TextBox. To insert a control
into your Form in Visual Basic 2012 IDE, drag the control from the toolbox
and drop it onto the Form, or double click the control. You can reposition
and resize it as you like.
When you click on the Toolbox tab, the common controls Toolbox will
appear.

 10

Figure 2.1 Toolbox, Solution Explorer, and Properties windows

2.2 Creating Your First Application

To create your first application in Visual Basic 2012, drag the Button
control into the Form, and change its default Text 'Button1' to OK in the
properties window, the word OK will appear on the Button in the Form,
as shown in Figure 2.2:

Figure 2.2 Text Property

Now click on the OK Button and the code window appears. Enter the code
as follows (example1):

 11

Figure 2.3 Code window

When you run the program "click the start Button" then click on the OK
Button, a dialog box will appear and displays the “Welcome to Visual Basic
2012″ message, as shown in Figure 2.4. The argument Title: is to assign
the title of the dialog box.:

Figure 2.4 Message Box

2.3 Using the Text Box

Next, we will show you how to create a simple calculator that adds two
numbers using the TextBox control. In this program, you insert two Text
Boxes, three Labels, and one Button. The two Text Boxes are for the user
to enter two numbers, Label1 is to display the addition operator "+" and
Label2 is to display the equal sign "=", and Label3 is to display the result.
Now change the Text property of Button1 to "Calculate", then double click
on this "Calculate" Button and enter the following code in the code
window (example2):

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim num1, num2, product As Single
 num1 = CSng(TextBox1.Text)
 num2 = CSng(TextBox2.Text)
 product = num1 + num2
 Label3.Text = CStr(product)
 End Sub
End Class

When you run the program (press on "Start" button) and enter two
numbers for example "1000" in the TextBox1 and "2000" in the TextBox2,

 12

pressing the calculate Button will give you the addition result of the two
numbers "3000" as shown in Figure 2.5.

Figure 2.5 Addition Calculator

3. Working with Control Properties

3.1 The Control Properties

All controls in Visual Basic 2012 IDE have properties. By altering the
properties of a control, we are able to customize its appearance and how
it responds to an event. Basically, you can set the properties of the
controls in the properties window of Visual Basic 2012 IDE at design time
or at runtime. Figure 3.1 is the typical properties window for a Form. It
refers particularly to the interface of the first application you have created
in the previous lesson.

In the properties window, the item appears at the top part is the object
currently selected (in Figure 3.1, the object selected is Form1). At the
bottom part, the items listed in the left column represent the names of
various properties associated with the selected object while the items
listed in the right column represent the states of the properties. Properties
can be set by highlighting the items in the right column then change them
by typing or selecting the options available.

 13

You may also alter other properties of a control such as font, location,
size, foreground color, background color, MaximizeBox, MinimizeBox and
etc. You can also change the properties of the object at runtime to give
special effects such as change of color, shape, animation effect and so
on.

Figure 3.1 Control Properties

 14

Figure 3.2 Addition Calculator

3.1.1 Customizing the Form

We can customize a Form by changing the values in the properties
window. First of all, let’s change the title of the Form. The title of the Form
is defined by the Text property and its default name is Form1. To change
the Form’s title to any name that you like, simply click in the box on the
right of the Text property and type in the new name, in this example, the
title is Addition Calculator. After this, you can notice that the Form’s title
will appear on top of the window.

In addition, we can customize the Form’s color. The following code will
change the Form color to yellow every time the Form is loaded. Visual
Basic 2012 uses RGB (Red, Green, Blue) to determine the colors. The RGB
code for Magenta is (255,0,255) while Me in the code refer to the current
Form and BackColor is the property of the Form’s background color. The
Formula to assign the RGB color to the Form is Color.FormArgb(RGB
code). The event procedure is as follows (example3):

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Me.BackColor = Color.FromArgb(255, 0, 255)
 End Sub
End Class

You may also use the following procedure to assign the color at runtime.

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Me.BackColor = Color.Magenta
 End Sub
End Class

 15

Both procedures above will load the Form with a magenta background as
in Figure 3.3:

Figure 3.3 Form Background Color

In Figure 3.4 some of the common colors and the corresponding RGB
codes. You can always experiment with other combinations, but
remember the maximum number for each color is 255 and the minimum
number is 0.

Color RGB
code

Color RGB code Color RGB code

 255,0,0 255,255,0 255,166,0

 0,255,0 0,255,255 0,0,0

 0,0,255 255,0,255 255,255,255

Figure 3.4 Colors and RGB Code Combinations

The following is another program that allows the user to enter the RGB
codes into three different TextBoxes and when he or she clicks the
"Display Color" Button, the background color of the Form will change
according to the RGB codes, see Figure 3.5. So, this program allows users
to change the color properties of the Form at runtime (example4).

 16

Figure 3.5 RGB Code Program

The code of example 4

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim rgb1, rgb2, rgb3 As Integer
 rgb1 = CInt(TextBox1.Text)
 rgb2 = CInt(TextBox2.Text)
 rgb3 = CInt(TextBox3.Text)
 Me.BackColor = Color.FromArgb(rgb1, rgb2, rgb3)
 End Sub
End Class

4. Object Oriented Programming

Before learning how to write the program code in Visual Basic 2012, we
think it is better for you to grasp the meaning of object-oriented
programming.

As we have mentioned earlier, Visual Basic 2012 is a full-fledged object-
oriented programming language. What does it mean by object-oriented
programming (OOP) language? For a programming language to qualify as
an OOP language, it must have four core technologies as follows:

 Encapsulation

 Abstraction

 Inheritance

 17

 Polymorphism

Before OOP we have procedural programming which divides the program
into a several functions, so we have a data which stored in the variables
and functions that operate on the data. This type of programming is very
simple and straight forward. In this procedural programming as the
program grow you will have many functions on all over the place. You will
find yourself copying and pasting lines of code over and over, you may
make a change to one function and then the second functions brake.

There is too much interdependency between all these functions it
becomes a problematic. OOP came to solve these problems, in OOP we
combine a group of related variables and functions into a unit, we call
that unit an object, we refer to these variables as properties and the
functions as methods. Here is an example; think of a car, a car is an object
with properties such as make, model, and color and methods like start (
), stop (), and move ().

4.1.1 Encapsulation

Encapsulation refers to the creation of self-contained modules that bind
processing functions to the data. These user-defined data types are called
classes. Each class contains data as well as a set of methods that
manipulate the data. The data components of a class are called instance
variables and one instance of a class is an object. For example, in a library
system, a class could be a member, and John and Sharon could be two
instances (two objects) of the library class. In OOP we group related
variables and functions that operate on them into objects and this what
we call encapsulation.

Properties

Methods

 18

4.1.2 Abstraction

We can hide some of the properties and methods from the outside and
this gives us a couple of benefits; First, is making the interface of those
objects simpler. Using and understanding an object with a few properties
and methods is easier than object with several properties and methods.
The second benefit is to help us reduce the impact of change, if we change
these inner or private methods none of these changes will leak to outside
because we don't have any code that touch these methods outside the
containing object. If we delete a method or change its parameters but
none of these changes will impact the rest of applications code, so with
abstraction we reduce the impact of changes.

4.1.3 Inheritance

Classes are created according to hierarchies, and inheritance allows the
structure and methods in one class to be passed down the hierarchy. That
means less programming is required when adding functions to complex
systems. If a step is added at the bottom of a hierarchy, then only the
processing and data associated with that unique step needs to be added.
Everything else about that step is inherited. The ability to reuse existing
objects is considered a major advantage of object technology. So
inheritance is a mechanism that allows you to eliminate a redundant code.

4.1.4 Polymorphism

Poly means many and morphism means form, so polymorphism means
many forms. In OOP polymorphism is a technique that allows you to get
with long switch/case statements. It also allows new shapes to be easily
integrated.

VB2012 is a fully functional Object Oriented Programming Language, just
like other OOP such as C++ and Java. It focuses more on the data itself
while VB6 and earlier versions focus more on the actions. VB6 and its
predecessors are known as a procedural or functional programming
language. Some other procedural programming languages are C, Pascal,
and Fortran.

Visual Basic 2012 allows users to write programs that break down into
modules. These modules will represent the real-world objects and are
knows as classes or types. An object can be created out of a class and it
is known as an instance of the class. A class can also comprise subclass.
For example, the apple tree is a subclass of the plant class and the apple
in your backyard is an instance of the apple tree class. Another example

 19

is student class is a subclass of the human class while your son John is an
instance of the student class.

A class consists of data members as well as methods. In Visual Basic 2012,
the program structure to define a Human class can be written as follows:

Example 5:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 'Data Members
 Dim Name, Birthdate, Gender As String
 Dim Age As Integer
 Name = TextBox1.Text
 Birthdate = TextBox2.Text
 Gender = TextBox3.Text
 Age = CInt(TextBox4.Text)
 MsgBox(Name)
 MsgBox(Birthdate)
 MsgBox(Gender)
 MsgBox(Age)
 End Sub

End Class

5. Writing the Code

In this lesson, you will learn some basic theories about Visual Basic 2012
programming. We shall focus more on learning by doing. We will keep the
theories short so that it would not be too difficult for beginners.

Visual Basic 2012 is an object-oriented and event driven programming
language. Event-driven means the VB program runs in response to the
user’s action. The actions include clicking the command Button, entering
text in a Text Box, choosing an item, closing the application and more.

5.1 The Event Procedure

Each event is related to an object; it is an incident that happens to the
object due to the action of the user. A class has events as it creates an
instant of a class or an object. When we start a windows application in
Visual Basic 2012, we will see a default Form with the name Form1
appears in the IDE, it is actually the Form1 Class that inherits from the
Form class System.Windows.Forms.Form, as shown in the Form1
properties windows in Figure 5.1.

 20

Figure 5.1 Properties window

To start writing code in Visual Basic 2012, double click on any part of the
Form to go into the code window as shown in Figure 5.2. This is the
structure of an event procedure. In this case, the event procedure is to
load Form1 and it starts with Private Sub and ends with End Sub. This
procedure includes the Form1 class and the event Load, and they are
bind together with an underscore, i.e. Form_Load. It does nothing other
than loading an empty Form. You don’t have to worry the rest of the stuff
at the moment, they will be explained in later lessons.

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 End Sub
End Class

 21

There are other events associated with the Form1 class, such as click,
cursorChanged, DoubleClick, DragDrop, Enter and more, as shown in the
diagram Figure 5.2 (It appears when you click on the upper right pane of
the code window)

Figure 5.2 Events associated with the Form1 class

5.2 Writing the code

Now you are ready to write the code for the event procedure so that it
will do something more than loading a blank Form. The code must be
entered between Private Sub…….End Sub. Let’s enter the following
code :

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Me.Text = "My First VB2012 Program"
 Me.ForeColor = Color.LightGoldenrodYellow
 Me.BackColor = Color.RoyalBlue
 End Sub
End Class

The first line of the code will change the title of the Form to My First Visual
Basic 2012 Program, the second line will change the foreground object to
LightGoldenrodYellow(in this case, it is a Label that you insert into the

 22

Form and change its text to Foreground) and the last line changes the
background to RoyalBlue color. The equal operator = in the code is used
to assign something to the object, like assigning yellow color to the
foreground of the Form1 object (or an instance of Form1). Me is the name
given to the Form1 class. We can also call those lines as Statements. So,
the actions of the program will depend on the statements entered by
the programmer.
The output is shown Figure 5.3 below:

Figure 5.3 My First VB2012 Program

Here is another example. In this project, you insert one Button into the
Form and change its Label text to “Display Hidden Names”. Click on this
Button to enter the code window and key-in the following code:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim name1, name2, name3, names As String
 name1 = "George"
 name2 = "Michael Chan"
 name3 = "Norman"
 names = name1 & "," & name2 & "," & name3
 MsgBox(" The hidden names are " & names, Title:="Hidden Names")
 End Sub
End Class

The keyword Dim is to declare variables name1, name2 and name3,
names as string, which means they can only handle text. The variable
names is to accept the names that are joined together by the “&” signs
as a single string. The function MsgBox is to display the string in a

 23

message box, and the last argument “Hidden Names” is the title of the
MsgBox function. The output is shown in Figure 5.4 below:

Figure 5.4 Example of MsgBox

6. Managing Data

Visual Basic programming often involves manipulation of all sorts of data.
Among them, some can be calculated while others are in the Form of text,
date, time and more. Visual Basic 2012 divides data into different types
so that it is easier for the programmers to manage them.

6.1 Visual Basic 2012 Data Types

Visual Basic 2012 classifies data into two major data types, the numeric
data type and the non-numeric data type.

6.1.1 Numeric Data Types

Numeric data types are types of data that consist of numbers that can be
computed mathematically. Some examples of numeric data types are
examination marks, height, weight, the price of goods, monthly bills, fees
and etc.

 24

In Visual Basic 2012, numeric data are classified into seven types,
depending on the range of values they can store. Calculations that do not
require precision can use Integer or the Long integer in the
computation. On the other hand, programs that require high precision
calculation need to use Single and Double precision data types which
also called floating point numbers. In addition, for currency
calculation, you can use the currency data types. Lastly, if even more
precision is required in performing a calculation, we can use the decimal
data types. These data types are summarized in Table 6.1.

Table 6.1 Numeric Data Types

Type
Storag

e Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes

-3.402823E+38 to -1.401298E-45 for
negative values
1.401298E-45 to 3.402823E+38 for
positive values

Double 8 bytes

-1.79769313486232E+308 to -
4.94065645841247E-324 for negative
values
4.94065645841247E-324 to
1.79769313486232E+308 for positive
values

Variant(numeric
) 16 bytes Any value as large as double

Currency 8 bytes
-922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 12 bytes

+/-
79,228,162,514,264,337,593,543,950,33
5 if no decimal
+/-7.9228162514264337593543950335

 25

6.1.2 Non-numeric Data Types

Non-numeric data types are data that cannot be manipulated
mathematically using standard arithmetic operators. These types of data
comprise text or string data types, the Date data types, the Boolean data
types, the Object data type and the Variant data type. We can summarise
the data types as shown in Table 6.2.

Table 6.2 Non-numeric Data

Data Type Storage Range of Values

String(fixed
length)

Length of
String 1 to 65,400 characters

String(variable-
length)

Length +10
bytes 0 to 2 billion characters

Date 8 bytes
January 1,100 to December
3,9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(text)
Length+22
bytes Same as variable-length string

6.1.3 Suffixes for Literals

Literals are values that you assign to a data. Usually, we add a suffix
behind a literal so that Visual Basic 2012 can handle the calculation more
accurately. For example, we can use num=1.3089# for a Double type
data. Some of the suffixes are displayed in Table 6.3.

Table 6.3 Suffixes for Literals

Suffix Data Type

& Long

! Single

 26

Double

@ Currency

In addition, we need to enclose string literals within two quotations and
we enclose date and time literals within two # sign. Strings can contain
any characters, including numbers. The following are few examples:

 memberName = "Turban, John."
 TelNumber = "1800-900-888-777"
 LastDay=#31-Dec-00#

 ExpTime = #12:00:00 AM#

6.2 Managing Variables

A Variable is like a mailbox in the post office as the content of the variable
changes every now and then, just like the mailbox. In Visual Basic 2012,
variables are areas allocated by the computer memory to hold data. In
addition, each variable must be given a name. To name a variable in Visual
Basic 2012, you have to follow a set of rules.

6.2.1 Variable Names

The following are the rules when naming the variables in Visual Basic 2012

 It must be less than 255 characters
 No spacing is allowed
 It must not begin with a number
 Period is not permitted

Some examples of valid and invalid variable names are displayed in Table
6.4

Table 6.4 Naming the variables

Valid Name Invalid Name

My_Car My.Car

ThisYear 1NewBoy

Long_Name_Can_Be_USED He&HisFather *& Not allowed

 27

6.2.2 Declaring Variables

In Visual Basic 2012, we need to declare a variable by assigning a name
and a relevant data type before using it. If you fail to do so, the program
may encounter an error. Usually, we declare the variables in the general
section of the code window using the Dim statement. The syntax to
declare a variable is as follows:

Dim VariableName As DataType

Example 6.1

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim password As String
 Dim yourName As String
 Dim firstnum As Integer
 Dim secondnum As Integer
 Dim total As Integer
 Dim doDate As Date
 End Sub
End Class

You may also combine them in one line, separating each variable with a
comma, as follows:

Dim password, yourName As String

Dim firstnum, secondnum As Integer

For string declaration, there are two possible Forms, one for the variable-
length string and another for the fixed-length string. For the variable-
length string, just use the same syntax as example 6.1 above. However,
for the fixed-length string, you have to use the syntax as shown below:

Dim VariableName As String * n

where n defines the number of characters the string can hold.

 28

Example 6.2:

Dim yourName As String * 10

yourName can hold no more than 10 Characters.

6.2.3 Assigning Values to Variables

After declaring various variables using the Dim statements, we can assign
values to those variables. The syntax of an assignment is

Variable = Expression

The variable can be a declared variable or a control property value. The
expression could be a mathematical expression, a number, a string, a
Boolean value (true or false) and etc. The following are some examples:

 firstNumber = 100
 secondNumber = firstNumber - 99
 username = "John Lyan"
 userpass.Text = password
 Label1.Visible = True
 Command1.Visible = False
 Label4.Caption = TextBox1.Text
 ThirdNumber = Val(usernum1.Text)
 total = firstNumber + secondNumber + ThirdNumber

6.3 Constants

Constants are different from variables in the sense that their values do
not change during the running of the program.

6.3.1 Declaring a Constant

The syntax to declare a constant is:

Const ConstantName As Data Type = Value

 29

Example 6.3

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Const Pi As Single = 3.142
 Const Temp As Single = 37
 Const Score As Single = 100
 End Sub
End Class

7. Mathematical Operations

In Visual Basic 2012, we can write code to instruct the computer to
perform mathematical operations. To write code for mathematical
operations, we need to use arithmetic operators. Visual Basic 2012
arithmetic operators are very similar to the normal arithmetic operators,
only with little variations. The plus and minus operators are the same
while the multiplication operator uses the * symbol and the division
operator uses the / symbol. The list of Visual Basic 2012 arithmetic
operators is shown in Table 7.1.

Table 7.1

Operator Mathematical Function Example

+ Addition 1+2=3

– Subtraction 10-4=6

^ Exponential 3^2=9

* Multiplication 5*6=30

/ Division 21/7=3

Mod
 Modulus(returns the remainder of an
integer division)

15 Mod
4 =3

\
 Integer Division(discards the decimal
places) 19\4=4

 30

Example 7.1

In this program, insert two TextBoxes, four Labels, and a Button. Click
the Button and enter the code as shown below. When you run the
program, it will perForm the four basic arithmetic operations and displays
the results on the four Labels.

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim num1, num2, sum, difference, product, quotient As Single
 num1 = CSng(TextBox1.Text)
 num2 = CSng(TextBox2.Text)
 sum = num1 + num2
 difference = num1 - num2
 product = num1 * num2
 quotient = num1 / num2
 Label1.Text = CStr(sum)
 Label2.Text = CStr(difference)
 Label3.Text = CStr(product)
 Label4.Text = CStr(quotient)
 End Sub
End Class

Example 7.2

The program can use Pythagoras Theorem to calculate the length of
hypotenuse c given the length of the adjacent side a and the opposite
side b. In case you have forgotten the Formula for the Pythagoras
Theorem, it is written as
c^2=a^2+b^2

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim a, b, c As Single
 a = CSng(TextBox1.Text)
 b = CSng(TextBox2.Text)
 c = CSng((a ^ 2 + b ^ 2) ^ (1 / 2))
 Label1.Text = CStr(c)
 End Sub
End Class

Example 7.3: BMI Calculator

 31

A lot of people are obese now and it could affect their health seriously.
Obesity has proven by the medical experts to be one of the main factors
that bring many adverse medical problems, including the cardiovascular
disease. If your BMI is more than 30, you are considered obese. You can
refer to the following range of BMI values for your weight status.

Underweight = <18.5
Normal weight = 18.5-24.9
Overweight = 25-29.9
Obesity = BMI of 30 or greater

To calculate your BMI, you can create a VB BMI calculator. The BMI
calculator can calculate the body mass index or BMI of a person based on
the body weight in kilogram and the body height in meter. BMI can be
calculated using the Formula weight/(height)^2, where weight is
measured in kg and height in meter. If you only know your weight and
height in lb and feet, then you need to convert them to the metric system
(you could indeed write a VB program for the conversion).
Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim height, weight, bmi As Single
 height = CInt(TextBox1.Text)
 weight = CInt(TextBox2.Text)
 bmi = CSng((weight) / (height ^ 2))
 Label1.Text = CStr(bmi)
 End Sub
End Class

The output is shown in the Figure 7.1. In this example, your height is
1.80m(about 5.11foot), your weight is 75 kg (about 168Ib), and your
BMI is about 23.14815. The reading suggests that you are healthy. (Note;
1 foot=0.3048, 1 lb= 0.45359237 kilogram)

 32

Figure 7.1

From the above examples, you can see that writing code that involve
arithmetic operations is relatively easy. Here are more arithmetic projects
you can try to program:

Area of a triangle
Area of a rectangle
Area of a circle
Volume of a cylinder
Volume of a cone
Volume of a sphere
Compound interest
Future value
Mean
Variance
Sum of angles in polygons
Conversion of lb to kg
Conversion of Fahrenheit to Celsius

 33

8. String Manipulation

8.1 String Manipulation Using + and & signs.

In Visual Basic 2012, strings can be manipulated using the & sign and the
+ sign, both perform the string concatenation which means combining
two or more smaller strings into larger strings. For example, we can join
“Visual”,”Basic” and “2012” into “Visual Basic 2012” using
“Visual”&”Basic”&”2012” or “Visual “ + ”Basic” + “2012”, as shown in the
Examples below

Example 8.1(a)

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim text1, text2, text3, text4 As String
 text1 = "Visual"
 text2 = " Basic"
 text3 = " 2012"
 text4 = text1 + text2 + text3
 MsgBox("text4")
 MsgBox(text4)
 End Sub
End Class

The line text4=text1+ text2 + text3 can be replaced by text4=text1 &
text2 &text3 and produces the same output. However, if one of the
variables is declared as numeric data type, you cannot use the + sign,
you can only use the & sign.

Example 8.1(b)

Public Class Form1
 Private Sub Label1_Click(sender As Object, e As EventArgs) Handles Label1.Click

 Dim text1, text3 As String
 Dim Text2 As Integer
 text1 = "Visual Basic "
 Text2 = 2012
 text3 = text1 + Text2
 Label1.Text = text3
 End Sub
End Class

 34

This code will produce an error because of data mismatch. However, using
& instead of + will be all right.

Public Class Form1
 Private Sub Label1_Click(sender As Object, e As EventArgs) Handles Label1.Click

 Dim text1, text3 As String
 Dim Text2 As Integer
 text1 = "Visual Basic "
 Text2 = 2012
 text3 = text1 & Text2
 Label1.Text = text3
 End Sub
End Class

You can combine more than two strings to Form a larger string, like the
following example:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim text1, text2, text3, text4, text5, text6 As String
 text1 = "Welcome"
 text2 = " to"
 text3 = " Visual"
 text4 = " Basic"
 text5 = " 2012"
 text6 = text1 + text2 + text3 + text4 + text5
 Label1.Text = text6
 End Sub
End Class

Running the above program will produce the following screen shoot.

 35

Figure 8.1

8.2 String Manipulation Using VB2012 Built-in Functions

A function is similar to a normal procedure but the main purpose of the
function is to accept a certain input and return a value, which is passed
on to the main program to finish the execution. There are numerous string
manipulation functions, which are built into Visual Basic 2012, but I will
only discuss a few here and will explain the rest of them in later lessons.

8.2 (a) The Len Function

The Len function returns an integer value which is the length of a phrase
or a sentence, including the empty spaces. The syntax is
Len (“Phrase”)

For example,

Len (Visual Basic) = 12

and

Len (welcome to VB tutorial) = 22

Example 8.3

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = CStr(Len(TextBox1.Text))
 End Sub
End Class

The output:

 36

Figure 8.2

8.2(b) The Right Function

The Right function extracts the right portion of a phrase. The Format for
Visual Basic 6 is

Right ("Phrase", n)

Where n is the starting position from the right of the phrase where the
portion of the phrase is going to be extracted. For example,

Right("Visual Basic", 4) = asic

However, this syntax is not applicable in VB2012. In VB2012, we need use
the following Format

Microsoft.VisualBasic.Right("Phrase",n)

Example 8.4

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim text1 As String
 text1 = TextBox1.Text
 Label1.Text = Microsoft.VisualBasic.Right(text1,4)
 End Sub
End Class

 37

The above program returns four rightmost characters of the phrase
entered into the TextBox.

The Output:

Figure 8.3

*The reason of using the full reference is that many objects have the
Right properties so using Right on its own will make it ambiguous to Visual
Basic 2012.

8.2(c)The Left Function

The Left function extracts the left portion of a phrase. The syntax is

Microsoft.VisualBasic.Left("Phrase",n)

Where n is the starting position from the left of the phase where the
portion of the phrase is going to be extracted. For example,

Microsoft.VisualBasic.Left (“Visual Basic”, 4) = Visu

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim text1 As String

 38

 text1 = TextBox1.Text
 Label1.Text = Microsoft.VisualBasic.Left(text1,4)
 End Sub
End Class

9. Using If…Then…Else

In this lesson, you will learn how to write Visual Basic 2012 code that can
make decisions when it processes input from the user controls the
program flow.

9.1 Decision Making using If…Then…Else

For example, we can write a Visual Basic 2012 program that can ask the
computer to perform a certain task until a certain condition is met or a
program that will reject non-numeric data. In order to control the program
flow and to make decisions, we use the If…Then…Else control structure.
The if…Then…Else control structure employs the conditional operators
and the logical operators to make decision.

9.2 Conditional Operators

The conditional operators are powerful tools that resemble mathematical
operators. These operators allow a Visual Basic 2012 program to compare
data values and then decide what actions to take, whether to execute a
program or terminate the program and more. They are also known as
numerical comparison operators. Normally they are used to compare two
values to see whether they are equal or one value is greater or less than
the other value. The comparison will return a true or false result. These
operators are shown in Table 9.1.

 39

Table 9.1 Conditional Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or Equal to

<> Not equal to

9.2 Logical Operators

Sometimes we might need to make more than one comparison before a
decision can be made. In this case, using numerical comparison operators
alone is not sufficient; we need to use the logical operators. These logical
operators are shown in Table 9.2.

Table 9.2 Logical Operators

Operator Description

And
Both input sides must be true to get a true
output

Or One side or other must be true

Xor
One side or other must be true but not
both

Not Negates true

 40

* In making strings comparison, there are certain rules to follows: Upper
case letters are less than lowercase letters, "A" < "a" ,
"A"<"B"<"C"<"D"…….<"Z" and numbers are less than letters 21 < "A".

9.3 Using the If control structure with the Comparison Operators

To effectively control the Visual Basic 2012 program flow, we shall use
the If control structure together with the conditional operators and
logical operators. There are three types of If control structures,
namely If….Then statement, If….Then… Else statement
and If….Then….ElseIf statement.

9.3(a) If….Then Statement

This is the simplest control structure, which instructs the computer to
perform a certain action specified by the Visual Basic 2012 expression if
the condition is true. However, when the condition is false, no action will
be performed. The syntax for the if…then.. statement is

If condition Then
Visual Basic 2012 expression
End If

Example 9.1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myNumber As Integer
 myNumber = CInt(TextBox1.Text)
 If myNumber > 100 Then
 Label1.Text = " You win a lucky prize"
 End If
 End Sub
End Class

* When you run the program and enter a number that is greater than
100, you will see the “You win a lucky prize” statement. On the other
hand, if the number entered is less than or equal to 100, you don’t see
any display.

 41

9.3(b) If….Then…Else Statement

Using just If….Then statement is not very useful in programming and it
does not provide choices for the users. In order to provide a choice, we
can use the If….Then…Else Statement. This control structure will ask the
computer to perform a certain action specified by the Visual Basic 2012
expression if the condition is met. And when the condition is false, an
alternative action will be executed.

The syntax for the if…then… Else statement is

If condition Then
Visual Basic 2012 expression

Else
Visual Basic 2012 expression

End If

Example 9.2

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myNumber As Integer
 Dim age As Integer
 myNumber = CInt(TextBox1.Text)
 age = CInt(TextBox2.Text)
 If myNumber > 100 And age > 60 Then
 Label1.Text = " Congratulation! You win a lucky prize"
 Else
 Label1.Text = " Sorry, You did not win any prize"
 End If
 End Sub
End Class

* This program use the logical operator And besides the conditional
operators. This means that both the conditions must be fulfilled in order
for the conditions to be true, otherwise, the second block of code will be
executed. In this example, the number entered must be more than 100
and the age must be more than 60 in order to win a lucky prize, any one
of the above conditions not fulfilled will disqualify the user from winning
a prize.

9.3(c) If….Then…ElseIf Statement

 42

If there are more than two alternative choices, using just If….Then….Else
statement will not be enough. In order to provide more choices, we can
use the If….Then…ElseIf Statement. executed. The general Format for
the if…then… Else statement is:

If condition Then
 Visual Basic 2012 expression
ElseIf condition Then
 Visual Basic 2012 expression
ElseIf condition Then
 Visual Basic 2012 expression
Else
 Visual Basic 2012 expression
End If

Example 9.4

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim Mark As Integer
 Dim Grade As String
 Mark = CInt(TextBox1.Text)
 If Mark >= 80 Then
 Grade = "A"
 Label1.Text = "A"
 ElseIf Mark >= 60 And Mark < 80 Then
 Grade = "B"
 Label1.Text = "B"
 ElseIf Mark >= 40 And Mark < 60 Then
 Grade = "C"
 Label1.Text = "C"
 Else
 Grade = "D"
 Label1.Text = "D"
 End If
 End Sub
End Class

10. Using Select Case

 43

The Select Case control structure is slightly different from the If….ElseIf
control structure .The difference is that the Select Case control structure
basically only make a decision on one expression or dimension (for
example the examination grade) while the If …ElseIf statement control
structure may evaluate only one expression, each If….ElseIf statement
may also compute entirely different dimensions. Select Case is preferred
when there exist multiple conditions as using If… Then… ElseIf statements
will become too messy.

 conditions using If…Then..ElseIf statements will become too messy.

10.1 The Select Case Structure

The syntax of the Select Case control structure in Visual Basic 2012 is as
follows:

Select Case test expressionCase expression list 1
Block of one or more statements

Case expression list 2
Block of one or more Statements

Case expression list 3
.
.
.
Case Else

Block of one or more Statements
End Select

10.2 The usage of Select Case is shown in the following examples

Example 10.1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 ' Examination Grades
 Dim grade As String
 grade = TextBox1.Text
 Select Case grade
 Case "A"
 Label1.Text = "High Distinction"
 Case "A-"
 Label1.Text = "Distinction"

 44

 Case "B"
 Label1.Text = "Credit"
 Case "C"
 Label1.Text = "Pass"
 Case Else
 Label1.Text = "Fail"
 End Select
 End Sub
End Class

Example 10.2

In this example, you can use the keyword Is together with the comparison
operators

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim mark As Single
 mark = CSng(TextBox1.Text)
 Select Case mark
 Case Is >= 85
 Label1.Text = "Excellence"
 Case Is >= 70
 Label1.Text = "Good"
 Case Is >= 60
 Label1.Text = "Above Average"
 Case Is >= 50
 Label1.Text = "Average"
 Case Else
 Label1.Text = "Need to work harder"
 End Select
 End Sub
End Class

Example 10.3

Example 10.2 can be rewritten as follows:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 'Examination Marks
 Dim mark As Single
 mark = CSng(TextBox1.Text)
 Select Case mark
 Case 0 To 49

 45

 Label1.Text = "Need to work harder"
 Case 50 To 59
 Label1.Text = "Average"
 Case 60 To 69
 Label1.Text = "Above Average"
 Case 70 To 84
 Label1.Text = "Good"
 Case 85 To 100
 Label1.Text = "Excellence"
 Case Else
 Label1.Text = "Wrong entry, please reenter the mark"
 End Select
 End Sub
End Class

Example 10.4

Grades in high school are usually presented with a single capital letter
such as A, B, C, D or E. The grades can be computed as follow:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 'Examination Marks
 Dim mark As Single
 mark = CSng(TextBox1.Text)
 Select Case mark
 Case 0 To 49
 Label1.Text = "E"
 Case 50 To 59
 Label1.Text = "D"
 Case 60 To 69
 Label1.Text = "C"
 Case 70 To 79
 Label1.Text = "B"
 Case 80 To 100
 Label1.Text = "A"
 Case Else
 Label1.Text = "Error, please re-enter the mark"
 End Select
 End Sub
End Class

The output of Example 10.4

 46

Figure 10.1

11. Looping

Looping is required when we need to process something repetitively until
a certain condition is met. For example, we can design a program that
adds a series of numbers until the sum exceeds a certain value. We can
also write a program that prompts the user to enter data repeatedly until
he or she enters the word ‘Finish’. In Visual Basic 2012, there are three
types of Loops, they are the For…..Next loop, the Do loop. and the
While…..End while loop

11.1 Looping using the For….Next Loop

The syntax is:

For counter=startNumber to endNumber (Step increment)
One or more VB statements

Next

To exit a For…..Next Loop, you can place the Exit For statement within
the loop, please refer to example 11.1 d.

 47

Example 11.1 a

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim counter As Integer
 For counter = 1 To 10
 ListBox1.Items.Add(counter)
 Next
 End Sub
End Class

* The program will enter number 1 to 10 into the list box.

Example 11.1b

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim counter, sum As Integer
 For counter = 1 To 100 Step 10
 sum += counter
 ListBox1.Items.Add(sum)

Next
 End Sub
End Class

* The program will calculate the sum of the numbers as follows:

sum=1, (1+10+1), (12+20+1), (33+30+1), (64+40+1), ……

Example 11.1c

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim counter, sum As Integer
 sum = 1000
 For counter = 100 To 5 Step -5
 sum -= counter
 ListBox1.Items.Add(sum)

 48

 Next
 End Sub
End Class

1000-100, 900-95, 805-90, ……..

*Notice that increment can be negative.

The program will compute the subtraction as follow:
1000-100-95-90-……….

Example 11.1d

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim n As Integer
 For n = 1 To 10
 If n > 6 Then
 Exit For
 Else
 ListBox1.Items.Add(n)
 End If
 Next
 End Sub
End Class

The process will stop when n is greater than 6.

11.2 The Do Loop

The Do Loop structures are

a)

 49

 Do While condition
 Block of one or more statements
 Loop

b)

 Do
 Block of one or more statements
 Loop While condition

c)

 Do Until condition
 Block of one or more statements
 Loop

d)

 Do
 Block of one or more statements
 Loop Until condition

* Exiting the Loop

Sometimes we need to exit a loop prematurely because of a certain
condition is fulfilled. The syntax to use is known as Exit Do. Let’s examine
the following examples

Example 11.2(a)

Do while counter

* The above example will keep on adding until counter >1000.

 50

The above example can be rewritten as

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim counter As Integer
 Do
 TextBox1.Text = CStr(counter)
 counter += 1
 Loop Until counter > 1000
 End Sub
End Class

Example 11.2(b)

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim sum, n As Integer
 ListBox1.Items.Add("n" & vbTab & "Sum")
 ListBox1.Items.Add("----------------------")
 Do
 n += 1
 sum += n
 ListBox1.Items.Add(n & vbTab & sum)
 If n = 100 Then
 Exit Do
 End If
 Loop
 End Sub
End Class

Example about loops:

Public Class Form1
 Dim cnt As Integer
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 While cnt <= 10
 ListBox1.Items.Add(cnt)
 cnt = cnt + 1
 End While
 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 Do While cnt <= 10
 ListBox1.Items.Add(cnt)
 cnt = cnt + 1
 Loop
 End Sub

 51

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click
 Do Until cnt = 11
 ListBox1.Items.Add(cnt)
 cnt = cnt + 1
 Loop
 End Sub

 Private Sub Button4_Click(sender As Object, e As EventArgs) Handles Button4.Click
 'We can initialize cnt start value
 'cnt = 3
 Do
 ListBox1.Items.Add(cnt)
 cnt = cnt + 1
 Loop While cnt <= 10
 End Sub

 Private Sub Button5_Click(sender As Object, e As EventArgs) Handles Button5.Click
 Do
 ListBox1.Items.Add(cnt)
 cnt = cnt + 1
 Loop Until cnt > 10
 End Sub
End Class

Example While …. Loop (pre-test):

The Structure is:

While <condition>

 Instructions
End While

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim i As Integer = 0
 While i <= 100
 ListBox1.Items.Add(i)
 i += 1
 End While
 End Sub
End Class

Example Do …Loop Until (post-test):

 52

The Structure is:

Do

 Instructions
Loop Until <condition>

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim j As Integer = 0
 Do
 ListBox1.Items.Add(" " & j & " Hello World")
 j += 1
 Loop Until j = 100
 End Sub
End Class

Example For … Next Loop (iterative/counter):

Public Class Form1
 Dim str As String = "Hello World"
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 For k As Integer = 99 To 0 Step -1
 ListBox1.Items.Add(k & " " & str)
 'or we can write
 'ListBox1.Items.Add(k & vbTab & str)
 Next
 End Sub
End Class

12. Functions

A function is a procedure that returns a value, which is passed on to the
main procedure to finish the execution. There are two types of functions

 53

in Visual Basic 2012, the built-in functions (or internal functions) and the
functions created by the programmers. The syntax of a function is:

Function Name (arguments)

The arguments are values that are passed on to the function.
In this lesson, we are going to learn two very basic but useful internal
functions of Visual Basic 2012 , i.e. the MsgBox() and InputBox ()
functions.

12.1 MsgBox () Function

The MsgBox function produces a pop-up message box and prompts the
user to click on a command Button before he /she can continue. This
syntax is as follows:

yourMsg = MsgBox(Prompt, Style Value, Title)

The first argument, Prompt, will display the message in the message box.
The Style Value will determine what type of command Buttons appear on
the message box, please refer to Table 12.1 for types of command Button
displayed. The Title argument will display the title of the message board.

Table 12.1

Style
Value Named Constant Buttons Displayed

0 vbOkOnly Ok Button

1 vbOkCancel Ok and Cancel Buttons

2 vbAbortRetryIgnore
Abort, Retry and Ignore
Buttons.

3 vbYesNoCancel Yes, No and Cancel Buttons

 54

4 vbYesNo Yes and No Buttons

5 vbRetryCancel Retry and Cancel Buttons

We can use named constants in place of integers for the second argument
to make the programs more readable. In fact, Visual Basic 2012 will
automatically show up a list of named constants where you can select one
of them.
Example:

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 MsgBox("Click OK to Proceed", MsgBoxStyle.OkOnly, "Startup Menu")
 End Sub
End Class

And example MsgBox:

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim youMessage As Integer
 youMessage = MsgBox("click ok to proceed", CType(1, MsgBoxStyle), "Startup Menu")
 End Sub
End Class

are the same.

youMessage is a variable that holds values that are returned by the
MsgBox () function. The types of Buttons being clicked by the users
determine the values. It has to be declared as Integer data type in the
procedure or in the general declaration section. Table 12.2 shows the
values, the corresponding named constant and Buttons.

Table 12.2

Value Named Constant Button Clicked

1 vbOk Ok Button

2 vbCancel Cancel Button

 55

3 vbAbort Abort Button

4 vbRetry Retry Button

5 vbIgnore Ignore Button

6 vbYes Yes Button

7 vbNo No Button

Example 12.1 or msgboxexample2

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim testmsg As Integer
 testmsg = MsgBox("Click to test", CType(1, MsgBoxStyle), "Test message")
 If testmsg = 1 Then
 MessageBox.Show("You have clicked the OK Button")
 Else
 MessageBox.Show("You have clicked the Cancel Button")
 End If
 End Sub
End Class

To make the message box looks more sophisticated, you can add an icon
besides the message. There are four types of icons available in VB2012
as shown in Table 12.3

Table 12.3

Value Named Constant Icon

16 vbCritical

 56

3 vbQuestion

48 vbExclamation

64 vbInFormation

Example 12.2

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim testMsg As Integer
testMsg = MsgBox("Click to Test", CType(vbYesNoCancel +
vbExclamation, MsgBoxStyle), "Test Message")

 If testMsg = 6 Then
 MessageBox.Show("You have clicked the Yes Button")
 ElseIf testMsg = 7 Then
 MessageBox.Show("You have clicked the No Button")
 Else
 MessageBox.Show("You have clicked the Cancel Button")
 End If

 End Sub
End Class

The first argument, Prompt, will display the message

 57

Figure 12.1

12.2 The InputBox() Function

An InputBox() function will display a message box where the user can
enter a value or a message in the Form of text. The syntax is,

myMessage= Microsoft.VisualBasic.InputBox(Prompt, Title, default_text, x-
position, y-position)

myMessage is a variant data type but typically it is declared as a string,
which accepts the message input by the users. The arguments are
explained as follows:

Prompt – The message displayed normally as a question asked.
Title – The title of the Input Box.
default-text – The default text that appears in the input field where the
user can use it as his or her intended input or he or she may change to
the message he wishes to enter. x-position and y-position – the position
or the coordinates of the input box.

However, in Visual Basic 2012 because InputBox is considered a
namespace. So, you need to key in the full reference to the Inputbox
namespace.

Example 12.3

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim userMsg As String
userMsg = Microsoft.VisualBasic.InputBox("What is your
message?", "Message Entry Form", "Enter your message here
", 100, 200)

 58

 If userMsg <> "" Then
 MessageBox.Show(userMsg)
 Else
 MessageBox.Show("No Message")
 End If
 End Sub
End Class

The inputbox will appear as shown in the figure below when you press
the command Button

Figure 12.2

13. The Built-In Functions

There are many built-in functions in Visual Basic 2012. In this lesson,
you will learn a couple of built-in functions that deal with string
manipulation.

13.1 The Mid Function

The Mid function is used to retrieve a part of the text from a given phrase.
The syntax of the Mid Function is

Mid(phrase, position,n)

 59

*phrase is the string from which a part of the text is to be retrieved
*position is the starting position of the phrase from which the retrieving
process begins.
*n is the number of characters to retrieve.

Example 13.1

See String Function example

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myPhrase As String
 myPhrase = Microsoft.VisualBasic.InputBox("Enter your phrase")
 Label1.Text = Mid(myPhrase, 2, 6)
 End Sub
End Class

* This program will extract text starting from position 2 of the phrase and
the number of characters extracted is 6.

The figures are shown below:

Figure 13.1

 60

Figure 13.2

13.2 The Right Function

The Right function extracts the right portion of a phrase. The Format is

Microsoft.Visualbasic.Right ("Phrase", n)

Where n is the starting position from the right of the phase where the
portion of the phrase is going to be extracted. For example:

Microsoft.Visualbasic.Right ("Visual Basic", 4) = asic

Example 13.2

The following code extracts the right portion any phrase entered by the
user.

Public Class Form1

 61

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myword As String
 myword = TextBox1.Text
 Label1.Text = Microsoft.VisualBasic.Right(myword, 4)
 End Sub
End Class

13.3 The Left Function

The Left function extracts the left portion of a phrase. The Format is

Microsoft.Visualbasic.Left ("Phrase", n)

Where n is the starting position from the left of the phase where the
portion of the phrase is going to be extracted. For example:

Microsoft.Visualbasic.Left("Visual Basic", 4) = Visu

Example 13

The following code extracts the left portion any phrase entered by the
user.

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myword As String
 myword = TextBox1.Text
 Label1.Text = Microsoft.VisualBasic.Left(myword, 4)
 End Sub
End Class

13.4 The Trim Function

The Trim function trims the empty spaces on both sides of the phrase.
The Format is Trim(Phrase). For example,

Trim (Visual Basic) = Visual basic

Example 13.4

 62

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim myPhrase As String
 myPhrase = Microsoft.VisualBasic.InputBox("Enter your phrase")
 Label1.Text = Trim(myPhrase)
 End Sub
End Class

13.5 The Ltrim Function

The Ltrim function trims the empty spaces of the left portion of the
phrase. The Format is Ltrim(Phrase). For example,

Ltrim (Visual Basic 2012) = Visual basic 2012

13.6 The Rtrim Function

The Rtrim function trims the empty spaces of the right portion of the
phrase. The Format is Rtrim(Phrase). For example,

Rtrim (Visual Basic 2012) = Visual Basic 2012

13.7 The InStr function

The InStr function looks for a phrase that is embedded within the original
phrase and returns the starting position of the embedded phrase. The
Format is

Instr (n, original phase, embedded phrase)

Where n is the position where the Instr function will begin to look for the
embedded phrase. For example

Instr(1, "Visual Basic 2012 ","Basic") = 8

*The function returns a numeric value.

You can write a program code as shown below:

Public Class Form1

 63

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

Label1.Text = CStr(InStr(1, "Visual Basic", "Basic"))
'first character number of embedded phrase

 End Sub
End Class

13.8 The UCase and the LCase Functions

The UCase function converts all the characters of a string to capital letters.
On the other hand, the LCase function converts all the characters of a
string to small letters.

The syntax is

Microsoft.VisualBasic.UCase("Phrase")
Microsoft.VisualBasic.LCase("Phrase")

For example,

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = Microsoft.VisualBasic.UCase("Visual Basic")
 Label2.Text = Microsoft.VisualBasic.LCase("Visual Basic")
 End Sub
End Class

13.9 The Chr and the Asc functions

The Chr function returns the string that corresponds to an ASCII code
while the Asc function converts an ASCII character or symbol to the
corresponding ASCII code. ASCII stands for “American Standard Code for
InFormation Interchange”. Altogether there are 255 ASCII codes and as
many ASCII characters. Some of the characters may not be displayed as
they may represent some actions such as the pressing of a key or produce
a beep sound. The Format of the Chr function is

Chr(charcode)

and the Format of the Asc function is

Asc(Character)

 64

The following are some examples:

Chr(65)=A, Chr(122)=z, Chr(37)=% ,

Asc("B")=66, Asc("&")=38

Example 13. 9

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim myChar As String
 Dim charcode As Integer
 'Label1.Text = Chr(101)
 charcode = CInt(Microsoft.VisualBasic.InputBox("Enter your character code"))
 Label1.Text = CStr(Chr(charcode))
 myChar = Microsoft.VisualBasic.InputBox("Enter ASCII character or symbol")
 Label2.Text = CStr(Asc(myChar))
 End Sub
End Class

14. The Math Functions

In this lesson, you will learn how to use the built-in math functions in
Visual Basic 2012. There are numerous built-in math functions in Visual
Basic 2012. Let’s examine them one by one.

14.1 The Abs function

The Abs function returns the absolute value of a given number.

The syntax is

Math. Abs (number)

* The Math keyword indicates that the Abs function belong to the Math
class.

14.2 The Exp function

The Exp of a number x is the exponential value of x, i.e. ex . For example,
Exp(1)=e=2.71828182
The syntax is

 65

Math.Exp (number)

Example 14.1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim num1 As Single
 num1 = CSng(TextBox1.Text)
 Label1.Text = CStr(Math.Exp(num1))
 Label2.Text = CStr(Math.Abs(num1))
 End Sub
End Class

14.3 The Fix Function

The Fix function truncates the decimal part of a positive number and
returns the largest integer smaller than the number. However, when the
number is negative, it will return smallest integer larger than the number.
For example, Fix(9.2)=9 but Fix(-9.4) = -9

14.4 The Int Function

The Int is a function that converts a number into an integer by truncating
its decimal part and the resulting integer is the largest integer that is
smaller than the number. For example

Int(2.4) = 2, Int(6.9) = 6 , Int(-5.7) = -6, Int(-99.8) = -100

Example 14.2

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim num1 As Single
 num1 = CSng(TextBox1.Text)

 66

 Label1.Text = CStr(Fix(num1))
 Label2.Text = CStr(Int(num1))
 End Sub
End Class

14.5 The Log Function

The Log function is the function that returns the natural logarithm of a
number. For example, Log(10) = 2.302585

Example 14.3

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim num1, num2 As Single ' declare num1 and num2 as Single
 num1 = CSng(TextBox1.Text) ' convert to single what is entered in TextBox1
 num2 = CSng(Math.Log(num1)) ' convert to single and find the log(num1)
 Label1.Text = CStr(num2) 'display the result on Label1
 End Sub
End Class

* The logarithm of num1 will be displayed on Label1

14.6 The Rnd() Function

Rnd is a very useful function in Visual Basic 2012 . We use the Rnd
function to write code that involves chance and probability. The Rnd
function returns a random value between 0 and 1. Random numbers in
their original Form are not very useful in programming until we convert
them to integers. For example, if we need to obtain a random output of
6 integers ranging from 1 to 6, which makes the program behave like a
virtual dice, we need to convert the random numbers to integers using
the Formula Int(Rnd*6)+1.

Example 14.4

 67

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim num As Integer 'declare num as intiger

num = CInt(Int(Rnd() * 6) + 1) 'generate random numbers between "0 and 1" and
'multiply each by 6 then add 1 to each

 ' after that convert to intiger
 Label1.Text = CStr(num) 'display num on Label1

End Sub
End Class

In this example, Int(Rnd()*6) will generate a random integer between 0
and 5 because the function Int truncates the decimal part of the random
number and returns an integer. After adding 1, you will get a random
number between 1 and 6 every time you click the command Button. For
example, let say the random number generated is 0.98, after multiplying
it by 6, it becomes 5.88, and using the integer function Int(5.88) will
convert the number to 5; and after adding 1 you will get 6.

14.7 The Round Function

The Round function is a Visual Basic 2012 function that rounds up a
number to a certain number of decimal places. The Format is Round (n,
m) which means to round a number n to m decimal places. For example,
Math.Round (7.2567, 2) =7.26

Example 14.5

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim num1 As Single
 num1 = CSng(TextBox1.Text)
 Label1.Text = CStr(Math.Round(num1, 2))
 End Sub
End Class

* The Math keyword here indicates that the Round function belong to the
Math class.

15. The Format Function

 68

The Format function in Visual Basic 2012 is to display the numbers in
different Formats. There are two types of Format functions, one of them
is the built-in Format function and the other one is defined by the users.

(i) The syntax of the predefined Format function is

Format (n, "style argument")

where n is a number.

The list of style arguments in Visual Basic 2012 is given in Table 15.1.

Table 15.1 List of style arguments

Style
argument Explanation Example

General
Number

To display the number
without having separators
between thousands.

Format(8972.234,
“General Number”) =
8972.234

Fixed

To display the number
without having separators
between thousands and
rounds it up to two decimal
places.

Format(8972.234678,
“Fixed”) = 8972.23

Standard

To display the number with
separators or separators
between thousands and
rounds it up to two decimal
places.

Format(6648972.265,
“Standard”)=
6,648,972.27

Currency

To display the number with
the dollar sign in front has
separators between
thousands as well as
rounding it up to two decimal
places.

Format(6648972.265,
“Currency”)=
$6,648,972.27

 69

Percent

Converts the number to the
percentage Form and
displays a % sign and rounds
it up to two decimal places.

Format(0.56324,
“Percent”)=56.32 %

Example 15.1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = Format(8972.234, "General Number")
 Label2.Text = Format(8972.2, "Fixed")
 Label3.Text = Format(6648972.265, "Standard")
 Label4.Text = Format(6648972.265, "Currency")
 Label5.Text = Format(0.56324, "Percent")
 End Sub
End Class

The Output window is shown below:

Figure 15.1

(ii) The syntax of the user-defined Format function is

 70

Format (n, "user's Format")

Although it is known as user-defined Format, we still need to follow certain
Formatting styles. Examples of user-defined Formatting style are listed in
Table 15.2

Table 15.2 User-Defined Format

Example 15.2

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = Format(8972.234, "0.0")
 Label2.Text = Format(8972.2345, "0.00")
 Label3.Text = Format(6648972.265, "#,##0.00")
 Label4.Text = Format(6648972.265, "$#,##0.00")
 Label5.Text = Format(0.56324, "0%")
 End Sub
End Class

The Output window is shown below:

 71

Figure 15.2

16. Formatting Date and Time

16.1 Formatting Date and time using predefined Formats

In Visual Basic 2012, we can Format date and time using predefined
Formats or user-defined Formats. The predefined Formats of date and
time are shown in Table 16.1.

https://www.vbtutor.net/wordpress/wp-content/uploads/2012/04/vb2010_table16.11.jpg

 72

* Instead of “General date”, you can also use the abbreviated Format “G”,
i.e. Format (Now, “G”). For “Long Time”, you can use the abbreviated
Format “T” and for “Short Time”, you may use the abbreviated Format “t”

Example 16.1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = Format(Now, "General Date")
 Label2.Text = Format(Now, "Long Date")
 Label3.Text = Format(Now, "short Date")
 Label4.Text = Format(Now, "Long Time")
 Label5.Text = Format(Now, "Short Time")
 End Sub
End Class

The output is shown in the figure below:

 73

16.2 Formatting Date and time using user-defined Formats

Besides using the predefined Formats, you can also use the user-defined
Formatting functions. The general syntax of a user-defined for date/time
is

Format (expression,style)

Example 16.2

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Label1.Text = Format(Now, "M")
 Label2.Text = Format(Now, "MM")
 Label3.Text = Format(Now, "MMM")
 Label4.Text = Format(Now, "MMMM")
 Label5.Text = Format(Now, "dd/MM/yyyy")
 Label6.Text = Format(Now, "MMM,d,yyyy")
 Label7.Text = Format(Now, "h:mm:ss tt")
 Label8.Text = Format(Now, "MM/dd/yyyy h:mm:ss tt")
 End Sub
End Class

https://www.vbtutor.net/wordpress/wp-content/uploads/2012/04/vb2010_table16.2.jpg

 74

The output is shown in the figure below:

17. The Checkbox

The checkbox is a control that allows the user to select multiple items.
For example, in the Font dialog box of Microsoft Words, there are
many checkboxes under the Effects section, such as that shown in the
Figure 17.1 below. The user can choose to Format the text with an
underline, subscript, small caps, superscript, blink and more.

 75

Figure 17.1

Example 17.1 Shopping Cart

In Visual Basic 2012, you may create a shopping cart where the user can
click on checkboxes that correspond to the items they intend to purchase,
and the total payment can be calculated simultaneously, as shown in
Figure 17.1.

 76

Figure 17.2

The program code for the shopping cart is as follows:

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Const LX As Integer = 100
 Const BN As Integer = 500
 Const SD As Integer = 200
 Const HD As Integer = 80
 Const HM As Integer = 300
 Const AM As Integer = 150
 Dim sum As Integer

 If CheckBox1.Checked = True Then
 sum += LX
 End If

 If CheckBox2.Checked = True Then
 sum += BN
 End If

 If CheckBox3.Checked = True Then
 sum += SD

 77

 End If

 If CheckBox4.Checked = True Then
 sum += HD
 End If

 If CheckBox5.Checked = True Then
 sum += HM
 End If

 If CheckBox6.Checked = True Then
 sum += AM
 End If
 TextBox1.Text = sum.ToString("c")
 End Sub
End Class

Here is another example

Example 17.2

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Const large As Integer = 10
 Const medium As Integer = 8
 Const small As Integer = 5
 Dim sum As Integer

 If CheckBox1.Checked = True Then
 sum += large
 End If

 If CheckBox2.Checked = True Then
 sum += medium
 End If

 If CheckBox3.Checked = True Then
 sum += small
 End If
 TextBox1.Text = sum.ToString("c")

 End Sub
End Class

The output as in following Figure:

 78

Example 17.3

In this example, the user can enter text into a Text Box and Format the
font using the three checkboxes that represent bold, italic and underline.

 79

Figure 17.3

The code

Public Class Form1

 Private Sub CheckBox1_CheckedChanged(sender As Object, e As EventArgs) Handles
CheckBox1.CheckedChanged
 If CheckBox1.Checked Then
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style Or
FontStyle.Bold)
 Else
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style And Not
FontStyle.Bold)

 End If
 End Sub

 Private Sub CheckBox2_CheckedChanged(sender As Object, e As EventArgs) Handles
CheckBox2.CheckedChanged
 If CheckBox2.Checked Then
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style Or
FontStyle.Italic)
 Else
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style And Not
FontStyle.Italic)

 End If
 End Sub

 Private Sub CheckBox3_CheckedChanged(sender As Object, e As EventArgs) Handles
CheckBox3.CheckedChanged
 If CheckBox2.Checked Then
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style Or
FontStyle.Underline)
 Else
 TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style And Not
FontStyle.Underline)

 End If
 End Sub
End Class

* The above program uses the CheckedChanged event to respond to the
user selection by checking a particular checkbox, it is similar to the click
event. The statement

TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style Or FontStyle.Italic)

will retain the original font type but change it to italic font style.

 80

TextBox1.Font = New Font(TextBox1.Font, TextBox1.Font.Style And Not FontStyle.Italic)

will also retain the original font type but change it to regular font style.
(The other statements employ the same logic)

18. Using Radio Button

The radio Button is another control in Visual Basic 2010 that allows
selection of choices. However, it operates differently from the check box.
While the check boxes allow the user to select one or more items, radio
Buttons are mutually exclusive, which means the user can only choose
one item only out of a number of choices. Here is an example which allows
the user to select one color only.

Example 18.1

 81

The Code for Example 18.1:

Public Class Form1
 Dim strColor As String

Private Sub RadioButton1_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton1.CheckedChanged

 strColor = "Red"
 End Sub

Private Sub RadioButton2_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton2.CheckedChanged

 strColor = "Green"
 End Sub

Private Sub RadioButton3_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton3.CheckedChanged

 strColor = "Yellow"
 End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 TextBox1.Text = strColor
 End Sub
End Class

Although the user may only select one item at a time, he may make more
than one selection if those items belong to different categories. For
example, the user wishes to choose T-shirt size and color, he needs to
select one color and one size, which means one selection in each category.
This is easily achieved in Visual Basic 2010 by using the Groupbox control
under the containers categories. After inserting the Groupbox into the
Form, you can proceed to insert the radio Buttons into the Groupbox. Only
the radio Buttons inside the Groupbox are mutually exclusive, they are
not mutually exclusive with the radio Buttons outside the Groupbox. In
Example 18.2, the user can select one color and one size of the T-shirt.

 82

Example 18.2

The code for Example 18.2

Public Class Form1
 Dim strColor As String
 Dim strSize As String

Private Sub RadioButton1_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton1.CheckedChanged

 strColor = "Red"
 End Sub

Private Sub RadioButton2_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton2.CheckedChanged

 strColor = "Green"
 End Sub

Private Sub RadioButton3_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton3.CheckedChanged

 strColor = "Yellow"

 83

 End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 TextBox1.Text = strColor
 TextBox2.Text = strSize

 End Sub

Private Sub RadioButton4_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton4.CheckedChanged

 strSize = "L"
 End Sub

Private Sub RadioButton5_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton5.CheckedChanged

 strSize = "M"
 End Sub

Private Sub RadioButton6_CheckedChanged(sender As Object, e As
EventArgs) Handles RadioButton6.CheckedChanged

 strSize = "S"
 End Sub
End Class

19. Arrays

An array is a set of values, which are termed elements, that are logically
related to each other. For example, an array may consist of the number
of students in each grade in a grammar school; each element of the array
is the number of students in a single grade. Similarly, an array may consist
of a student's grades for a class; each element of the array is a single
grade.

By using an array, you can refer to these related values by the same
name, and use a number that’s called an index or subscript to identify an
individual element based on its position in the array. The indices of an
array range from 0 to one less than the total number of elements in the
array. When you use Visual Basic syntax to define the size of an array,
you specify its highest index, not the total number of elements in the
array. You can work with the array as a unit, and the ability to iterate its
elements frees you from needing to know exactly how many elements it
contains at design time.

 84

Some quick examples before explanation:

' Declare a single-dimension array of 5 numbers. Example(arrays11)
Dim numbers(4) As Integer

'Declare a single-dimension array and set its 4 values. Example(arrays22)
Dim numbers = New Integer() {1, 2, 4, 8}

' Change the size of an existing array to 16 elements and retain the current
values. Example(arrays33)
ReDim Preserve numbers(15)

' Redefine the size of an existing array and reset the values.
ReDim numbers(15)

' Declare a 6 x 6 multidimensional array.
Dim matrix(5, 5) As Double

' Declare a 4 x 3 multidimensional array and set array element values.
Dim matrix = New Integer(3, 2) {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}}

' Declare a jagged array

Dim sales()() As Double = New Double(11)() {}

Creating an array:

You can define the size of an array in several ways:

 You can specify the size when the array is declared:

' Declare an array with 10 elements.
Dim cargoWeights(9) As Double
' Declare a 24 x 2 array.
Dim hourlyTemperatures(23, 1) As Integer

' Declare a jagged array with 31 elements.

Dim januaryInquiries(30)() As String

 You can use a New clause to supply the size of an array when it’s
created:

 85

' Declare an array with 10 elements.
Dim cargoWeights() As Double = New Double(9) {}

' Declare a 24 x 2 array.
Dim hourlyTemperatures(,) As Integer = New Integer(23, 1) {}

If you have an existing array, you can redefine its size by using
the ReDim statement. You can specify that the ReDim statement keep the
values that are in the array, or you can specify that it create an empty
array. The following example shows different uses of
the ReDim statement to modify the size of an existing array.

' Assign a new array size and retain the current values.
ReDim Preserve cargoWeights(20)
' Assign a new array size and retain only the first five values.
ReDim Preserve cargoWeights(4)
' Assign a new array size and discard all current element values.

ReDim cargoWeights(15)

 Storing values in an array

You can access each location in an array by using an index of type Integer. You can
store and retrieve values in an array by referencing each array location by using its
index enclosed in parentheses. Indices for multidimensional arrays are separated by
commas (,). You need one index for each array dimension.

The following example shows some statements that store and retrieve values in
arrays.

Module Example
 Public Sub Main()
 ' Create a 10-element integer array.
 Dim numbers(9) As Integer
 Dim value As Integer = 2

 ' Write values to it.
 For ctr As Integer = 0 To 9
 numbers(ctr) = value
 value *= 2
 Next

 ' Read and sum the array values.
 Dim sum As Integer
 For ctr As Integer = 0 To 9
 sum += numbers(ctr)

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/redim-statement

 86

 Next
 Console.WriteLine($"The sum of the values is {sum:N0}")
 End Sub
End Module
' The example displays the following output:

' The sum of the values is 2,046

 Populating an array with array literals

By using an array literal, you can populate an array with an initial set of values at the
same time that you create it. An array literal consists of a list of comma-separated
values that are enclosed in braces ({}).

When you create an array by using an array literal, you can either supply the array
type or use type inference to determine the array type. The following example shows
both options.

' Array literals with explicit type definition.
Dim numbers = New Integer() {1, 2, 4, 8}

' Array literals with type inference.
Dim doubles = {1.5, 2, 9.9, 18}

' Array literals with explicit type definition.
Dim articles() As String = { "the", "a", "an" }

' Array literals with explicit widening type definition.

Dim values() As Double = { 1, 2, 3, 4, 5 }

When you use type inference, the type of the array is determined by the dominant
type in the list of literal values. The dominant type is the type to which all other types
in the array can widen. If this unique type can’t be determined, the dominant type is
the unique type to which all other types in the array can narrow. If neither of these
unique types can be determined, the dominant type is Object. For example, if the list
of values that’s supplied to the array literal contains values of type Integer, Long,
and Double, the resulting array is of type Double. Because Integer and Long widen
only to Double, Double is the dominant type.

Note:

You can use type inference only for arrays that are defined as local variables in a type
member. If an explicit type definition is absent, arrays defined with array literals at
the class level are of type Object[].

 87

Note that the previous example defines values as an array of type Double even though
all the array literals are of type Integer. You can create this array because the values
in the array literal can widen to Double values.

You can also create and populate a multidimensional array by using nested array
literals. Nested array literals must have a number of dimensions that’s consistent with
the resulting array. The following example creates a two-dimensional array of integers
by using nested array literals.

' Create and populate a 2 x 2 array.
Dim grid1 = {{1, 2}, {3, 4}}
' Create and populate a 2 x 2 array with 3 elements.

Dim grid2(,) = {{1, 2}, {3, 4}, {5, 6}}

When using nested array literals to create and populate an array, an error occurs if
the number of elements in the nested array literals don't match. An error also occurs
if you explicitly declare the array variable to have a different number of dimensions
than the array literals.

Just as you can for one-dimensional arrays, you can rely on type inference when
creating a multidimensional array with nested array literals. The inferred type is the
dominant type for all the values in all the array literals for all nesting level. The
following example creates a two-dimensional array of type Double[,] from values
that are of type Integer and Double.

Dim arr = {{1, 2.0}, {3, 4}, {5, 6}, {7, 8}}

Example arrayExample2

Public Class Form1
 Dim strArray(49) As String

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim rand As New Random
 For counter = 0 To 49
 ListBox1.Items.Add(rand.Next(0, 101)
 Next
 Button1.Enabled = True
 Button2.Enabled = False
 Button3.Enabled = False
 Button4.Enabled = False
 Button5.Enabled = False
 Button6.Enabled = False
 Button7.Enabled = False

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 For counter = 0 To ListBox1.Items.Count - 1
 strArray(counter) = CStr(ListBox1.Items(counter))
 Next

 88

 Label1.Text = "All item copied to the array"
 Button1.Enabled = False
 Button2.Enabled = True
 Button3.Enabled = True
 Button4.Enabled = True
 Button5.Enabled = True
 Button6.Enabled = True
 Button7.Enabled = True
 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 For counter = 0 To strArray.Length - 1
 ListBox2.Items.Add(CInt(strArray(counter)) * 2)
 Next

 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click
 Label2.Text = sum().ToString("n0")
 End Sub
 Private Function sum() As Integer
 Dim total As Integer
 For counter = 0 To strArray.Length - 1
 total = CInt(total + CDbl(strArray(counter)))
 Next
 Return total
 End Function

 Private Sub Button6_Click(sender As Object, e As EventArgs) Handles Button6.Click
 Label5.Text = CStr(sum() / CDbl(strArray.Length.ToString("n2")))
 End Sub

 Private Sub Button4_Click(sender As Object, e As EventArgs) Handles Button4.Click
 Dim min As Integer
 min = CInt(strArray(0))
 For counter = 0 To strArray.Length - 1
 If CDbl(strArray(counter)) < min Then
 min = CInt(strArray(counter))
 End If
 Next
 Label3.Text = CStr(min)

 End Sub

 Private Sub Button5_Click(sender As Object, e As EventArgs) Handles Button5.Click
 Dim max As Integer
 max = CInt(strArray(0))
 For counter = 0 To strArray.Length - 1
 If CDbl(strArray(counter)) > max Then
 max = CInt(strArray(counter))
 End If
 Next
 Label4.Text = CStr(max)
 End Sub

 Private Sub Button7_Click(sender As Object, e As EventArgs) Handles Button7.Click
 Dim strFind As String
 Dim indexOfItem As Integer
 strFind = InputBox("What do you want to search?")
 For counter = 0 To strArray.Length - 1
 If strFind = strArray(counter) Then

 89

 Label6.Text = "Found item:" & strFind
 indexOfItem = counter
 Exit For
 Else
 Label6.Text = "Item not found"
 indexOfItem = -1

 End If
 Next
 ListBox1.SelectedIndex = indexOfItem
 End Sub
End Class

The output for this example after start the program as in following picture;

After click the Button (COPY TO ARRAY), other Buttons will be activated and the

final output will be as in the following picture

 90

20. Creating the Graphics Object

Before you can draw any graphic on a Form, you need to create the
Graphics object in VB2012. A graphics object is created using a
CreateGraphics() method. You can create a graphics object that draws to
the Form itself or a control. For example, if you wish to draw to the Form,
you can use the following statement:

Dim myGraphics As Graphics =me.CreateGraphics

*Always use Dim to define the object. Using me instead of Form1 because
it is not allowed in Visual Basic 2012.

Or if you want the graphics object to draw to a picturebox, you can write
the following statement:

Dim myGraphics As Graphics = PictureBox1.CreateGraphics

You can also use the Text Box as a drawing surface, the statement is:

Dim myGraphics As Graphics = TextBox1.CreateGraphics

 91

The Graphics object that is created does not draw anything on the screen
until you call the methods of the Graphics object. In addition, you need
to create the Pen object as the drawing tool. We will examine the code
that can create a pen in the following section.

20.1 Creating a Pen

A Pen can be created using the following code:

myPen = New Pen(Brushes.DarkMagenta, 10)

where myPen is a Pen variable. You can use any variable name instead of
myPen. The first argument of the pen object defines the color of the
drawing line and the second argument defines the width of the drawing
line.

You can also create a Pen using the following statement:

Dim myPen As Pen

myPen = New Pen(Drawing.Color.Blue, 5)

Where the first argument define the color (here is blue, you can change
that to red or whatever color you want) and the second argument is the
width of the drawing line.

Having created the Graphics and the Pen objects, you are now ready to
draw graphics on the screen which we will show you in the following
section.

In this section, we will show you how to draw a straight line on the Form.
First of all, launch Visual basic 2012 Express. In the startup page, drag a
Button into the Form. Double click on the Button and key in the following
code.

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Dim myGraphics As Graphics = Me.CreateGraphics
 Dim myPen As Pen
 myPen = New Pen(Brushes.DarkMagenta, 10)
 myGraphics.DrawLine(myPen, 10, 10, 100, 100)
 End Sub
End Class

 92

The second line created the Graphics object and the third and fourth line
create the Pen object. The fifth draw a line on the Form using the
DrawLine method. The first argument use the Pen object created by you,
the second argument and the third arguments define the coordinate the
starting point of the line, the fourth and the last arguments define the
ending coordinate of the line. The general syntax of the Drawline
argument is

Object.DrawLine(Pen, x1, y1, x2, y2)

The output of the program is shown below:

21. The DrawRectangle Method

21.1 Creating a Rectangle with DrawRectangle Method

There are two methods to draw a rectangle on the screen in VB2012:

Method 1

Use the DrawRectangle method by specifying its upper-left corner’s
coordinate and it width and height. You also need to create a Graphics
and a Pen object to handle the actual drawing. The syntax is:

myGrapphics.DrawRectangle(myPen, X, Y, Width, Height)

*myGraphics is the variable name of the Graphics object and myPen is
the variable name of the Pen object created by you. X, Y is the coordinate
of the upper left corner of the rectangle.

The code

Public Class Form1
Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Blue, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics

 myGraphics.DrawRectangle(myPen, 10, 10, 100, 50)

 93

 End Sub

End Class

Method 2

Create a rectangle object first and then draw this rectangle using the
DrawRectangle method. The syntax is as shown below:

myGraphics.DrawRectangle(myPen, myRectangle)

where myRectangle is the rectangle object created by you, the user.

The code is:

Public Class Form1

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Magenta, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 Dim myRectangle As New Rectangle
 myRectangle.X = 10
 myRectangle.Y = 10
 myRectangle.Width = 100
 myRectangle.Height = 50
 myGraphics.DrawRectangle(myPen, myRectangle)

 94

 End Sub
End Class

You can also create a rectangle object using a one-line code as follows:

Dim myRectangle As New Rectangle(X,Y,width, height)

and the code to draw the above rectangle is

Public Class Form1
Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Magenta, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 Dim myRectangle As New Rectangle(10, 10, 100, 50)
 myGraphics.DrawRectangle(myPen, myRectangle)
 End Sub

End Class

21.2 Customizing Line Style of the Pen Object

The shape we draw so far are drawn with a solid line, we can actually
customize the line style of the Pen object so that we have dotted line, a
line consisting of dashes and more. For example, the syntax to draw a
dotted line is shown below:

myPen.DashStyle=Drawing.Drawing2D.DashStyle.Dot

Where the last argument Dot specifies a particular line DashStyle value,
a line that makes up of dots here. The following code draws a rectangle
with the red dotted line.

Public Class Form1

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Red, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 myPen.DashStyle = Drawing.Drawing2D.DashStyle.Dot
 myGraphics.DrawRectangle(myPen, 10, 10, 100, 50)
 End Sub

 95

End Class

The output image is shown below:

FIGURE 22.1

If you change the DashStyle value to DashDotDot, you can draw
rectangles with different border, as shown in Figure 22.2.

The possible values of the line DashStyle of the Pen are listed in the table
below:

DashStyle
Value Line Style

Dot Line consists of dots

Dash Line consists of dashes

 96

DashDot
Line consists of alternating dashes and
dots

DashDotDot
Line consists of alternating dashes and
double dots

Solid Solid line

Custom Custom line style

FIGURE 22.2

22. The DrawEllipse Method

In this lesson, we will learn how to draw ellipse and circle using the
DrawEllipse method.

 97

22.1 Drawing Ellipse with the DrawEllipse Method

The basic structure of most shapes is a rectangle, an ellipse is no
exception. Ellipse is an oval shape that is bounded by a rectangle, as
shown below:

Therefore, we need to create a Rectangle object before we can draw an
ellipse. This rectangle serves as a bounding rectangle for the ellipse. We
still need to use the DrawEllipse method to complete the job.
On the other hand, we can also draw an ellipse with the DrawEllipse
method without first creating a rectangle. We shall illustrate both
methods.

In the first method, let’s say you have created a rectangle object known
as myRectangle and a pen object as myPen, then you can draw an ellipse
using the following statement:

myGraphics.DrawEllipse(myPen, myRectangle)

* Assume you have also already created the Graphics object myGraphics.

The following is an example of the full code:

Example 23.1(a)

Public Class Form1
Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Blue, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 Dim myRectangle As New Rectangle

 98

 myRectangle.X = 10
 myRectangle.Y = 10
 myRectangle.Width = 200
 myRectangle.Height = 100
 myGraphics.DrawEllipse(myPen, myRectangle)
 End Sub
End Class

The output image is shown in the following diagram:

The second method is using the DrawEllipse method without creating a
rectangle object. Of course, you still have to create the Graphics and the
Pen objects. The syntax is:
myGraphics.DrawEllipse(myPen, X,Y,Width, Height)

Where (X, Y) are the coordinates of the upper-left corner of the bounding
rectangle, width is the width of the ellipse and height is the height of the
ellipse.

The following is an example of the full code:

Example 22.1(b)

 99

Public Class Form1

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Blue, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 myGraphics.DrawEllipse(myPen, 10, 10, 200, 100)

 End Sub
End Class

22.2 Drawing a Circle

After you have learned how to draw an ellipse, drawing a circle becomes
very simple. We use exactly the same methods used in the preceding
section but modify the width and height so that they are of the same
values.

The following examples draw the same circle.

Example 22.2(a)

Public Class Form1
Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Blue, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 Dim myRectangle As New Rectangle
 myRectangle.X = 10
 myRectangle.Y = 10
 myRectangle.Width = 100
 myRectangle.Height = 100
 myGraphics.DrawEllipse(myPen, myRectangle)
 End Sub
End Class

Example 22.2(b)

Public Class Form1

 100

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim myPen As Pen
 myPen = New Pen(Drawing.Color.Blue, 5)
 Dim myGraphics As Graphics = Me.CreateGraphics
 myGraphics.DrawEllipse(myPen, 10, 10, 100, 100)
 End Sub
End Class

The output image is show below:

23. Using Timer

In this lesson, we shall show you how to use the timer in Visual Basic
2012. The timer is used to manage events that are time-related. For
example, you can use the timer to create a clock, a stopwatch, a dice,
animation and more.

 101

27.1 Creating a Clock

To create a clock, you need to use the Timer control that comes with
Visual Basic 2012. The Timer control is a control object that is only used
by the developer, it is invisible during runtime and it does not allow the
user to interact with it.

First of all, start a new project in Visual Basic 2010 and select a new
Windows Application. You can give the project any name you wish, we
named it MyClock. Change the caption of the Form1 to MyClock in the
properties window. Now add the Timer control to the Form by dragging it
from the control tool Box. Next, insert a Label control into the Form.
Change the Font size of the Label to 14 or any size you wish, and set the
Font alignment to be the middle center. Lastly, you shall also set the
Interval property of the Timer control to 1000, which reflects a one-
second interval(1 unit is 1 millisecond). Besides, set the timer Enabled
property to True so that it will start ticking when the program is started.

The statement to create a clock is only a one-line code, as follows:
Label1.Text = TimeOfDay

To create the clock, click on the Timer control and insert the code above,
as shown below:

Public Class Form1
Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

 Label1.Text = CStr(TimeOfDay)
 End Sub
End Class

The resulting Clock is shown below:

 102

27.2 Creating a Stopwatch

We can create a simple stopwatch using the Timer control. Start a new
project and name it stopwatch. Change the Form1 caption to Stopwatch.
Insert the Timer control into the Form and set its interval to 1000 which
is equal to one second. Besides, set the timer Enabled property to False
so that it will not start ticking when the program is started. Insert three
command Buttons and change their names to StartBtn, StopBtn and
ResetBtn respectively. Change their text to “Start”, “Stop” and “Reset”
accordingly. Now, key in the code as follows:

Public Class Form1
Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

 'To increase one unit per second
 Label1.Text = CStr(Val(Label1.Text) + 1)
 End Sub

Private Sub StartBtn_Click(sender As Object, e As EventArgs)
Handles StartBtn.Click

 'To start the Timer
 Timer1.Enabled = True
 End Sub

Private Sub StopBtn_Click(sender As Object, e As EventArgs)
Handles StopBtn.Click

 'To stop the Timer
 Timer1.Enabled = False
 End Sub

Private Sub ResetBtn_Click(sender As Object, e As EventArgs)
Handles ResetBtn.Click

 'To reset the Timer to 0

 103

 Label1.Text = CStr(0)
 End Sub
End Class

The Interface of the Stopwatch is as shown below:

24. Creating Animation

Although Visual Basic 2012 is a programming language designed for
creating business applications, it can be used to create animation. In this
lesson, we shall illustrate to create animation with VB2012 through a few
examples.

28.1 Moving an object

In VB2012, you can use the Top and Left properties of an object to
create animation. The Top property defines the distance of the object

 104

from the topmost border of the screen while the Left property defines the
distance of the object from the leftmost border of the screen.
By adding (+) or subtracting (-) the distance of the object we can create
the animated effect of moving an object. Start a new project and name it
as any name you wish. Now insert a PictureBox and in its Image property
import a picture from your hard drive or other sources. Next, insert four
command Buttons, change their captions to Up, Down, Left and Right.
Name them as MoveUpBtn, MoveDowbBtn, MoveLeftBtn and
MoveRightBtn.

Public Class Form1
 Private Sub MoveUpBtn_Click(sender As Object, e As EventArgs) Handles MoveUpBtn.Click
 PictureBox1.Top = PictureBox1.Top - 10
 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click
 PictureBox1.Left = PictureBox1.Left - 10
 End Sub

 Private Sub MoveRightBtn_Click(sender As Object, e As EventArgs) Handles MoveRightBtn.Click
 PictureBox1.Left = PictureBox1.Left + 10
 End Sub

 Private Sub MoveDowbBtn_Click(sender As Object, e As EventArgs) Handles MoveDowbBtn.Click
 PictureBox1.Top = PictureBox1.Top + 10
 End Sub
End Class

Explanation:

Each time the user clicks on the Down Button, the distance of the
PictureBox increases by 10 pixels from the top border, creating a
downward motion. On the other hand, each time the user clicks on the
Up Button, the distance of the PictureBox decreases by 10 pixels from the
top borders, thus creating an upward motion. In addition, each time the
user clicks on the Left Button, the distance of the PictureBox decreases
by 10 pixels from the left border, thus creating a leftward motion. Lastly,
each time the user clicks on the Right Button, the distance of the
PictureBox increases by 10 pixels from the left border, thus creating a
rightward motion. The interface is shown below:

 105

28.2 Creating Animation using Timer

We can create auto animation using timer without the need to
manually clicking a command Button. we shall show you how to write the
code. First, insert a PictureBox into the Form. In the PictureBox properties
window, select the image property and click to import an image file from
your external sources such as your hard drive, your Pen drive or DVD. We
have inserted an image of a bunch of grapes. Next, insert a Timer control
into the Form set its interval property to 100, which is equivalent to 0.1
seconds. Finally, add two command Buttons to the Form, name one of
them as AnimateBtn and the other one as StopBtn, and change to caption
to Animate and Stop respectively.

We make use of the Left property of the PictureBox to create the motion.
PictureBox.Left means the distance of the PictureBox from the left border
of the Form. Now click on the Timer control and type in the following
code:

 106

Public Class Form1
Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

 If PictureBox1.Left < Me.Width Then
 PictureBox1.Left = PictureBox1.Left + 10
 Else
 PictureBox1.Left = 0
 End If
 End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Timer1.Enabled = True
 End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

 Timer1.Enabled = False
 End Sub
End Class

In aforementioned code, Me.Width represents the width of the
Form. If the distance of the PictureBox from the left is less than the width
of the Form, a value of 10 is added to the distance of the PictureBox from
the left border each time the Timer ticks, or every 0.1 seconds in this
example. When the distance of the PictureBox from the left border is equal
to the width of the Form, the distance from the left border is set to 0,
which move the PictureBox object to the left border and then move left
again, thus creates an oscillating motion from left to right. We need to
insert a Button to stop motion. The code is:

Timer1.Enabled = False

To animate the PictureBox object, we insert a command Button and key
in the following code:

Timer1.Enabled = True

The Image of the Animation program is shown below:

 107

