
COMPRESSIBILITY AND CONSOLIDATION OF SOILS 

When a structure is placed on a foundation consisting of soil, the loads from the 

structure cause the soil to be stressed. The two most important requirements for the 

stability and safety of the structure are 

• COMPRESSIBILITY OF SOILS 

The volume decrease of a soil under stress might be conceivably attributed to: 

1. Compression of the solid grains; 

2. Compression of pore water or pore air; 

3. Expulsion of pore water or pore air from the voids, thus decreasing the void ratio 

or porosity. 

Specifically, the compressibility of a soil depends on the structural arrangement of 

the soil particles, and in fine-grained soils, the degree to which adjacent particles are 

bonded together. A structure which is more porous, such as a honey-combed 

structure, is more compressible than a dense structure. 

When the pressure is increased, volume decrease occurs for a soil. If the pressure is 

later decreased some expansion will take place, but the rebound or recovery will not 

occur to the full extent.  

In sands, consolidation may be generally considered to keep pace with construction; 

while, in clays, the process of consolidation proceeds long after the construction has 

been completed and thus needs greater attention. 

 

• One-dimensional Compression and Consolidation 

‘Consolidation’, may be defined as the gradual and time-dependent process 

involving expulsion of pore water from a saturated soil mass, compression and stress 

transfer. This definition is valid for the one-dimensional as well as the general three-

dimensional case. 



1- Escape of pore water must occur during the compression or one-dimensional 

consolidation of a saturated soil; this escape takes place according to Darcy’s law. 

2- The time required for the compression or consolidation is dependent upon the 

coefficient of permeability of the soil and may be quite long if the permeability is 

low. 

 

• Compressibility and Consolidation Test—Oedometer 

The apparatus developed by Terzaghi for the determination of compressibility 

characteristics including the time-rate of compression is called the Oedometer, it was 

later improved by Casagrande and G. Gilboy and referred to as the Consolidometer. 

 

 

1- There are two types: The fixed ring type and the floating ring type. In the fixed 

ring type, the top porous plate along is permitted to move downwards for 

compressing the specimen. 

2- But, in the floating ring type, both the top and bottom porous plates are free to 

move to compress the soil sample. Direct measurement of the permeability of the 

sample at any stage of the test is possible only with the fixed ring type. 



3- However, the effect of side friction on the soil sample is smaller in the floating 

type, while lateral confinement of the sample is available in both to simulate a soil 

mass in-situ. 

4- The consolidation test consists in placing a representative undisturbed sample of 

the soil in a consolidometer ring, subjecting the sample to normal stress in 

predetermined stress increments through a loading machine and during each stress 

increment, observing the reduction in the height of the sample at different elapsed 

times after the application of the load. 

5- The time-rate of volume change differs significantly for cohesionless soils and 

cohesive soils. Cohesionless soils experience compression relatively quickly, often 

instantaneously, after the load is imposed. But clay soils require a significant period 

before full compression occurs under an applied loading. 

6- An initial setting load of 5 kN/m2, which may be as low as 2.5 kN/m2 for very soft 

soils, shall be applied until there is no change in the dial gauge reading for two 

consecutive hours or for a maximum of 24 hours. A normal load to give the desired 

pressure intensity shall be applied to the soil, a stopwatch being started 

simultaneously with loading. The dial gauge reading shall be recorded after various 

intervals of time—0.25, 1, 2.25, 4, 6.25, to 1440 minutes. 

7- Throughout the test, the container shall be kept filled with water in order to prevent 

desiccation and to provide water for rebound expansion. After the final reading has 

been taken for 10 kN/m2 the load shall be reduced to the initial setting load, kept for 

24 hours and the final reading of the dial gauge noted. 

• Presentation and Analysis of Compression Test Data 



- The consolidation is rapid at first, but the rate gradually decreases. After a time, the 

dial reading becomes practically steady, and the soil sample may be assumed to have 

reached a condition of equilibrium. 

- For the common size of the soil sample, this condition is generally attained in about 

twenty-four hours, although, theoretically speaking, the time required for complete 

consolidation is infinite. 

 

Typical time-compression curve for a stress increment on clay 

 

- The time-compression curves for consecutive increments of stress appear somewhat 

as shown in Fig. below. 



 

Time-compression curve for successive increments of stress 

- Since compression is due to decrease in void spaces of the soil, it is commonly 

indicated as a change in the void ratio. 

 V = (1+e) vs 

Here, A = area of cross-section of the sample; 

H = height of the sample at any stage of the test; 

Ws = weight of solids or dry soil, obtained by drying and weighing the sample at the 

end of the test;  

G = specific gravity of solids, found separately for the soil sample. 

- At any stage of the test, the height of the sample may be obtained by deducting the 

reduction in thickness.  e = w. G,  ---   V = A.H = Vs(1 + e) 
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Pressure-void ratio relationship 

The slope of this curve at any point is defined as the coefficient of compressibility, 

av.  

 

• Compressibility of Sands 

The pressure-void ratio relationship for typical sand under one-dimensional 

compression is shown in Fig. 1. A typical time-compression curve for an increment 

of stress in Fig. 2. 



 

 

          Fig. 1 Pressure void-ratio relationship for a typical sand              Fig. 2 Typical time-compression curve for a sand 

 

- In about one minute about 95% of the compression has occurred in this particular 

case. 

- In clean sands, it is about the same whether it is saturated or dry. 

• Compressibility and Consolidation of Clays 

A typical pressure versus void ratio curve for clay to natural pressure scale is shown 

in Fig1 below, and to the logarithmic pressure scale in Fig.2 



 

Fig 1 Pressure-void ratio relationship for a typical clay 
(Natural or arithmetic scale) 

 

Fig. 2 Pressure-void ratio relationship for a typical clay 

(Pressure to logarithmic scale) 

In the semi-logarithmic plot, it can be seen that the virgin compression curve in this 

case approximates a straight line from about 200 kN/m2 pressure. The equation of 

this straight line portion may be written in the following form: 



 

Where e corresponds to σ and e0 corresponds to σ0, The numerical value of the slope 

of this straight line, Cc. 

 - Skempton established a relationship between the compressibility of a clay, as 

indicated by its compression index, and the liquid limit   Cc = 0.009 (wL – 10). 

 

 

The rebound curve obtained during unloading may be similarly expressed with Ce 

designating what is called the ‘Expansion index’: 

 

- If, after complete removal of all loads, the sample is reloaded with the same series 

of loads as in the initial cycle, a different curve, called the ‘recompression curve’ is 

obtained. - Some of the volume change due to external loading is permanent. 

 

Fig. 3 Virgin compression, rebound and recompression 



Curves for a clay (Pressure to logarithmic scale) 

- may be noted from Fig. 3 that the curvature of the virgin compression curve at 

pressures smaller than about 200 kN/m2 resembles the curvature of the 

recompression curve at pressures smaller than about 800 kN/m2 from which the 

rebound occurred. This resemblance indicates that the specimen was probably 

subjected to a pressure of about 150 to 200 kN/m2 at some time before its removal 

from the ground. 

- As an example let us consider a soil sample obtained from a site from a depth z as 

shown in Fig. 4 (a). The ground surface has never been above the existing level and 

there never was extra external loading acting on the area. Thus, the maximum stress 

to which the soil sample was ever subjected is the current over burden pressure σv0 ( 

= γ′.z). 

 

Fig. 4 Conditions applying to compression test sample 

- The portion of the curve prior to pressure (σv0) represents a recompression curve, 

while that at greater pressures than (σv0) represents the virgin compression curve as 

shown in Fig.4 (b). 

- If the ground surface had at some time is past history been above the existing surface 

and had been eroded away, or if any other external load acted earlier and got released, 

so the existing over-burden pressure, (σv0),  would not be the maximum pressure. If 



this greatest past pressure is σvmax , greater than σv0 , compression test would be as 

shown in Fig. 5. 

 

• Normally Consolidated Soil and Over consolidated Soil 

A quantitative measure of the degree of over consolidation is what is known as the 

‘Overconsolidation Ratio’, OCR. It is defined as follows: 

 

Thus, the maximum OCR of normally consolidated soil equals 1. 

In this connection, it is of considerable engineering interest to be able to determine 

the past maximum effective stress (σE). 

- Casagrande (1936) proposed a geometrical technique to evaluate past maximum 

effective stress or pre consolidation pressure from the e versus log σ plot obtained by 

loading a sample in the laboratory. 



 

1. The point of maximum curvature M on the curved portion of the e vs. log σ plot 

is located.  

2. A horizontal line MS is drawn through M. 

3. A tangent MT to the curved portion is drawn through M. 

4. The angle SMT is bisected, MB being the bisector. 

5. The straight portion DC of the plot is extended backward to meet MB in E. 

6. The pressure corresponding to the point E, (σE), is the most probable past 

maximum effective stress or the preconsolidation pressure. 

* If  σE = σo     Normally consildation clay. 

* If  σE > σo     over consolidated clay or pre consolidated clay . 

* If  σE < σo     under consolidated clay. 

• Modulus of Volume Change and Consolidation Settlement 

The ‘modulus of volume change is defined as the change in volume of a soil per unit 

initial volume due to a unit increase in effective stress 



                                    and   

 

 

but                                  so                                

 

Substituting for Δe in terms of the compression index, Cc, recognizing (e – e0) as Δe, 

we have: 

 

• TERZAGHI’S THEORY OF ONE-DIMENSIONAL 

CONSOLIDATION 

Now let us see the derivation of Terzaghi’s theory with respect to the laboratory 

oedometer sample with double drainage as shown in Fig. 5. 



 

Fig. 5 Consolidation of a clay sample with double drainage 

 

                                     Then  

Cv is known as the “Coefficient of consolidation”. u represents the hydrostatic excess 

pressure at a depth z from the drainage face at time t from the start of the process of 

consolidation. 

 

 

Uz = degree of consolidation, ui = initial pressure, u pressure at any moment. 

- The third dimensionless parameter, relating to time, and called ‘Time-factor’, T, is 

defined as follows: 

 

where Cv is the coefficient of consolidation, H is the length drainage path, and t is 

the elapsed time from the start of consolidation process. 



• GRAPHICAL PRESENTATION OF CONSOLIDATION 

RELATIONSHIPS 

A graphical presentation of the results indicated by assigning different values of z/H 

and T, different values of Uz are solved and plotted to obtain the family of curves 

shown.  

 

At the start of the process, t = 0 and T = 0, and Uz is zero for all depths. At any finite 

time factor, the consolidation ratio is 1 at drainage faces and is minimum at the 

middle of the layer. For example, for T = 0.20: Uz = 0.23 at z/H = 1; Uz = 0.46 at z/H 

= 0.25 and 1.75; and Uz = 0.70 at z/H = 0.125 and 1.875. This indicates that at a 

depth of one-eighth of the layer, consolidation is 70% complete; at a depth of one-

fourth of the layer, consolidation is 46% complete; while, at the middle of the layer, 

consolidation is just 23% complete 

Figure above does not depict how much consolidation occurs as a whole in the entire 

stratum. This information is of primary concern to the geotechnical engineer and may 

be deduced from Fig. above by the following procedure: 

The relation between Uz and z/H for a time factor, T = 0.848, is reproduced in Fig. 

below. 



 

Average consolidation at time factor 0.848 

When U < 60%, T = (π/4) U2 

When U > 60%, T = – 0.9332 log10 (1 – U) – 0.0851. 

 

• EVALUATION OF COEFFICIENT OF CONSOLIDATION FROM 

OEDOMETER TEST DATA 

The coefficient of consolidation, Cv, in any stress range of interest, may be evaluated 

from its definition, by experimentally determining the parameters k, av and e0 for the 

stress range under consideration. k may be got from a permeability test conducted on 

the oedometer sample itself, after complete consolidation under the particular stress 

increment. 

av and e0 may be obtained from the oedometer test data, by plotting the e – σ curve. 

The more generally used fitting methods are the following: 

(a) The square root of time fitting method 

(b) The logarithm of time fitting method 

 

 

 

The Square Root of Time Fitting Method 

 



The relation between the sample thickness and elapsed time since the application of 

the load increment is obtainable from an oedometer test and is somewhat as shown 

in Fig. below for a typical load-increment. 

 

Time versus reduction in sample thickness for a load-increment 

The theoretical curve on the square root plot is straight line up to about 60% 

consolidation with a gentle concave upwards curve thereafter. If another straight line, 

shown dotted, is drawn such that the abscissa of this line are 1.15 times those of the 

straight line portion of the theoretical curve, it can be shown to cut the theoretical 

curve at 90% consolidation. 



 

                                                            Square root of time fitting method (After Taylor, 1948) 

 

 

The coefficient of consolidation, cv, may be obtained from 

where t90 is read off from Fig. above 

T90 is 0.848 from Terzaghi’s theory 

H is the drainage path, which may be taken as half the thickness of the sample for 

Double drainage conditions, or as (Th0 + Thf)/4 in terms of the sample thickness 

The Logarithm of Time Fitting Method 

The point corresponding to 100 percent consolidation curve is plotted on a semi-

logarithmic scale, with time factor on a logarithmic scale and degree of consolidation 



on arithmetic scale, the intersection of the tangent and asymptote is at the ordinate of 

100% consolidation.  

The difference in ordinates between two points with times in the ratio of 4 to 1 is 

marked off; then a distance equal to this difference may be stepped off above the 

upper points to obtain the corrected zero point. This point may be checked by more 

trials, with different pairs of points on the curve. 

 

 

Sample thickness/Dial gauge reading 
versus logarithm of time (Laboratory curve) 

 

where t50 is read off from Fig,   T50 = 0.197 from Terzaghi’s theory, and 

H is the drainage path as stated in the previous subsection. 



Typical Values of Coefficient of Consolidation 

7.7.3 Typical Values of Coefficient of Consolidation 

The process of applying one of the fitting methods may be repeated for different 

increments of pressure using the time-compression curves obtained in each case. This 

is the reason for the caution that, for problems in the field involving settlement 

analysis, the coefficient of consolidation should be evaluated in the laboratory for the 

particular range of stress likely to exist in the field. 

The range of values for Cv is rather wide from 5 × 10–4 mm2/s to 2 × 10–2 mm2/s. 

Further, it is also found that the value of Cv decreases as the liquid limit of the clay 

increases.  

 

Variation of coefficient of consolidation with effective stress 

 

SECONDARY CONSOLIDATION 

When the hydrostatic excess pressure is fully dissipated, no more consolidation 

should be expected. However, in practice, the decrease in void ratio continues, 

though very slowly, for a long time after this stage, called ‘Primary Consolidation’. 



The effect or the phenomenon of continued consolidation after the complete 

dissipation of excess pore water pressure is termed ‘Secondary Consolidation’ and 

the resulting compression is called ‘Secondary Compression’. 

 

Secondary compression appears as a straight line sloping downward or, in some 

cases, as a straight line followed by a second straight line with a flatter slope. The 

void ratio, ef, at the end of primary consolidation can be found from the intersection 

of the backward extension of the secondary line with a tangent drawn to the curve of 

primary compression, as shown in the figure. The rate of secondary compression, 

depends upon the increment of stress and the characteristics of the soil. 

Δe = – α . log10(t2/t1) 

 

In other words, Cα may be taken to be the slope of the straight line representing the 

secondary compression on a plot of strain versus logarithm of time. 

 



 

Example 27: In a consolidation test the following results have been obtained. When 

the load was changed from 50 kN/m2 to 100 kN/m2, the void ratio changed from 0.70 

to 0.65. Determine the coefficient of volume decrease, mv and the compression index, 

Cc. 

e0 = 0.70                 σ0 = 50 kN/m2 

e1 = 0.65                 σ = 100 kN/m2 

 

 

 

 

 

 

 

Example 28: A sand fill compacted to a bulk density of 18.84 kN/m3 is to be placed 

on a compressible saturated marsh deposit 3.5 m thick. The height of the sand fill is 

to be 3 m. If the volume compressibility mv of the deposit is 7 × 10–4 m2/kN, estimate 

the final settlement of the fill.  

Ht. of sand fill = 3 m 



Bulk unit weight of fill = 18.84 kN/m3 

Increment of the pressure on top of marsh deposit Δσ = 3 × 18.84= 56.52 kN/m2 

Thickness of marsh deposit, H0 = 3.5 m 

Volume compressibility mv = 7 × 10–4 m2/kN 

Final settlement of the marsh deposit,         ΔH= mv.H0.Δσ 

= 7 × 10–4 × 3500 × 56.52 mm = 138.5 mm. 

Example 29: A layer of soft clay is 6 m thick and lies under a newly constructed 

building. The weight of sand overlying and clayey layer produces a pressure 260 

kN/m2 and the new construction increases the pressure 100 kN/m2. If the 

compression index is 0.5, compute the settlement. Water content is 40% and specific 

gravity of grains is 2.65. 

Initial pressure, σ0 = 260 kN/m2 

Increment of pressure, Δσ = 100 kN/m2 

Thickness of clay layer, H = 6 m = 600 cm. 

Compression index, Cc = 0.5, Water content, w = 40% 

Specific gravity of grains, G = 2.65 

Void ratio, e0 = wG, (since the soil is saturated) = 0.40 × 2.65 = 1.06 

 



Example 30: There is a bed of compressible clay of 4 m thickness with pervious sand 

on top and impervious rock at the bottom. In a consolidation test on an undisturbed 

specimen of clay from this deposit 90% settlement was reached in 4 hours. The 

specimen was 20 mm thick. Estimate the time in years for the building founded over 

this deposit to reach 90% of its final settlement. 

This is a case of one-way drainage in the field. 

∴ Drainage path for the field deposit, Hf = 4 m = 4000 mm.  

In the laboratory consolidation test, commonly it is a case of two-way drainage. 

∴ Drainage path for the laboratory sample, H1 = 20/2 = 10 mm 

Time for 90% settlement of laboratory sample = 4 hrs. 

Time factor for 90% settlement, T90 = 0.848 

 

Example 31: A site has a level ground surface and a level groundwater table located 

5 m below the ground surface. As shown in Fig. below, subsurface exploration has 

discovered that the site is underlain with sand, except for a uniform and continuous 

clay layer that is located at a depth of 10 to 12 m below ground surface. Below the 

groundwater table, the pore water pressures are hydrostatic in the sand layers (i.e., 



no artesian pressures). The average void ratio eo of the clay layer is 1.10 and the 

buoyant unit weight γb of the clay layer = 7.9 kN/m3. The total unit weight γt of the 

sand above the groundwater table = 18.7 kN/m3 and the total unit weight γt of the 

sand below the groundwater table = 19.7 kN/m3. The compression index Cc = 0.83 

and recompression index Cr = 0.05. Determine the primary consolidation settlement 

Sc of the 2-m-thick clay layer if a uniform fill surcharge of 50 kPa is applied over a 

very large area at ground surface. If a laboratory consolidation test performed on an 

undisturbed specimen obtained from the center of the clay layer (Point A) indicates 

the maximum past pressure σE = 150 kPa and σE= 175 kPa and σE=250 kPa 

 

Solution The first step is to determine the vertical effective stress σo at the center of 

the clay layer or:  

σo = (5 m)(18.7 kN/m3) + (5 m)(19.7 – 9.81 kN/m3) + (1 m)(7.9 kN/m3) = 150 kPa.  

1) Since σo is equal to σE, the clay is normally consolidated (OCR = 1). 

Sc = Cc [Ho /(1 + eo )] log [(σo + Δσv)/ σo] 

Sc = (0.83)[(2 m)/(1 + 1.1)] log [(150 kPa + 50 kPa)/150 kPa] = 0.10 m  

2) Since σo is less than σE, the clay layer is overconsolidated (OCR > 1).  

Since σo + Δσv = 200 kPa > σE  

Sc = Cr [Ho /(1 + eo )] log (σE / σo) + Cc [Ho /(1 + eo )] log [(σo + Δσv)/ σE] 



Sc = (0.05)[(2 m)/(1 + 1.1)] log (175 kPa/150 kPa) + (0.83)[(2 m)/(1 + 1.1)] log 

[(150 kPa + 50 kPa)/175 kPa] = 0.049 m  

3) Since σo + Δσv = 200 kPa < σE 

Sc = Cr [Ho/(1 + eo)] log [(σo + Δσv)/ σo] 

Sc = (0.05)[(2 m)/(1 + 1.1)] log [(150 kPa + 50 kPa)/150 kPa] = 0.006 m  

 

 

 

 



COMPRESSIBILITY AND CONSOLIDATION OF SOILS 

When a structure is placed on a foundation consisting of soil, the loads from the 

structure cause the soil to be stressed. The two most important requirements for the 

stability and safety of the structure are 

 COMPRESSIBILITY OF SOILS 

The volume decrease of a soil under stress might be conceivably attributed to: 

1. Compression of the solid grains; 

2. Compression of pore water or pore air; 

3. Expulsion of pore water or pore air from the voids, thus decreasing the void ratio 

or porosity. 

Specifically, the compressibility of a soil depends on the structural arrangement of 

the soil particles, and in fine-grained soils, the degree to which adjacent particles are 

bonded together. A structure which is more porous, such as a honey-combed 

structure, is more compressible than a dense structure. 

When the pressure is increased, volume decrease occurs for a soil. If the pressure is 

later decreased some expansion will take place, but the rebound or recovery will not 

occur to the full extent.  

In sands, consolidation may be generally considered to keep pace with construction; 

while, in clays, the process of consolidation proceeds long after the construction has 

been completed and thus needs greater attention. 

 

 One-dimensional Compression and Consolidation 

‘Consolidation’, may be defined as the gradual and time-dependent process 

involving expulsion of pore water from a saturated soil mass, compression and stress 

transfer. This definition is valid for the one-dimensional as well as the general three-

dimensional case. 



1- Escape of pore water must occur during the compression or one-dimensional 

consolidation of a saturated soil; this escape takes place according to Darcy’s law. 

2- The time required for the compression or consolidation is dependent upon the 

coefficient of permeability of the soil and may be quite long if the permeability is 

low. 

 

 Compressibility and Consolidation Test—Oedometer 

The apparatus developed by Terzaghi for the determination of compressibility 

characteristics including the time-rate of compression is called the Oedometer, it was 

later improved by Casagrande and G. Gilboy and referred to as the Consolidometer. 

 

 
1- There are two types: The fixed ring type and the floating ring type. In the fixed 

ring type, the top porous plate along is permitted to move downwards for 

compressing the specimen. 

2- But, in the floating ring type, both the top and bottom porous plates are free to 

move to compress the soil sample. Direct measurement of the permeability of the 

sample at any stage of the test is possible only with the fixed ring type. 



3- However, the effect of side friction on the soil sample is smaller in the floating 

type, while lateral confinement of the sample is available in both to simulate a soil 

mass in-situ. 

4- The consolidation test consists in placing a representative undisturbed sample of 

the soil in a consolidometer ring, subjecting the sample to normal stress in 

predetermined stress increments through a loading machine and during each stress 

increment, observing the reduction in the height of the sample at different elapsed 

times after the application of the load. 

5- The time-rate of volume change differs significantly for cohesionless soils and 

cohesive soils. Cohesionless soils experience compression relatively quickly, often 

instantaneously, after the load is imposed. But clay soils require a significant period 

before full compression occurs under an applied loading. 

6- An initial setting load of 5 kN/m2, which may be as low as 2.5 kN/m2 for very soft 

soils, shall be applied until there is no change in the dial gauge reading for two 

consecutive hours or for a maximum of 24 hours. A normal load to give the desired 

pressure intensity shall be applied to the soil, a stopwatch being started 

simultaneously with loading. The dial gauge reading shall be recorded after various 

intervals of time—0.25, 1, 2.25, 4, 6.25, to 1440 minutes. 

7- Throughout the test, the container shall be kept filled with water in order to prevent 

desiccation and to provide water for rebound expansion. After the final reading has 

been taken for 10 kN/m2 the load shall be reduced to the initial setting load, kept for 

24 hours and the final reading of the dial gauge noted. 

 Presentation and Analysis of Compression Test Data 



- The consolidation is rapid at first, but the rate gradually decreases. After a time, the 

dial reading becomes practically steady, and the soil sample may be assumed to have 

reached a condition of equilibrium. 

- For the common size of the soil sample, this condition is generally attained in about 

twenty-four hours, although, theoretically speaking, the time required for complete 

consolidation is infinite. 

 

Typical time-compression curve for a stress increment on clay 

 

- The time-compression curves for consecutive increments of stress appear somewhat 

as shown in Fig. below. 



 

Time-compression curve for successive increments of stress 

- Since compression is due to decrease in void spaces of the soil, it is commonly 

indicated as a change in the void ratio. 

 V = (1+e) vs 

Here, A = area of cross-section of the sample; 

H = height of the sample at any stage of the test; 

Ws = weight of solids or dry soil, obtained by drying and weighing the sample at the 

end of the test;  

G = specific gravity of solids, found separately for the soil sample. 

- At any stage of the test, the height of the sample may be obtained by deducting the 

reduction in thickness.  e = w. G,  ---   V = A.H = Vs(1 + e) 



 

            

 

Pressure-void ratio relationship 

The slope of this curve at any point is defined as the coefficient of compressibility, 

av.  

 

 Compressibility of Sands 

The pressure-void ratio relationship for typical sand under one-dimensional 

compression is shown in Fig. 1. A typical time-compression curve for an increment 

of stress in Fig. 2. 



 

 

          Fig. 1 Pressure void-ratio relationship for a typical sand              Fig. 2 Typical time-compression curve for a sand 

 

- In about one minute about 95% of the compression has occurred in this particular 

case. 

- In clean sands, it is about the same whether it is saturated or dry. 

 Compressibility and Consolidation of Clays 

A typical pressure versus void ratio curve for clay to natural pressure scale is shown 

in Fig1 below, and to the logarithmic pressure scale in Fig.2 



 

Fig 1 Pressure-void ratio relationship for a typical clay 
(Natural or arithmetic scale) 

 

Fig. 2 Pressure-void ratio relationship for a typical clay 
(Pressure to logarithmic scale) 

In the semi-logarithmic plot, it can be seen that the virgin compression curve in this 

case approximates a straight line from about 200 kN/m2 pressure. The equation of 

this straight line portion may be written in the following form: 



 

Where e corresponds to σ and e0 corresponds to σ0, The numerical value of the slope 

of this straight line, Cc. 

 - Skempton established a relationship between the compressibility of a clay, as 

indicated by its compression index, and the liquid limit   Cc = 0.009 (wL – 10). 

 

 

The rebound curve obtained during unloading may be similarly expressed with Ce 

designating what is called the ‘Expansion index’: 

 

- If, after complete removal of all loads, the sample is reloaded with the same series 

of loads as in the initial cycle, a different curve, called the ‘recompression curve’ is 

obtained. - Some of the volume change due to external loading is permanent. 

 

Fig. 3 Virgin compression, rebound and recompression 



Curves for a clay (Pressure to logarithmic scale) 

- may be noted from Fig. 3 that the curvature of the virgin compression curve at 

pressures smaller than about 200 kN/m2 resembles the curvature of the 

recompression curve at pressures smaller than about 800 kN/m2 from which the 

rebound occurred. This resemblance indicates that the specimen was probably 

subjected to a pressure of about 150 to 200 kN/m2 at some time before its removal 

from the ground. 

- As an example let us consider a soil sample obtained from a site from a depth z as 

shown in Fig. 4 (a). The ground surface has never been above the existing level and 

there never was extra external loading acting on the area. Thus, the maximum stress 

to which the soil sample was ever subjected is the current over burden pressure σv0 ( 

= γ′.z). 

 

Fig. 4 Conditions applying to compression test sample 

- The portion of the curve prior to pressure (σv0) represents a recompression curve, 

while that at greater pressures than (σv0) represents the virgin compression curve as 

shown in Fig.4 (b). 

- If the ground surface had at some time is past history been above the existing surface 

and had been eroded away, or if any other external load acted earlier and got released, 

so the existing over-burden pressure, (σv0),  would not be the maximum pressure. If 



this greatest past pressure is σvmax , greater than σv0 , compression test would be as 

shown in Fig. 5. 

 

 Normally Consolidated Soil and Over consolidated Soil 

A quantitative measure of the degree of over consolidation is what is known as the 

‘Overconsolidation Ratio’, OCR. It is defined as follows: 

 

Thus, the maximum OCR of normally consolidated soil equals 1. 

In this connection, it is of considerable engineering interest to be able to determine 

the past maximum effective stress (σE). 

- Casagrande (1936) proposed a geometrical technique to evaluate past maximum 

effective stress or pre consolidation pressure from the e versus log σ plot obtained by 

loading a sample in the laboratory. 



 

1. The point of maximum curvature M on the curved portion of the e vs. log σ plot 

is located.  

2. A horizontal line MS is drawn through M. 

3. A tangent MT to the curved portion is drawn through M. 

4. The angle SMT is bisected, MB being the bisector. 

5. The straight portion DC of the plot is extended backward to meet MB in E. 

6. The pressure corresponding to the point E, (σE), is the most probable past 

maximum effective stress or the preconsolidation pressure. 

* If  σE = σo     Normally consildation clay. 

* If  σE > σo     over consolidated clay or pre consolidated clay . 

* If  σE < σo     under consolidated clay. 

 Modulus of Volume Change and Consolidation Settlement 

The ‘modulus of volume change is defined as the change in volume of a soil per unit 

initial volume due to a unit increase in effective stress 



                                    and   

 

 

but                                  so                                

 

Substituting for Δe in terms of the compression index, Cc, recognizing (e – e0) as Δe, 

we have: 

 

 TERZAGHI’S THEORY OF ONE-DIMENSIONAL 

CONSOLIDATION 

Now let us see the derivation of Terzaghi’s theory with respect to the laboratory 

oedometer sample with double drainage as shown in Fig. 5. 



 

Fig. 5 Consolidation of a clay sample with double drainage 

 

                                     Then  

Cv is known as the “Coefficient of consolidation”. u represents the hydrostatic excess 

pressure at a depth z from the drainage face at time t from the start of the process of 

consolidation. 

 

 

Uz = degree of consolidation, ui = initial pressure, u pressure at any moment. 

- The third dimensionless parameter, relating to time, and called ‘Time-factor’, T, is 

defined as follows: 

 

where Cv is the coefficient of consolidation, H is the length drainage path, and t is 

the elapsed time from the start of consolidation process. 



 GRAPHICAL PRESENTATION OF CONSOLIDATION 

RELATIONSHIPS 

A graphical presentation of the results indicated by assigning different values of z/H 

and T, different values of Uz are solved and plotted to obtain the family of curves 

shown.  

 

At the start of the process, t = 0 and T = 0, and Uz is zero for all depths. At any finite 

time factor, the consolidation ratio is 1 at drainage faces and is minimum at the 

middle of the layer. For example, for T = 0.20: Uz = 0.23 at z/H = 1; Uz = 0.46 at z/H 

= 0.25 and 1.75; and Uz = 0.70 at z/H = 0.125 and 1.875. This indicates that at a 

depth of one-eighth of the layer, consolidation is 70% complete; at a depth of one-

fourth of the layer, consolidation is 46% complete; while, at the middle of the layer, 

consolidation is just 23% complete 

Figure above does not depict how much consolidation occurs as a whole in the entire 

stratum. This information is of primary concern to the geotechnical engineer and may 

be deduced from Fig. above by the following procedure: 

The relation between Uz and z/H for a time factor, T = 0.848, is reproduced in Fig. 

below. 



 

Average consolidation at time factor 0.848 

When U < 60%, T = (π/4) U2 

When U > 60%, T = – 0.9332 log10 (1 – U) – 0.0851. 

 

 EVALUATION OF COEFFICIENT OF CONSOLIDATION FROM 
OEDOMETER TEST DATA 

The coefficient of consolidation, Cv, in any stress range of interest, may be evaluated 

from its definition, by experimentally determining the parameters k, av and e0 for the 

stress range under consideration. k may be got from a permeability test conducted on 

the oedometer sample itself, after complete consolidation under the particular stress 

increment. 

av and e0 may be obtained from the oedometer test data, by plotting the e – σ curve. 

The more generally used fitting methods are the following: 

(a) The square root of time fitting method 

(b) The logarithm of time fitting method 

 
 
 
The Square Root of Time Fitting Method 
 



The relation between the sample thickness and elapsed time since the application of 

the load increment is obtainable from an oedometer test and is somewhat as shown 

in Fig. below for a typical load-increment. 

 

Time versus reduction in sample thickness for a load-increment 

The theoretical curve on the square root plot is straight line up to about 60% 

consolidation with a gentle concave upwards curve thereafter. If another straight line, 

shown dotted, is drawn such that the abscissa of this line are 1.15 times those of the 

straight line portion of the theoretical curve, it can be shown to cut the theoretical 

curve at 90% consolidation. 



 

                                                            Square root of time fitting method (After Taylor, 1948) 

 

 

The coefficient of consolidation, cv, may be obtained from 

where t90 is read off from Fig. above 

T90 is 0.848 from Terzaghi’s theory 

H is the drainage path, which may be taken as half the thickness of the sample for 

Double drainage conditions, or as (Th0 + Thf)/4 in terms of the sample thickness 

The Logarithm of Time Fitting Method 

The point corresponding to 100 percent consolidation curve is plotted on a semi-

logarithmic scale, with time factor on a logarithmic scale and degree of consolidation 



on arithmetic scale, the intersection of the tangent and asymptote is at the ordinate of 

100% consolidation.  

The difference in ordinates between two points with times in the ratio of 4 to 1 is 

marked off; then a distance equal to this difference may be stepped off above the 

upper points to obtain the corrected zero point. This point may be checked by more 

trials, with different pairs of points on the curve. 

 

 

Sample thickness/Dial gauge reading 
versus logarithm of time (Laboratory curve) 

 

where t50 is read off from Fig,   T50 = 0.197 from Terzaghi’s theory, and 

H is the drainage path as stated in the previous subsection. 



Typical Values of Coefficient of Consolidation 

7.7.3 Typical Values of Coefficient of Consolidation 

The process of applying one of the fitting methods may be repeated for different 

increments of pressure using the time-compression curves obtained in each case. This 

is the reason for the caution that, for problems in the field involving settlement 

analysis, the coefficient of consolidation should be evaluated in the laboratory for the 

particular range of stress likely to exist in the field. 

The range of values for Cv is rather wide from 5 × 10–4 mm2/s to 2 × 10–2 mm2/s. 

Further, it is also found that the value of Cv decreases as the liquid limit of the clay 

increases.  

 

Variation of coefficient of consolidation with effective stress 

 

SECONDARY CONSOLIDATION 

When the hydrostatic excess pressure is fully dissipated, no more consolidation 

should be expected. However, in practice, the decrease in void ratio continues, 

though very slowly, for a long time after this stage, called ‘Primary Consolidation’. 



Typical Values of Coefficient of Consolidation 

7.7.3 Typical Values of Coefficient of Consolidation 

The process of applying one of the fitting methods may be repeated for different 

increments of pressure using the time-compression curves obtained in each case. This 

is the reason for the caution that, for problems in the field involving settlement 

analysis, the coefficient of consolidation should be evaluated in the laboratory for the 

particular range of stress likely to exist in the field. 

The range of values for Cv is rather wide from 5 × 10–4 mm2/s to 2 × 10–2 mm2/s. 

Further, it is also found that the value of Cv decreases as the liquid limit of the clay 

increases.  

 

Variation of coefficient of consolidation with effective stress 

 

SECONDARY CONSOLIDATION 

When the hydrostatic excess pressure is fully dissipated, no more consolidation 

should be expected. However, in practice, the decrease in void ratio continues, 

though very slowly, for a long time after this stage, called ‘Primary Consolidation’. 



The effect or the phenomenon of continued consolidation after the complete 

dissipation of excess pore water pressure is termed ‘Secondary Consolidation’ and 

the resulting compression is called ‘Secondary Compression’. 

 

Secondary compression appears as a straight line sloping downward or, in some 

cases, as a straight line followed by a second straight line with a flatter slope. The 

void ratio, ef, at the end of primary consolidation can be found from the intersection 

of the backward extension of the secondary line with a tangent drawn to the curve of 

primary compression, as shown in the figure. The rate of secondary compression, 

depends upon the increment of stress and the characteristics of the soil. 

Δe = – α . log10(t2/t1) 

 

In other words, Cα may be taken to be the slope of the straight line representing the 

secondary compression on a plot of strain versus logarithm of time. 

 



 

Example 27: In a consolidation test the following results have been obtained. When 

the load was changed from 50 kN/m2 to 100 kN/m2, the void ratio changed from 0.70 

to 0.65. Determine the coefficient of volume decrease, mv and the compression index, 

Cc. 

e0 = 0.70                 σ0 = 50 kN/m2 

e1 = 0.65                 σ = 100 kN/m2 

 

 

 

 

 

 

 

Example 28: A sand fill compacted to a bulk density of 18.84 kN/m3 is to be placed 

on a compressible saturated marsh deposit 3.5 m thick. The height of the sand fill is 

to be 3 m. If the volume compressibility mv of the deposit is 7 × 10–4 m2/kN, estimate 

the final settlement of the fill.  

Ht. of sand fill = 3 m 



Bulk unit weight of fill = 18.84 kN/m3 

Increment of the pressure on top of marsh deposit Δσ = 3 × 18.84= 56.52 kN/m2 

Thickness of marsh deposit, H0 = 3.5 m 

Volume compressibility mv = 7 × 10–4 m2/kN 

Final settlement of the marsh deposit,         ΔH= mv.H0.Δσ 

= 7 × 10–4 × 3500 × 56.52 mm = 138.5 mm. 

Example 29: A layer of soft clay is 6 m thick and lies under a newly constructed 

building. The weight of sand overlying and clayey layer produces a pressure 260 

kN/m2 and the new construction increases the pressure 100 kN/m2. If the 

compression index is 0.5, compute the settlement. Water content is 40% and specific 

gravity of grains is 2.65. 

Initial pressure, σ0 = 260 kN/m2 

Increment of pressure, Δσ = 100 kN/m2 

Thickness of clay layer, H = 6 m = 600 cm. 

Compression index, Cc = 0.5, Water content, w = 40% 

Specific gravity of grains, G = 2.65 

Void ratio, e0 = wG, (since the soil is saturated) = 0.40 × 2.65 = 1.06 

 



Example 30: There is a bed of compressible clay of 4 m thickness with pervious sand 

on top and impervious rock at the bottom. In a consolidation test on an undisturbed 

specimen of clay from this deposit 90% settlement was reached in 4 hours. The 

specimen was 20 mm thick. Estimate the time in years for the building founded over 

this deposit to reach 90% of its final settlement. 

This is a case of one-way drainage in the field. 

 Drainage path for the field deposit, Hf = 4 m = 4000 mm.  

In the laboratory consolidation test, commonly it is a case of two-way drainage. 

 Drainage path for the laboratory sample, H1 = 20/2 = 10 mm 

Time for 90% settlement of laboratory sample = 4 hrs. 

Time factor for 90% settlement, T90 = 0.848 

 

Example 31: A site has a level ground surface and a level groundwater table located 

5 m below the ground surface. As shown in Fig. below, subsurface exploration has 

discovered that the site is underlain with sand, except for a uniform and continuous 

clay layer that is located at a depth of 10 to 12 m below ground surface. Below the 

groundwater table, the pore water pressures are hydrostatic in the sand layers (i.e., 



no artesian pressures). The average void ratio eo of the clay layer is 1.10 and the 

buoyant unit weight γb of the clay layer = 7.9 kN/m3. The total unit weight γt of the 

sand above the groundwater table = 18.7 kN/m3 and the total unit weight γt of the 

sand below the groundwater table = 19.7 kN/m3. The compression index Cc = 0.83 

and recompression index Cr = 0.05. Determine the primary consolidation settlement 

Sc of the 2-m-thick clay layer if a uniform fill surcharge of 50 kPa is applied over a 

very large area at ground surface. If a laboratory consolidation test performed on an 

undisturbed specimen obtained from the center of the clay layer (Point A) indicates 

the maximum past pressure σE = 150 kPa and σE= 175 kPa and σE=250 kPa 

 

Solution The first step is to determine the vertical effective stress σo at the center of 

the clay layer or:  

σo = (5 m)(18.7 kN/m3) + (5 m)(19.7 – 9.81 kN/m3) + (1 m)(7.9 kN/m3) = 150 kPa.  

1) Since σo is equal to σE, the clay is normally consolidated (OCR = 1). 

Sc = Cc [Ho /(1 + eo )] log [(σo + Δσv)/ σo] 

Sc = (0.83)[(2 m)/(1 + 1.1)] log [(150 kPa + 50 kPa)/150 kPa] = 0.10 m  

2) Since σo is less than σE, the clay layer is overconsolidated (OCR > 1).  

Since σo + Δσv = 200 kPa > σE  

Sc = Cr [Ho /(1 + eo )] log (σE / σo) + Cc [Ho /(1 + eo )] log [(σo + Δσv)/ σE] 



Sc = (0.05)[(2 m)/(1 + 1.1)] log (175 kPa/150 kPa) + (0.83)[(2 m)/(1 + 1.1)] log 

[(150 kPa + 50 kPa)/175 kPa] = 0.049 m  

3) Since σo + Δσv = 200 kPa < σE 

Sc = Cr [Ho/(1 + eo)] log [(σo + Δσv)/ σo] 

Sc = (0.05)[(2 m)/(1 + 1.1)] log [(150 kPa + 50 kPa)/150 kPa] = 0.006 m  
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SHEARING STRENGTH OF SOILS 

‘Shearing Strength’ of a soil is perhaps the most important of its engineering properties. This 

is because all stability analyses in the field of geotechnical engineering, whether they relate 

to foundation, slopes of cuts or earth dams, involve a basic knowledge of this engineering 

property of the soil. ‘Shearing strength’ or merely ‘Shear strength’ may be defined as the 

resistance to shearing stresses and a consequent tendency for shear deformation. 

Shearing strength comes from the following: 

(1) Resistance due to the interlocking of particles. 

(2) Frictional resistance between the individual soil grains, which may be sliding friction, 

rolling friction, or both. 

(3) Adhesion between soil particles or ‘cohesion’. 

Granular soils of sands (1, 2) while cohesive soils or clays (2, 3) highly plastic clays (3) 

  Friction between Solid Bodies (Internal Friction within Granular Soil Masses) 

  

 

 

 

 

 

 

 

 

 

When two solid bodies are in contact with each other, the frictional resistance available is 

dependent upon the normal force between the two. A shearing force equal to the maximum 

available frictional resistance is applied. The entire frictional resistance available will get 

mobilized now to resist the applied 

Coefficient of friction (μ) = F
P

    or    F = P. μ = P. tan φ   or   F/P = tan φ = μ 
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In granular or cohesionless soil masses, the resistance to sliding on any plane through the 

point within the mass is similar to that discussed in the previous sub-section; the friction 

angle in this case is called the ‘angle of internal friction’ Ø 

 PRINCIPAL PLANES AND PRINCIPAL STRESSES—MOHR’S CIRCLE 
At a point in a stressed material, every plane will be subjected, in general, to a normal or 

direct stress and a shearing stress. 

A ‘Principal plane’ is defined as a plane on which the stress is wholly normal, or one which 

does not carry shearing stress. 

Principal plane is divided to the ‘major principal stress’, the ‘intermediate principal stress’ 

and the ‘minor principal stress’, 

Let us consider an element of soil whose sides are chosen as the principal planes, the major 

and the minor, as shown in Fig. below 

 

Fig 2 Stresses on a plane inclined to the principal planes 
Let O be any point in the stressed medium and OA and OB be the major and minor principal 

planes, with the corresponding principal stresses σ1 and σ3, and inclined at an angle θ to the 

major principal plane, considered positive when measured counter-clockwise. Let us 

consider the element to be of unit thickness perpendicular to the plane of the figure, AB being 

l. considering the equilibrium of the element and resolving all forces in the directions parallel 

and perpendicular to AB, 
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Otto Mohr (1882) represented these results graphical in a circle diagram, which is called 

Mohr’s circle. Normal stresses are represented as abscissae and shear stresses as ordinates. 

 

Mohr’s circle for the stress conditions illustrated in Fig.2 

Let a line be drawn parallel to the major principal plane through D, the coordinate of which 

is the major principal stress. The intersection of this line with the Mohr’s circle, Op is called 

the ‘Origin of planes’. If a line parallel to the minor principal plane is drawn through E, the 

co-ordinate of which is the minor principal stress, it will also be observed to pass through 

Op; the angle between these two lines is a right angle from the properties of the circle. The 

angle between these two lines is a right angle from the properties of the circle. any line 

through Op, parallel to any arbitrarily chosen plane, intersects the Mohr’s circle at a point 

the co-ordinates of which represent the normal and shear stresses on that plane Since angle 

COpD = θ, angle CFD = 2θ, from the properties of the circle. From the geometry of the 

figure, the co-ordiantes of the point C, are established as follows: 
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A few important basic facts and relationships may be directly obtained from the Mohr’s 

circle: 

1. The only planes free from shear are the given sides of the element which are the principal 

planes. The stresses on these are the greatest and smallest normal stresses. 

2. The maximum or principal shearing stress is equal to the radius of the Mohr’s circle, and 

it occurs on planes inclined at 45° to the principal planes. 

                                                   τmax = (σ1 – σ3)/2  

3. The normal stresses on planes of maximum shear are equal to each other and are equal to 

half the sum of the principal stresses. 

                                                           σc = (σ1 + σ3)/2 

4. Shearing stresses on planes at right angles to each other are numerically equal and are of 

an opposite sign. These are called conjugate shearing stresses. 

5. The sum of the normal stresses on mutually perpendicular planes is a constant (MG′+ MG 

= 2MF = σ1 + σ3). If we designate the normal stress on a plane perpendicular to the plane 

on which it is σθ as σθ′ : σθ + σθ′ = σ1 + σ3 

In case the normal and shearing stresses on two mutually perpendicular planes are known, 

the principal planes and principal stresses may be determined with the aid of the Mohr’s 

circle diagram. 
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normal stresses σx and σy on mutually perpendicular planes and shear stresses τxy on these 

planes, the normal and shearing stress components, σθ and τθ, respectively, on a plane 

inclined at an angle θ, measured counter-clockwise with respect to the plane on which σx 

acts 

 

 
The following relationships are also easily obtained: 

 
STRENGTH THEORIES FOR SOILS 

 Mohr’s Strength Theory 

We have seen that the shearing stress may be expressed as τ = σ tan β on any plane, where 

β is the angle of obliquity, If the obliquity angle is the maximum or has limiting value φ, 

the shearing stress is also at its limiting value and it is called the shearing strength, s 

s = σ tan φ 
If the angle of internal friction φ is assumed to be a constant, the shearing strength may be 

represented by a pair of straight lines at inclinations of + φ and – φ with the σ-axis and 

passing through the origin of the Mohr’s circle diagram. If the stress conditions at a point 

are represented by Mohr’s circle I, the shear stress on any plane through the point is less 

than the shearing strength, as indicated by the line BCD; 

BC represents the shear stress on a plane on which the normal stress is given by OD. 
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BD, representing the shearing strength for this normal stress, is greater than BC. 

 
 

Mohr’s strength theory—Mohr envelopes for cohesionless soil 
 

 
Mohr’s Circle II, which is tangential to the Mohr’s envelope at F, are such that the shearing 
stress, EF,  

 

 Mohr-Coulomb Theory 

The functional relationship between the normal stress on any plane and the shearing strength 
available on that plane was assumed to be linear by Coulomb; thus the following is usually 
known as Coulomb’s law: 

s = c + σ tan φ 

where c and φ are empirical parameters, known as the ‘apparent cohesion’ and ‘angle of 
shearing resistance’ 

 
 

Mohr-Coulomb Theory—failure envelopes 
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The envelopes are called ‘strength envelopes’ or ‘failure envelopes’. The meaning of an 
envelope has already been given in the previous section; if the normal and shear stress 
components on a plane plot on to the failure envelope, failure is supposed to be incipient 
and if the stresses plot below the envelope, the condition represents stability. And, it is 
impossible that these plot above the envelope, since failure should have occurred previously. 
Coulomb’s law is also written as follows to indicate that the stress condition refers to 

that on the plane of failure: 

s = c + σf tan φ 

 
 Coulomb envelopes for pure sand and for pure clay 

SHEARING STRENGTH—A FUNCTION OF EFFECTIVE STRESS 

The density of a soil increase when subjected to shearing action, drainage being allowed 

simultaneously. Therefore, even if two soils are equally dense on having been consolidated 

to the same effective stress, they will exhibit different shearing strengths if drainage is 

permitted during shear for one, while it is not for the other. 

These ideas lead to a statement that ‘‘the strength of a soil is a unique function of the 

effective stress acting on the failure plane’’. 

s = c′ + σf tan φ′ 

where c′ and φ′ are called the effective cohesion and effective angle of internal friction. 
Collectively, they are called ‘effective stress parameters’, while c and φ are called ‘‘total 
stress parameters’’. 

TYPES OF SHEAR TESTS BASED ON DRAINAGE CONDITIONS 

A cohesionless or a coarse-grained soil may be tested for shearing strength either in the dry 

condition or in the saturated condition.  
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12

The shear strength of a soil mass is the internal resistance per unit area that the soil mass
can offer to resist failure and sliding along any plane inside it. One must understand the
nature of shearing resistance in order to analyze soil stability problems, such as bearing
capacity, slope stability, and lateral pressure on earth-retaining structures.

12.1 Mohr–Coulomb Failure Criterion

Mohr (1900) presented a theory for rupture in materials that contended that a material
fails because of a critical combination of normal stress and shearing stress and not
from either maximum normal or shear stress alone. Thus, the functional relationship
between normal stress and shear stress on a failure plane can be expressed in the fol-
lowing form:

(12.1)

The failure envelope defined by Eq. (12.1) is a curved line. For most soil mechanics
problems, it is sufficient to approximate the shear stress on the failure plane as a linear
function of the normal stress (Coulomb, 1776). This linear function can be written as

(12.2)

The preceding equation is called the Mohr–Coulomb failure criterion.
In saturated soil, the total normal stress at a point is the sum of the effective stress

(s�) and pore water pressure (u), or

s � s¿ � u

tf � shear strength
s � normal stress on the failure plane
f � angle of internal friction

 where c � cohesion

tf � c � s tan f

tf � f1s 2

Shear Strength of Soil
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Table 12.1 Typical Values of Drained Angle 
of Friction for Sands and Silts

Soil type F� (deg)

Sand: Rounded grains
Loose 27–30
Medium 30–35
Dense 35–38

Sand: Angular grains
Loose 30–35
Medium 35–40
Dense 40–45

Gravel with some sand 34–48

Silts 26–35

The effective stress s� is carried by the soil solids. The Mohr–Coulomb failure criterion,
expressed in terms of effective stress, will be of the form

(12.3)

where c� � cohesion and f� � friction angle, based on effective stress.
Thus, Eqs. (12.2) and (12.3) are expressions of shear strength based on total stress

and effective stress. The value of c� for sand and inorganic silt is 0. For normally consoli-
dated clays, c� can be approximated at 0. Overconsolidated clays have values of c� that are
greater than 0. The angle of friction, f�, is sometimes referred to as the drained angle of
friction. Typical values of f� for some granular soils are given in Table 12.1.

The significance of Eq. (12.3) can be explained by referring to Fig. 12.1, which
shows an elemental soil mass. Let the effective normal stress and the shear stress on the

tf � c¿ � s¿ tan f¿
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Figure 12.1 Mohr–Coulomb failure criterion
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plane ab be s� and t, respectively. Figure 12.1b shows the plot of the failure envelope
defined by Eq. (12.3). If the magnitudes of s� and t on plane ab are such that they plot as
point A in Figure 12.1b, shear failure will not occur along the plane. If the effective nor-
mal stress and the shear stress on plane ab plot as point B (which falls on the failure enve-
lope), shear failure will occur along that plane. A state of stress on a plane represented by
point C cannot exist, because it plots above the failure envelope, and shear failure in a soil
would have occurred already.

12.2 Inclination of the Plane of Failure Caused by Shear

As stated by the Mohr–Coulomb failure criterion, failure from shear will occur when the
shear stress on a plane reaches a value given by Eq. (12.3). To determine the inclination
of the failure plane with the major principal plane, refer to Figure 12.2, where and 
are, respectively, the major and minor effective principal stresses. The failure plane EF
makes an angle u with the major principal plane. To determine the angle u and the rela-
tionship between and refer to Figure 12.3, which is a plot of the Mohr’s circle for the
state of stress shown in Figure 12.2 (see Chapter 10). In Figure 12.3, fgh is the failure
envelope defined by the relationship tf � c� � s� tan f�. The radial line ab defines the
major principal plane (CD in Figure 12.2), and the radial line ad defines the failure plane
(EF in Figure 12.2). It can be shown that bad � 2u � 90 � f�, or

(12.4)

Again, from Figure 12.3,

(12.5)
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Also,

(12.6b)

Substituting Eqs. (12.6a) and (12.6b) into Eq. (12.5), we obtain

or

(12.7)

However,

and

Thus,

(12.8)

An expression similar to Eq. (12.8) could also be derived using Eq. (12.2) (that is,
total stress parameters c and f), or

(12.9)

12.3 Laboratory Test for Determination 
of Shear Strength Parameters

There are several laboratory methods now available to determine the shear strength param-
eters (i.e., c, f, c�, f�) of various soil specimens in the laboratory. They are as follows:

• Direct shear test
• Triaxial test
• Direct simple shear test
• Plane strain triaxial test
• Torsional ring shear test
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f

2
b � 2c tan a45 �

f

2
b

sœ
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The direct shear test and the triaxial test are the two commonly used techniques for deter-
mining the shear strength parameters. These two tests will be described in detail in the sec-
tions that follow.

12.4 Direct Shear Test

The direct shear test is the oldest and simplest form of shear test arrangement. A diagram
of the direct shear test apparatus is shown in Figure 12.4. The test equipment consists of a
metal shear box in which the soil specimen is placed. The soil specimens may be square
or circular in plan. The size of the specimens generally used is about 51 mm � 51 mm or
102 mm � 102 mm (2 in. � 2 in. or 4 in. � 4 in.) across and about 25 mm (1 in.) high.
The box is split horizontally into halves. Normal force on the specimen is applied from the
top of the shear box. The normal stress on the specimens can be as great as 1050 kN/m2

(150 lb/in.2). Shear force is applied by moving one-half of the box relative to the other to
cause failure in the soil specimen.

Depending on the equipment, the shear test can be either stress controlled or
strain controlled. In stress-controlled tests, the shear force is applied in equal incre-
ments until the specimen fails. The failure occurs along the plane of split of the shear
box. After the application of each incremental load, the shear displacement of the top
half of the box is measured by a horizontal dial gauge. The change in the height of the
specimen (and thus the volume change of the specimen) during the test can be obtained
from the readings of a dial gauge that measures the vertical movement of the upper
loading plate.

In strain-controlled tests, a constant rate of shear displacement is applied to one-
half of the box by a motor that acts through gears. The constant rate of shear displace-
ment is measured by a horizontal dial gauge. The resisting shear force of the soil
corresponding to any shear displacement can be measured by a horizontal proving ring
or load cell. The volume change of the specimen during the test is obtained in a manner

Shear force

Normal force

Shear box

Porous stoneLoading plate

Shear force

t

t

Figure 12.4 Diagram of direct shear test arrangement
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Figure 12.5 Strain-controlled direct shear equipment
(Courtesy of Braja M. Das, Henderson, Nevada)

similar to that in the stress-controlled tests. Figure 12.5 shows a photograph of strain-
controlled direct shear test equipment. Figure 12.6 shows a photograph taken from the
top of the direct shear test equipment with the dial gages and proving ring in place.

The advantage of the strain-controlled tests is that in the case of dense sand, peak
shear resistance (that is, at failure) as well as lesser shear resistance (that is, at a point after
failure called ultimate strength) can be observed and plotted. In stress-controlled tests,
only the peak shear resistance can be observed and plotted. Note that the peak shear resist-
ance in stress-controlled tests can be only approximated because failure occurs at a stress
level somewhere between the prefailure load increment and the failure load increment.
Nevertheless, compared with strain-controlled tests, stress-controlled tests probably model
real field situations better.

For a given test, the normal stress can be calculated as

(12.10)

The resisting shear stress for any shear displacement can be calculated as

(12.11)t � Shear stress �
Resisting shear force

Cross-sectional area of the specimen

s � Normal stress �
Normal force

Cross-sectional area of the specimen
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Figure 12.6 A photograph showing the dial gauges and proving ring in place (Courtesy of Braja
M. Das, Henderson, Nevada)

Figure 12.7 shows a typical plot of shear stress and change in the height of the spec-
imen against shear displacement for dry loose and dense sands. These observations were
obtained from a strain-controlled test. The following generalizations can be developed from
Figure 12.7 regarding the variation of resisting shear stress with shear displacement:

1. In loose sand, the resisting shear stress increases with shear displacement until a
failure shear stress of tf is reached. After that, the shear resistance remains
approximately constant for any further increase in the shear displacement.

2. In dense sand, the resisting shear stress increases with shear displacement until it
reaches a failure stress of tf. This tf is called the peak shear strength. After failure
stress is attained, the resisting shear stress gradually decreases as shear displacement
increases until it finally reaches a constant value called the ultimate shear strength.

Since the height of the specimen changes during the application of the shear force (as
shown in Figure 12.7), it is obvious that the void ratio of the sand changes (at least in the vicin-
ity of the split of the shear box). Figure 12.8 shows the nature of variation of the void ratio for
loose and dense sands with shear displacement. At large shear displacement, the void ratios of
loose and dense sands become practically the same, and this is termed the critical void ratio.

It is important to note that, in dry sand,

and

c¿ � 0

s � s¿
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Figure 12.7 Plot of shear stress and change in height of
specimen against shear displacement for loose and dense
dry sand (direct shear test)

Direct shear tests are repeated on similar specimens at various normal stresses. The nor-
mal stresses and the corresponding values of tf obtained from a number of tests are plotted on
a graph from which the shear strength parameters are determined. Figure 12.9 shows such a plot
for tests on a dry sand. The equation for the average line obtained from experimental results is 

(12.12)

So, the friction angle can be determined as follows:

(12.13)

It is important to note that in situ cemented sands may show a c� intercept.
If the variation of the ultimate shear strength (tult) with normal stress is known, it can

be plotted as shown in Figure 12.9. The average plot can be expressed as

tult � s� tan f�ult (12.14)

f¿ � tan�1 a tf
s¿
b

tf � s¿ tan f¿
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or

(12.15)fœ
ult � tan�1 a tult

s¿
b

12.5 Drained Direct Shear Test on Saturated 
Sand and Clay

In the direct shear test arrangement, the shear box that contains the soil specimen is gener-
ally kept inside a container that can be filled with water to saturate the specimen. A drained
test is made on a saturated soil specimen by keeping the rate of loading slow enough so that
the excess pore water pressure generated in the soil is dissipated completely by drainage.
Pore water from the specimen is drained through two porous stones. (See Figure 12.4.)

Because the hydraulic conductivity of sand is high, the excess pore water pressure gen-
erated due to loading (normal and shear) is dissipated quickly. Hence, for an ordinary loading
rate, essentially full drainage conditions exist. The friction angle, f�, obtained from a drained
direct shear test of saturated sand will be the same as that for a similar specimen of dry sand.

The hydraulic conductivity of clay is very small compared with that of sand. When
a normal load is applied to a clay soil specimen, a sufficient length of time must elapse for
full consolidation—that is, for dissipation of excess pore water pressure. For this reason,
the shearing load must be applied very slowly. The test may last from two to five days.
Figure 12.10 shows the results of a drained direct shear test on an overconsolidated clay.
Figure 12.11 shows the plot of tf against s� obtained from a number of drained direct shear
tests on a normally consolidated clay and an overconsolidated clay. Note that the value of

for a normally consolidated clay.c¿ � 0
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Figure 12.10 Results of a drained direct shear test on an overconsolidated clay [Note: Residual
shear strength in clay is similar to ultimate shear strength in sand (see Figure 12.7)]

Similar to the ultimate shear strength in the case of sand (Figure 12.8), at large shear-
ing displacements, we can obtain the residual shear strength of clay (tr) in a drained test.
This is shown in Figure 12.10. Figure 12.11 shows the plot of tr versus s�. The average
plot will pass through the origin and can be expressed as

tr � s� tan f�r
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or

(12.16)

The drained angle of friction, f�, of normally consolidated clays generally decreases
with the plasticity index of soil. This fact is illustrated in Figure 12.12 for a number of
clays from data reported by Kenney (1959). Although the data are scattered considerably,
the general pattern seems to hold.

Skempton (1964) provided the results of the variation of the residual angle of
friction, f�r, of a number of clayey soils with the clay-size fraction (	2 
m) present. The
following table shows a summary of these results.

Clay-size Residual 
fraction friction angle,

Soil (%) f�r (deg)

Selset 17.7 29.8
Wiener Tegel 22.8 25.1
Jackfield 35.4 19.1
Oxford clay 41.9 16.3
Jari 46.5 18.6
London clay 54.9 16.3
Walton’s Wood 67 13.2
Weser-Elbe 63.2 9.3
Little Belt 77.2 11.2
Biotite 100 7.5 

fœ
r � tan�1 a tr

s¿
b

Plasticity index, PI (%)
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n
f

�

150

1.0

10060 8040302015105

0.8

0.6

0.4

0.2

0.0

Undisturbed soil        Remolded soil

Figure 12.12 Variation of sin �� with plasticity index for a number of soils (After Kenney, 1959.
With permission from ASCE.)
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12.6 General Comments on Direct Shear Test

The direct shear test is simple to perform, but it has some inherent shortcomings. The relia-
bility of the results may be questioned because the soil is not allowed to fail along the weak-
est plane but is forced to fail along the plane of split of the shear box. Also, the shear stress
distribution over the shear surface of the specimen is not uniform. Despite these shortcomings,
the direct shear test is the simplest and most economical for a dry or saturated sandy soil.

In many foundation design problems, one must determine the angle of friction
between the soil and the material in which the foundation is constructed (Figure 12.13). The
foundation material may be concrete, steel, or wood. The shear strength along the surface
of contact of the soil and the foundation can be given as

(12.17)

Note that the preceding equation is similar in form to Eq. (12.3). The shear strength
parameters between a soil and a foundation material can be conveniently determined by a
direct shear test. This is a great advantage of the direct shear test. The foundation material
can be placed in the bottom part of the direct shear test box and then the soil can be placed
above it (that is, in the top part of the box), as shown in Figure 12.14, and the test can be
conducted in the usual manner.

Figure 12.15 shows the results of direct shear tests conducted in this manner with a
quartz sand and concrete, wood, and steel as foundation materials, with s� � 100 kN/m2

(14.5 lb/in.2).
It was mentioned briefly in Section 12.1 [related to Eq. (12.1)] that Mohr’s failure

envelope is curvilinear in nature, and Eq. (12.2) is only an approximation. This fact should
be kept in mind when considering problems at higher confining pressures. Figure 12.16
shows the decrease of f� and d� with the increase of normal stress (s�) for the same mate-
rials discussed in Figure 12.15. This can be explained by referring to Figure 12.17, which
shows a curved Mohr’s failure envelope. If a direct shear test is conducted with s� � ,
the shear strength will be tf (1). So,

dœ
1 � tan�1 c tf112

sœ112
d

sœ112

dœ � effective angle of friction between the soil and the foundation material
 where cœ

a � adhesion

tf � cœ
a � s¿ tan dœ
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This is shown in Figure 12.17. In a similar manner, if the test is conducted with 
s� � , then

As can be seen from Figure 12.17, � since � . Keeping this in mind,
it must be realized that the values of f� given in Table 12.1 are only the average values.

sœ112sœ
2dœ

1dœ
2

d¿ � dœ
2 � tan�1 c tf122

sœ122
d

sœ122
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Example 12.1

Following are the results of four drained direct shear tests on an overconsolidated clay:

• Diameter of specimen � 50 mm
• Height of specimen � 25 mm

Normal Shear force at Residual shear
Test force, N failure, Speak force, Sresidual

no. (N) (N) (N)

1 150 157.5 44.2
2 250 199.9 56.6
3 350 257.6 102.9
4 550 363.4 144.5

Determine the relationships for peak shear strength (tf) and residual shear strength (tr).
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Solution

Area of the specimen . Now the following
table can be prepared.

Residual
shear

Normal Normal Peak shear force, 
Test force, N stress, S� force, Speak Sresidual

no. (N) (kN/m2) (N) (kN/m2) (N) (kN/m2)

1 150 76.4 157.5 80.2 44.2 22.5
2 250 127.3 199.9 101.8 56.6 28.8
3 350 178.3 257.6 131.2 102.9 52.4
4 550 280.1 363.4 185.1 144.5 73.6

The variations of tf and tr with s� are plotted in Figure 12.18. From the plots, we
find that

(Note: For all overconsolidated clays, the residual shear strength can be expressed as

where effective residual friction angle.)fœ
r �

tr � s¿ tan fœ
r

 Residual strength: tr 1kN/m2 2 � S� tan 14.6

 Peak strength: tf1kN/m2 2 � 40 � S� tan 27

Tr �
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A
Tf �

Speak

A

1A 2 � 1p/4 2 a 50
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12.7 Triaxial Shear Test (General)

The triaxial shear test is one of the most reliable methods available for determining shear
strength parameters. It is used widely for research and conventional testing. A diagram of
the triaxial test layout is shown in Figure 12.19.

In this test, a soil specimen about 36 mm (1.4 in.) in diameter and 76 mm (3 in.) long
generally is used. The specimen is encased by a thin rubber membrane and placed inside a
plastic cylindrical chamber that usually is filled with water or glycerine. The specimen is
subjected to a confining pressure by compression of the fluid in the chamber. (Note: Air is
sometimes used as a compression medium.) To cause shear failure in the specimen, one
must apply axial stress through a vertical loading ram (sometimes called deviator stress).
This stress can be applied in one of two ways:

1. Application of dead weights or hydraulic pressure in equal increments until the
specimen fails. (Axial deformation of the specimen resulting from the load applied
through the ram is measured by a dial gauge.)

2. Application of axial deformation at a constant rate by means of a geared or
hydraulic loading press. This is a strain-controlled test.

The axial load applied by the loading ram corresponding to a given axial deformation is
measured by a proving ring or load cell attached to the ram.

Rubber ring

Air release valve

Axial load

Loading ram

Top cap

Flexible tube

Water Porous disc Specimen enclosed in a rubber membrane

AirAir

Sealing ring

Connections for drainage or pore pressure measurement

To cell pressure control

Pressure gauge

Figure 12.19 Diagram of triaxial test equipment (After Bishop and Bjerrum, 1960. With
permission from ASCE.)
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Connections to measure drainage into or out of the specimen, or to measure pressure
in the pore water (as per the test conditions), also are provided. The following three stan-
dard types of triaxial tests generally are conducted:

1. Consolidated-drained test or drained test (CD test)
2. Consolidated-undrained test (CU test)
3. Unconsolidated-undrained test or undrained test (UU test)

The general procedures and implications for each of the tests in saturated soils are
described in the following sections.

12.8 Consolidated-Drained Triaxial Test

In the CD test, the saturated specimen first is subjected to an all around confining pressure,
s3, by compression of the chamber fluid (Figure 12.20a). As confining pressure is applied, the
pore water pressure of the specimen increases by uc (if drainage is prevented). This increase
in the pore water pressure can be expressed as a nondimensional parameter in the form

(12.18)

where B � Skempton’s pore pressure parameter (Skempton, 1954).
For saturated soft soils, B is approximately equal to 1; however, for saturated stiff

soils, the magnitude of B can be less than 1. Black and Lee (1973) gave the theoretical
values of B for various soils at complete saturation. These values are listed in Table 12.2.

Now, if the connection to drainage is opened, dissipation of the excess pore water
pressure, and thus consolidation, will occur. With time, uc will become equal to 0. In
saturated soil, the change in the volume of the specimen (Vc) that takes place during
consolidation can be obtained from the volume of pore water drained (Figure 12.21a).
Next, the deviator stress, sd, on the specimen is increased very slowly (Figure 12.20b).
The drainage connection is kept open, and the slow rate of deviator stress application allows
complete dissipation of any pore water pressure that developed as a result (ud � 0).

B �
uc
s3

s3 s3

s3

s3

s3 s3

s3

s3

sd

sd

(b)(a)

uc � 0 ud � 0

Figure 12.20

Consolidated-drained triaxial 
test: (a) specimen under chamber-
confining pressure; (b) deviator stress
application
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Table 12.2 Theoretical Values of B at Complete Saturation

Theoretical
Type of soil value

Normally consolidated soft clay 0.9998
Lightly overconsolidated soft clays and silts 0.9988
Overconsolidated stiff clays and sands 0.9877
Very dense sands and very stiff clays at high 

confining pressures 0.9130
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Figure 12.21 Consolidated-drained triaxial test: (a) volume change of specimen caused by
chamber-confining pressure; (b) plot of deviator stress against strain in the vertical direction 
for loose sand and normally consolidated clay; (c) plot of deviator stress against strain in the
vertical direction for dense sand and overconsolidated clay; (d) volume change in loose sand and
normally consolidated clay during deviator stress application; (e) volume change in dense 
sand and overconsolidated clay during deviator stress application
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A typical plot of the variation of deviator stress against strain in loose sand and nor-
mally consolidated clay is shown in Figure 12.21b. Figure 12.21c shows a similar plot for
dense sand and overconsolidated clay. The volume change, Vd, of specimens that occurs
because of the application of deviator stress in various soils is also shown in Figures
12.21d and 12.21e.

Because the pore water pressure developed during the test is completely dissipated,
we have

and

In a triaxial test, is the major principal effective stress at failure and is the minor prin-
cipal effective stress at failure.

Several tests on similar specimens can be conducted by varying the confining pres-
sure. With the major and minor principal stresses at failure for each test the Mohr’s circles
can be drawn and the failure envelopes can be obtained. Figure 12.22 shows the type of
effective stress failure envelope obtained for tests on sand and normally consolidated clay.
The coordinates of the point of tangency of the failure envelope with a Mohr’s circle (that
is, point A) give the stresses (normal and shear) on the failure plane of that test specimen.

For normally consolidated clay, referring to Figure 12.22
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1
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Figure 12.22 Effective stress failure envelope from drained tests on sand and normally
consolidated clay
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or

(12.19)

Also, the failure plane will be inclined at an angle of u � 45 � f�/2 to the major principal
plane, as shown in Figure 12.22.

Overconsolidation results when a clay initially is consolidated under an all-around
chamber pressure of sc (� ) and is allowed to swell by reducing the chamber pressure
to s3 (� ). The failure envelope obtained from drained triaxial tests of such overcon-
solidated clay specimens shows two distinct branches (ab and bc in Figure 12.23). The
portion ab has a flatter slope with a cohesion intercept, and the shear strength equation for
this branch can be written as

(12.20)

The portion bc of the failure envelope represents a normally consolidated stage of soil and
follows the equation tf � s� tan f�.

If the triaxial test results of two overconsolidated soil specimens are known, the
magnitudes of f�1 and c� can be determined as follows. From Eq. (12.8), for Specimen 1:

s�1(1) � s�3(1) tan2 (45 + f�1/2) + 2c� tan(45 + f�1/2) (12.21)

And, for Specimen 2:

s�1(2) � s�3(2) tan2 (45 + f�1/2) + 2c� tan(45 + f�1/2) (12.22)
or

s�1(1) � s�1(2) � [s�3(1) � s�3(2)] tan2 (45 + f�1/2)

tf � c¿ � s¿ tan fœ
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Figure 12.23 Effective stress failure envelope for overconsolidated clay
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Hence,

(12.23)

Once the value of f�1 is known, we can obtain c� as

(12.24)

A consolidated-drained triaxial test on a clayey soil may take several days to complete.
This amount of time is required because deviator stress must be applied very slowly to ensure
full drainage from the soil specimen. For this reason, the CD type of triaxial test is uncommon.

c¿ �

sœ
1112 � sœ

3112 tan2 a45 �
fœ

1

2
b

2 tan a45 �
fœ

1

2
b

fœ
1 � 2 e tan�1 cs

œ
1112 � sœ

1122
sœ

3112 � sœ
3122
d 0.5

� 45° f

Example 12.2

A consolidated-drained triaxial test was conducted on a normally consolidated clay.
The results are as follows:

• s3 � 16 lb/in.2

• (sd)f � 25 lb/in.2

Determine

a. Angle of friction, f�
b. Angle u that the failure plane makes with the major principal plane

Solution

For normally consolidated soil, the failure envelope equation is

For the triaxial test, the effective major and minor principal stresses at failure are as follows:

and

Part a
The Mohr’s circle and the failure envelope are shown in Figure 12.24.  From Eq. (12.19),

or

f¿ � 26�

 sin fœ �
sœ

1 � sœ
3

sœ
1 � sœ

3
�

41 � 16

41 � 16
� 0.438

sœ
3 � s3 � 16 lb/in.2

sœ
1 � s1 � s3 � 1¢sd 2f � 16 � 25 � 41 lb/in.2

tf � s¿ tan f¿  1because c¿ � 0 2
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Figure 12.24 Mohr’s circle and failure envelope for a normally consolidated clay

Part b
From Eq. (12.4),

■u � 45 �
f¿
2

� 45° �
26°

2
� 58�

Normal stress

s3� � 16 lb/in2 s1� � 41 lb/in2

Sh
ea

r 
st

re
ss

O

B

2u

f�
Effective stress failure envelope

A

s3�s3�

s1�

s1�

u

Example 12.3

Refer to Example 12.2.

a. Find the normal stress s� and the shear stress tf on the failure plane.
b. Determine the effective normal stress on the plane of maximum shear stress.

Solution

Part a
From Eqs. (10.8) and (10.9),

and

Substituting the values of s�1 � 41 lb/in.2, s�3 � 16 lb/in.2, and u � 58° into the preceding
equations, we get

s¿ �
41 � 16

2
�

41 � 16

2
  cos 12 � 58 2 � 23.0 lb/in.2

tf �
sœ

1 � sœ
3

2
 sin 2u

s¿ 1on the failure plane 2 �
sœ

1 � sœ
3

2
�

sœ
1 � sœ

3

2
 cos 2u
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and

Part b
From Eq. (10.9), it can be seen that the maximum shear stress will occur on the plane
with u � 45°. From Eq. (10.8),

Substituting u � 45° into the preceding equation gives

■s¿ �
41 � 16

2
�

41 � 16

2
  cos 90 � 28.5 lb/in.2

s¿ �
sœ

1 � sœ
3

2
�

sœ
1 � sœ

3

2
  cos 2u

tf �
41 � 16

2
  sin 12 � 58 2 � 11.2 lb/in.2

Example 12.4

The equation of the effective stress failure envelope for normally consolidated clayey soil
is tf � s� tan 30�. A drained triaxial test was conducted with the same soil at a chamber-
confining pressure of 10 lb/in.2 Calculate the deviator stress at failure.

Solution

For normally consolidated clay, c� � 0. Thus, from Eq. (12.8),

So,

■1¢sd 2f � sœ
1 � sœ

3 � 30 � 10 � 20 lb/in.2

sœ
1 � 10 tan2 a45 �

30

2
b � 30 lb/in.2

f¿ � 30°

sœ
1 � sœ

3 tan2 a45 �
f¿
2
b

Example 12.5

The results of two drained triaxial tests on a saturated clay follow:

Specimen I:

1¢sd 2f � 130 kN/m2

s3 � 70 kN/m2
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Specimen II:

Determine the shear strength parameters.

Solution

Refer to Figure 12.25. For Specimen I, the principal stresses at failure are 

� s3 � 70 kN/m2

and

Similarly, the principal stresses at failure for Specimen II are

and

Now, from Eq. (12.23),

Figure 12.25 Effective stress failure envelope and Mohr’s circles for Specimens I and II
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c�

383.520016070

f�

fœ
1 � 2 e tan�1 cs

œ
11I2 � sœ

11II2
sœ

31I2 � sœ
31II2
d 0.5

� 45° f � 2 e tan�1 c 200 � 383.5

70 � 160
d 0.5

� 45° f � 20°

sœ
1 � s1 � s3 � 1¢sd 2f � 160 � 223.5 � 383.5 kN/m2

sœ
3 � s3 � 160 kN/m2

sœ
1 � s1 � s3 � 1¢sd 2f � 70 � 130 � 200 kN/m2

sœ
3

1¢sd 2f � 223.5 kN/m2

s3 � 160 kN/m2
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Again, from Eq. (12.24),

■c¿ �

sœ
11I2 � sœ

31I2 tan2 a45 �
fœ

1

2
b

2 tan a45 �
fœ

1

2
b

�

200 � 70 tan2 a45 �
20

2
b

2 tan a45 �
20

2
b

� 20 kN/m2

12.9 Consolidated-Undrained Triaxial Test

The consolidated-undrained test is the most common type of triaxial test. In this test, the
saturated soil specimen is first consolidated by an all-around chamber fluid pressure, s3,
that results in drainage (Figures 12.26a and 12.26b). After the pore water pressure gener-
ated by the application of confining pressure is dissipated, the deviator stress, sd, on the
specimen is increased to cause shear failure (Figure 12.26c). During this phase of the test,
the drainage line from the specimen is kept closed. Because drainage is not permitted, the
pore water pressure, ud, will increase. During the test, simultaneous measurements of
sd and ud are made. The increase in the pore water pressure, ud, can be expressed in
a nondimensional form as

(12.25)

where � Skempton’s pore pressure parameter (Skempton, 1954).
The general patterns of variation of sd and ud with axial strain for sand and clay

soils are shown in Figures 12.26d through 12.26g. In loose sand and normally consolidated
clay, the pore water pressure increases with strain. In dense sand and overconsolidated
clay, the pore water pressure increases with strain to a certain limit, beyond which it
decreases and becomes negative (with respect to the atmospheric pressure). This decrease
is because of a tendency of the soil to dilate.

Unlike the consolidated-drained test, the total and effective principal stresses are not
the same in the consolidated-undrained test. Because the pore water pressure at failure is
measured in this test, the principal stresses may be analyzed as follows:

•

•

•

•

In these equations, (ud)f � pore water pressure at failure. The preceding derivations
show that

s1 � s3 � sœ
1 � sœ

3

 Minor principal stress at failure 1effective 2 : s3 � 1¢ud 2f � sœ
3

 Minor principal stress at failure 1total 2 : s3

 Major principal stress at failure 1effective 2 : s1 � 1¢ud 2f � sœ
1

 Major principal stress at failure 1total 2 : s3 � 1¢sd 2f � s1

A

A �
¢ud
¢sd
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Figure 12.26 Consolidated undrained test: (a) specimen under chamber confining pressure; 
(b) volume change in specimen caused by confining pressure; (c) deviator stress application; 
(d) deviator stress against axial strain for loose sand and normally consolidated clay; (e) deviator
stress against axial strain for dense sand and overconsolidated clay; (f) variation of pore water
pressure with axial strain for loose sand and normally consolidated clay; (g) variation of pore
water pressure with axial strain for dense sand and overconsolidated clay

Tests on several similar specimens with varying confining pressures may be con-
ducted to determine the shear strength parameters. Figure 12.27 shows the total and effec-
tive stress Mohr’s circles at failure obtained from consolidated-undrained triaxial tests in
sand and normally consolidated clay. Note that A and B are two total stress Mohr’s circles
obtained from two tests. C and D are the effective stress Mohr’s circles corresponding to
total stress circles A and B, respectively. The diameters of circles A and C are the same;
similarly, the diameters of circles B and D are the same.
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Figure 12.27 Total and effective stress failure envelopes for consolidated undrained triaxial tests.
(Note: The figure assumes that no back pressure is applied.)

In Figure 12.27, the total stress failure envelope can be obtained by drawing a line
that touches all the total stress Mohr’s circles. For sand and normally consolidated clays,
this will be approximately a straight line passing through the origin and may be expressed
by the equation

(12.26)

Equation (12.26) is seldom used for practical considerations. Similar to Eq. (12.19), for
sand and normally consolidated clay, we can write

(12.27)

and

(12.28)

Again referring to Figure 12.27, we see that the failure envelope that is tangent to
all the effective stress Mohr’s circles can be represented by the equation tf � s� tan f�,
which is the same as that obtained from consolidated-drained tests (see Figure 12.22).

� sin�1 c s1 � s3

s1 � s3 � 21¢ud 2f d

� sin�1 e 3s1 � 1¢ud 2f 4 � 3s3 � 1¢ud 2f 4
3s1 � 1¢ud 2f 4 � 3s3 � 1¢ud 2f 4 f

f¿ � sin�1 asœ
1 � sœ

3

sœ
1 � sœ

3
b

f � sin�1 as1 � s3

s1 � s3
b

angle of shearing resistance
 normal stress axis, also known as the consolidated-undrained

f � the angle that the total stress failure envelope makes with the
 where s � total stress

tf � s tan f
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In overconsolidated clays, the total stress failure envelope obtained from consoli-
dated-undrained tests will take the shape shown in Figure 12.28. The straight line a�b� is
represented by the equation

(12.29)

and the straight line b�c� follows the relationship given by Eq. (12.26). The effective stress
failure envelope drawn from the effective stress Mohr’s circles will be similar to that
shown in Figure 12.23.

Consolidated-drained tests on clay soils take considerable time. For this reason,
consolidated-undrained tests can be conducted on such soils with pore pressure measure-
ments to obtain the drained shear strength parameters. Because drainage is not allowed in
these tests during the application of deviator stress, they can be performed quickly.

Skempton’s pore water pressure parameter was defined in Eq. (12.25). At failure,
the parameter can be written as

(12.30)

The general range of values in most clay soils is as follows:

• Normally consolidated clays: 0.5 to 1
• Overconsolidated clays: �0.5 to 0

Table 12.3 gives the values of for some normally consolidated clays as obtained by the
Norwegian Geotechnical Institute.

Laboratory triaxial tests of Simons (1960) on Oslo clay, Weald clay, and London clay
showed that becomes approximately zero at an overconsolidation value of about 3 or 4
(Figure 12.29).

Af

Af

Af

A � Af �
1¢ud 2f
1¢sd 2f

A
A

tf � c � s tan f1

Figure 12.28 Total stress failure envelope obtained from
consolidated-undrained tests in over-consolidated clay
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Table 12.3 Triaxial Test Results for Some Normally Consolidated Clays 
Obtained by the Norwegian Geotechnical Institute*

Drained
Liquid Plastic Liquidity friction angle, 

Location limit limit index Sensitivitya F� (deg)

Seven Sisters, Canada 127 35 0.28 19 0.72
Sarpborg 69 28 0.68 5 25.5 1.03
Lilla Edet, Sweden 68 30 1.32 50 26 1.10
Fredrikstad 59 22 0.58 5 28.5 0.87
Fredrikstad 57 22 0.63 6 27 1.00
Lilla Edet, Sweden 63 30 1.58 50 23 1.02
Göta River, Sweden 60 27 1.30 12 28.5 1.05
Göta River, Sweden 60 30 1.50 40 24 1.05
Oslo 48 25 0.87 4 31.5 1.00
Trondheim 36 20 0.50 2 34 0.75
Drammen 33 18 1.08 8 28 1.18

*After Bjerrum and Simons, 1960. With permission from ASCE.
aSee Section 12.13 for the definition of sensitivity

Af
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1 2 4 6 8 10 20 40 60 80 100
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Overconsolidation ratio, OCR

Oslo and London clay

 Oslo clay

A
f

Figure 12.29 Variation of with overconsolidation ratio for three clays (Based on Simon, 1960)Af
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Example 12.6

A specimen of saturated sand was consolidated under an all-around pressure of 12 lb/in.2

The axial stress was then increased and drainage was prevented. The specimen failed
when the axial deviator stress reached 9.1 lb/in.2 The pore water pressure at failure was
6.8 lb/in.2 Determine

a. Consolidated-undrained angle of shearing resistance, f
b. Drained friction angle, f�

Solution

Part a
For this case, s3 � 12 lb/in.2, s1 � 12 + 9.1 � 21.1 lb/in.2, and (ud)f � 6.8 lb/in.2. The
total and effective stress failure envelopes are shown in Figure 12.30. From Eq. (12.27),

Part b
From Eq. (12.28),

Figure 12.30 Failure envelopes and Mohr’s circles for a saturated sand ■
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f¿ � sin�1 c s1 � s3

s1 � s3 � 21¢ud 2f d � sin�1 c 21.1 � 12

21.1 � 12 � 12 2 16.8 2 d � 27.8°

f � sin�1 as1 � s3

s1 � s3
b � sin�1 a 21.1 � 12

21.1 � 12
b � 16°
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12.10 Unconsolidated-Undrained Triaxial Test

In unconsolidated-undrained tests, drainage from the soil specimen is not permitted during the
application of chamber pressure s3. The test specimen is sheared to failure by the application
of deviator stress, sd, and drainage is prevented. Because drainage is not allowed at any stage,
the test can be performed quickly. Because of the application of chamber confining pressures3,
the pore water pressure in the soil specimen will increase by uc. A further increase in the pore
water pressure (ud) will occur because of the deviator stress application. Hence, the total pore
water pressure u in the specimen at any stage of deviator stress application can be given as

(12.31)

From Eqs. (12.18) and (12.25), uc � Bs3 and ud � sd, so

(12.32)

This test usually is conducted on clay specimens and depends on a very important
strength concept for cohesive soils if the soil is fully saturated. The added axial stress at fail-
ure (sd)f is practically the same regardless of the chamber confining pressure. This property
is shown in Figure 12.31. The failure envelope for the total stress Mohr’s circles becomes a
horizontal line and hence is called a f � 0 condition. From Eq. (12.9) with f � 0, we get

(12.33)

where cu is the undrained shear strength and is equal to the radius of the Mohr’s circles.
Note that the f � 0 concept is applicable to only saturated clays and silts.

tf � c � cu

u � Bs3 � A¢sd � Bs3 � A1s1 � s3 2

A

u � uc � ¢ud

Example 12.7

Refer to the soil specimen described in Example 12.6. What would be the deviator
stress at failure, (sd)f, if a drained test was conducted with the same chamber all-
around pressure (that is, 12 lb/in.2)?

Solution

From Eq. (12.8) (with c� � 0),

� 12 lb/in.2 and f� � 27.8° (from Example 12.6). So,

■1¢sd 2f � sœ
1 � sœ

3 � 33 � 12 � 21 lb/in.2

sœ
1 � 12 tan2 a45 �

27.8

2
b � 33 lb/in.2

sœ
3

sœ
1 � sœ

3 tan2 a45 �
f¿
2
b
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The reason for obtaining the same added axial stress (sd)f regardless of the con-
fining pressure can be explained as follows. If a clay specimen (No. I) is consolidated at a
chamber pressure s3 and then sheared to failure without drainage, the total stress conditions
at failure can be represented by the Mohr’s circle P in Figure 12.32. The pore pressure
developed in the specimen at failure is equal to (ud)f . Thus, the major and minor principal
effective stresses at failure are, respectively,

and

Q is the effective stress Mohr’s circle drawn with the preceding principal stresses. Note
that the diameters of circles P and Q are the same.

sœ
3 � s3 � 1¢ud 2f

sœ
1 � 3s3 � 1¢sd 2f 4 � 1¢ud 2f � s1 � 1¢ud 2f
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s3

cu

s3 s3s1 s1 s1
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Total stress Mohr’s circles at failure

Failure envelope f � 0

Figure 12.31 Total stress Mohr’s circles and failure envelope (f � 0) obtained from
unconsolidated-undrained triaxial tests on fully saturated cohesive soil
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Now let us consider another similar clay specimen (No. II) that has been con-
solidated under a chamber pressure s3 with initial pore pressure equal to zero. If the
chamber pressure is increased by s3 without drainage, the pore water pressure will
increase by an amount uc. For saturated soils under isotropic stresses, the pore water
pressure increase is equal to the total stress increase, so uc � s3 (B � 1). At this
time, the effective confining pressure is equal to s3 � s3 � uc � s3 � s3 �
s3 � s3. This is the same as the effective confining pressure of Specimen I before
the application of deviator stress. Hence, if Specimen II is sheared to failure by
increasing the axial stress, it should fail at the same deviator stress (sd)f that was
obtained for Specimen I. The total stress Mohr’s circle at failure will be R (see
Figure 12.32). The added pore pressure increase caused by the application of (sd)f

will be (ud)f .
At failure, the minor principal effective stress is

and the major principal effective stress is

Thus, the effective stress Mohr’s circle will still be Q because strength is a function of
effective stress. Note that the diameters of circles P, Q, and R are all the same.

Any value of s3 could have been chosen for testing Specimen II. In any case, the
deviator stress (sd)f to cause failure would have been the same as long as the soil was
fully saturated and fully undrained during both stages of the test.

12.11 Unconfined Compression Test 
on Saturated Clay

The unconfined compression test is a special type of unconsolidated-undrained test that is
commonly used for clay specimens. In this test, the confining pressure s3 is 0. An axial
load is rapidly applied to the specimen to cause failure. At failure, the total minor princi-
pal stress is zero and the total major principal stress is s1 (Figure 12.33). Because the
undrained shear strength is independent of the confining pressure as long as the soil is fully
saturated and fully undrained, we have

(12.34)

where qu is the unconfined compression strength. Table 12.4 gives the approximate con-
sistencies of clays on the basis of their unconfined compression strength. A photograph of

tf �
s1

2
�

qu
2

� cu

� s1 � 1¢ud 2f � sœ
1

3s3 � ¢s3 � 1¢sd 2f 4 � 3¢uc � 1¢ud 2f 4 � 3s3 � 1¢sd 2f 4 � 1¢ud 2f

3 1s3 � ¢s3 2 4 � 3¢uc � 1¢ud 2f 4 � s3 � 1¢ud 2f � sœ
3
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unconfined compression test equipment is shown in Figure 12.34. Figures 12.35 and 12.36
show the failure in two specimens—one by shear and one by bulging—at the end of
unconfined compression tests.

Theoretically, for similar saturated clay specimens, the unconfined compression tests
and the unconsolidated-undrained triaxial tests should yield the same values of cu. In prac-
tice, however, unconfined compression tests on saturated clays yield slightly lower values
of cu than those obtained from unconsolidated-undrained tests.

12.12 Empirical Relationships Between Undrained Cohesion
(cu) and Effective Overburden Pressure ( )

Several empirical relationships have been proposed between cu and the effective overbur-
den pressure s�o. The most commonly cited relationship is that given by Skempton (1957)
which can be expressed as

(12.35)
cu1VST2
sœ
o

� 0.11 � 0.00371PI 2 1for normally consolidated clay 2

Sœ
O

Normal stress

cu

s1 � qus3 � 0

Total stress Mohr’s
circle at failure
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ea

r 
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re
ss

f � 0

s1

s1

Figure 12.33 Unconfined compression test

Table 12.4 General Relationship of Consistency and
Unconfined Compression Strength of Clays

qu

Consistency kN/m2 ton/ft2

Very soft 0–25 0–0.25
Soft 25–50 0.25–0.5
Medium 50–100 0.5–1
Stiff 100–200 1–2
Very stiff 200–400 2–4
Hard �400 �4
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where cu(VST) � undrained shear strength from vane shear test (see Section 12.15)
PI � plasticity index (%)

Chandler (1988) suggested that the preceding relationship will hold good for over-
consolidated soil with an accuracy of �25%. This does not include sensitive and fissured
clays. Ladd, et al. (1977) proposed that

(12.36)

where OCR � overconsolidation ratio.

a cu
sœ
o
b

overconsolidated

a cu
sœ
o
b

normally consolidated

� 1OCR 2 0.8

Figure 12.34 Unconfined compression test
equipment (Courtesy of ELE International)

Figure 12.35 Failure by shear of an unconfined
compression test specimen (Courtesy of Braja M. Das,
Henderson, Nevada)
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Figure 12.36

Failure by bulging of an unconfined
compression test specimen (Courtesy
of Braja M. Das, Henderson, Nevada)

Example 12.8

An overconsolidated clay deposit located below the groundwater table has the 
following:

• Average present effective overburden pressure � 160 kN/m2

• Overconsolidation ratio � 3.2
• Plasticity index � 28

Estimate the average undrained shear strength of the clay [that is, cu(VST)].

Solution

From Eq. (12.35),

c cu1VST2
sœ
o
d

normally consolidated
� 0.11 � 0.00371PI 2 � 0.11 � 10.0037 2 128 2 � 0.2136
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From Eq. (12.36),

Thus,

cu(VST) � 0.542��o � (0.542)(160) � 86.7 kN/m2
■

c cu1VST2
sœ
o
d

overconsolidated
� 1OCR 2 0.8 c cu1VST2

sœ
o
d

normally consolidated
� 13.2 2 0.810.2136 2 � 0.542

12.13 Sensitivity and Thixotropy of Clay

For many naturally deposited clay soils, the unconfined compression strength is reduced
greatly when the soils are tested after remolding without any change in the moisture con-
tent, as shown in Figure 12.37. This property of clay soils is called sensitivity. The degree
of sensitivity may be defined as the ratio of the unconfined compression strength in an
undisturbed state to that in a remolded state, or

(12.37)

The sensitivity ratio of most clays ranges from about 1 to 8; however, highly floc-
culent marine clay deposits may have sensitivity ratios ranging from about 10 to 80. Some
clays turn to viscous fluids upon remolding. These clays are found mostly in the previously
glaciated areas of North America and Scandinavia. Such clays are referred to as quick
clays. Rosenqvist (1953) classified clays on the basis of their sensitivity. This general
classification is shown in Figure 12.38.

St �
qu 1undisturbed2
qu 1remolded2

Axial strain

s
1

qu

qu

Undisturbed

Remolded

Figure 12.37

Unconfined compression 
strength for undisturbed 
and remolded clay
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Figure 12.38 Classification of clays based on sensitivity

The loss of strength of clay soils from remolding is caused primarily by the destruc-
tion of the clay particle structure that was developed during the original process of
sedimentation.

If, however, after remolding, a soil specimen is kept in an undisturbed state (that is,
without any change in the moisture content), it will continue to gain strength with time.
This phenomenon is referred to as thixotropy. Thixotropy is a time-dependent, reversible
process in which materials under constant composition and volume soften when remolded.
This loss of strength is gradually regained with time when the materials are allowed to rest.
This phenomenon is illustrated in Figure 12.39a.

Most soils, however, are partially thixotropic—that is, part of the strength loss
caused by remolding is never regained with time. The nature of the strength-time variation
for partially thixotropic materials is shown in Figure 12.39b. For soils, the difference
between the undisturbed strength and the strength after thixotropic hardening can be attrib-
uted to the destruction of the clay-particle structure that was developed during the original
process of sedimentation.

Seed and Chan (1959) conducted several tests on three compacted clays with a
water content near or below the plastic limit to study the thixotropic strength regain
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Figure 12.39 Behavior of (a) thixotropic material; (b) partially thixotropic material

characteristics of the clays. The results of these tests are shown in Figure 12.40. Note
that in Figure 12.40,

(12.38)

12.14 Strength Anisotropy in Clay

The unconsolidated-undrained shear strength of some saturated clays can vary, depending
on the direction of load application; this variation is referred to as anisotropy with respect
to strength. Anisotropy is caused primarily by the nature of the deposition of the cohesive
soils, and subsequent consolidation makes the clay particles orient perpendicular to the

Thixotropic strength ratio �
cu 1at time t after compaction2
cu 1at time t� 0 after compaction2
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Vicksburg silty clay PL � 23; � 19.5%
Pittsburgh sandy clay PL � 20; � 17.4%
Friant-Kern clay PL � 35; � 22%
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Figure 12.40 Thixotropic strength increase with time for three clays (Based on Seed 
and Chan, 1959)

direction of the major principal stress. Parallel orientation of the clay particles can cause
the strength of clay to vary with direction. Figure 12.41 shows an element of saturated clay
in a deposit with the major principal stress making an angle a with respect to the horizon-
tal. For anisotropic clays, the magnitude of cu is a function of a.

a
s1

s3

Saturated clay
Figure 12.41 Strength
anisotropy in clay
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Figure 12.42 Directional variation of cu for undisturbed Winnipeg Upper Brown clay (Based
on Loh and Holt, 1974)

Normally consolidated anisotropic clay
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Figure 12.43 Graphical representation of Eq. (12.39)

As an example, the variation of cu with a for undisturbed specimens of Winnipeg Upper
Brown clay (Loh and Holt, 1974) is shown in Figure 12.42. Based on several laboratory test
results, Casagrande and Carrillo (1944) proposed the following relationship for the directional
variation of undrained shear strength:

(12.39)

For normally consolidated clays, cu(a�90�) � cu(a�0�); for overconsolidated clays,
cu(a�90�) � cu(a�0�). Figure 12.43 shows the directional variation for cu(a) based on
Eq. (12.39). The anisotropy with respect to strength for clays can have an important effect
on various stability calculations.

cu 1a2 � cu 1a�0°2 � 3cu 1a�90°2 � cu 1a�0°2 4sin2 a

12.14 Strength Anisotropy in Clay 405
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h

d

T

Figure 12.44

Diagram of vane shear 
test equipment

12.15 Vane Shear Test

Fairly reliable results for the undrained shear strength, cu (f � 0 concept), of very soft to
medium cohesive soils may be obtained directly from vane shear tests. The shear vane usually
consists of four thin, equal-sized steel plates welded to a steel torque rod (Figure 12.44). First,
the vane is pushed into the soil. Then torque is applied at the top of the torque rod to rotate the
vane at a uniform speed. A cylinder of soil of height h and diameter d will resist the torque
until the soil fails. The undrained shear strength of the soil can be calculated as follows.

If T is the maximum torque applied at the head of the torque rod to cause failure, it should
be equal to the sum of the resisting moment of the shear force along the side surface of the soil
cylinder (Ms) and the resisting moment of the shear force at each end (Me) (Figure 12.45):

(12.40)

The resisting moment can be given as

(12.41)

Surface Moment
area arm

For the calculation of Me, investigators have assumed several types of distribution
of shear strength mobilization at the ends of the soil cylinder:

1. Triangular. Shear strength mobilization is cu at the periphery of the soil cylinder and
decreases linearly to zero at the center.

2. Uniform. Shear strength mobilization is constant (that is, cu) from the periphery to
the center of the soil cylinder.

3. Parabolic. Shear strength mobilization is cu at the periphery of the soil cylinder and
decreases parabolically to zero at the center.

h � height of the shear vane
 where d � diameter of the shear vane

⎧ ⎨ ⎩⎧ ⎪ ⎨ ⎪ ⎩

Ms � 1pdh 2cu 1d/2 2

  Two ends

⎧ ⎪ ⎨ ⎪ ⎩

T � Ms � Me � Me
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Figure 12.45 Derivation of Eq. (12.43): (a) resisting moment of shear force; (b) variations 
in shear strength-mobilization

These variations in shear strength mobilization are shown in Figure 12.45b. In
general, the torque, T, at failure can be expressed as

(12.42)

or

(12.43)

Note that Eq. (12.43) usually is referred to as Calding’s equation.
Vane shear tests can be conducted in the laboratory and in the field during soil explo-

ration. The laboratory shear vane has dimensions of about 13 mm ( ) in diameter and
25 mm (1 in.) in height. Figure 12.46 shows a photograph of laboratory vane shear test
equipment. Figure 12.47 shows the field vanes recommended by ASTM (2004). Table 12.5
gives the ASTM recommended dimensions of field vanes.

1
2 in.

b � 3
5 for parabolic mobilization of undrained shear strength

b � 2
3 for uniform mobilization of undrained shear strength

 where b � 1
2 for triangular mobilization of undrained shear strength

cu �
T

p c d2h

2
� b

d3

4
d

T � pcu c d
2h

2
� b

d3

4
d
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SHEARING STRENGTH OF SOILS 

‘Shearing Strength’ of a soil is perhaps the most important of its engineering properties. This 

is because all stability analyses in the field of geotechnical engineering, whether they relate 

to foundation, slopes of cuts or earth dams, involve a basic knowledge of this engineering 

property of the soil. ‘Shearing strength’ or merely ‘Shear strength’ may be defined as the 

resistance to shearing stresses and a consequent tendency for shear deformation. 

Shearing strength comes from the following: 

(1) Resistance due to the interlocking of particles. 

(2) Frictional resistance between the individual soil grains, which may be sliding friction, 

rolling friction, or both. 

(3) Adhesion between soil particles or ‘cohesion’. 

Granular soils of sands (1, 2) while cohesive soils or clays (2, 3) highly plastic clays (3) 

•  Friction between Solid Bodies (Internal Friction within Granular Soil Masses) 

  

 

 

 

 

 

 

 

 

 

When two solid bodies are in contact with each other, the frictional resistance available is 

dependent upon the normal force between the two. A shearing force equal to the maximum 

available frictional resistance is applied. The entire frictional resistance available will get 

mobilized now to resist the applied 

Coefficient of friction (μ) = 
F

P
    or    F = P. μ = P. tan φ   or   F/P = tan φ = μ 
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In granular or cohesionless soil masses, the resistance to sliding on any plane through the 

point within the mass is similar to that discussed in the previous sub-section; the friction 

angle in this case is called the ‘angle of internal friction’ Ø 

• PRINCIPAL PLANES AND PRINCIPAL STRESSES—MOHR’S CIRCLE 

At a point in a stressed material, every plane will be subjected, in general, to a normal or 

direct stress and a shearing stress. 

A ‘Principal plane’ is defined as a plane on which the stress is wholly normal, or one which 

does not carry shearing stress. 

Principal plane is divided to the ‘major principal stress’, the ‘intermediate principal stress’ 

and the ‘minor principal stress’, 

Let us consider an element of soil whose sides are chosen as the principal planes, the major 

and the minor, as shown in Fig. below 

 

Fig 2 Stresses on a plane inclined to the principal planes 

Let O be any point in the stressed medium and OA and OB be the major and minor principal 

planes, with the corresponding principal stresses σ1 and σ3, and inclined at an angle θ to the 

major principal plane, considered positive when measured counter-clockwise. Let us 

consider the element to be of unit thickness perpendicular to the plane of the figure, AB being 

l. considering the equilibrium of the element and resolving all forces in the directions parallel 

and perpendicular to AB, 
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Otto Mohr (1882) represented these results graphical in a circle diagram, which is called 

Mohr’s circle. Normal stresses are represented as abscissae and shear stresses as ordinates. 

 

Mohr’s circle for the stress conditions illustrated in Fig.2 

Let a line be drawn parallel to the major principal plane through D, the coordinate of which 

is the major principal stress. The intersection of this line with the Mohr’s circle, Op is called 

the ‘Origin of planes’. If a line parallel to the minor principal plane is drawn through E, the 

co-ordinate of which is the minor principal stress, it will also be observed to pass through 

Op; the angle between these two lines is a right angle from the properties of the circle. The 

angle between these two lines is a right angle from the properties of the circle. any line 

through Op, parallel to any arbitrarily chosen plane, intersects the Mohr’s circle at a point 

the co-ordinates of which represent the normal and shear stresses on that plane Since angle 

COpD = θ, angle CFD = 2θ, from the properties of the circle. From the geometry of the 

figure, the co-ordiantes of the point C, are established as follows: 
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A few important basic facts and relationships may be directly obtained from the Mohr’s 

circle: 

1. The only planes free from shear are the given sides of the element which are the principal 

planes. The stresses on these are the greatest and smallest normal stresses. 

2. The maximum or principal shearing stress is equal to the radius of the Mohr’s circle, and 

it occurs on planes inclined at 45° to the principal planes. 

                                                   τmax = (σ1 – σ3)/2  

3. The normal stresses on planes of maximum shear are equal to each other and are equal to 

half the sum of the principal stresses. 

                                                           σc = (σ1 + σ3)/2 

4. Shearing stresses on planes at right angles to each other are numerically equal and are of 

an opposite sign. These are called conjugate shearing stresses. 

5. The sum of the normal stresses on mutually perpendicular planes is a constant (MG′+ MG 

= 2MF = σ1 + σ3). If we designate the normal stress on a plane perpendicular to the plane 

on which it is σθ as σθ′ : σθ + σθ′ = σ1 + σ3 

In case the normal and shearing stresses on two mutually perpendicular planes are known, 

the principal planes and principal stresses may be determined with the aid of the Mohr’s 

circle diagram. 
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normal stresses σx and σy on mutually perpendicular planes and shear stresses τxy on these 

planes, the normal and shearing stress components, σθ and τθ, respectively, on a plane 

inclined at an angle θ, measured counter-clockwise with respect to the plane on which σx 

acts 

 

 

The following relationships are also easily obtained: 

 

STRENGTH THEORIES FOR SOILS 

• Mohr’s Strength Theory 

We have seen that the shearing stress may be expressed as τ = σ tan β on any plane, where 

β is the angle of obliquity, If the obliquity angle is the maximum or has limiting value φ, 

the shearing stress is also at its limiting value and it is called the shearing strength, s 

s = σ tan φ 

If the angle of internal friction φ is assumed to be a constant, the shearing strength may be 

represented by a pair of straight lines at inclinations of + φ and – φ with the σ-axis and 

passing through the origin of the Mohr’s circle diagram. If the stress conditions at a point 

are represented by Mohr’s circle I, the shear stress on any plane through the point is less 

than the shearing strength, as indicated by the line BCD; 

BC represents the shear stress on a plane on which the normal stress is given by OD. 
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BD, representing the shearing strength for this normal stress, is greater than BC. 

 
 

Mohr’s strength theory—Mohr envelopes for cohesionless soil 

 

 

Mohr’s Circle II, which is tangential to the Mohr’s envelope at F, are such that the shearing 

stress, EF,  

 

• Mohr-Coulomb Theory 

The functional relationship between the normal stress on any plane and the shearing strength 

available on that plane was assumed to be linear by Coulomb; thus the following is usually 

known as Coulomb’s law: 

s = c + σ tan φ 

where c and φ are empirical parameters, known as the ‘apparent cohesion’ and ‘angle of 

shearing resistance’ 

 
 

Mohr-Coulomb Theory—failure envelopes 
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The envelopes are called ‘strength envelopes’ or ‘failure envelopes’. The meaning of an 

envelope has already been given in the previous section; if the normal and shear stress 

components on a plane plot on to the failure envelope, failure is supposed to be incipient 

and if the stresses plot below the envelope, the condition represents stability. And, it is 

impossible that these plot above the envelope, since failure should have occurred previously. 

Coulomb’s law is also written as follows to indicate that the stress condition refers to 

that on the plane of failure: 

s = c + σf tan φ 

 

 Coulomb envelopes for pure sand and for pure clay 

SHEARING STRENGTH—A FUNCTION OF EFFECTIVE STRESS 

The density of a soil increase when subjected to shearing action, drainage being allowed 

simultaneously. Therefore, even if two soils are equally dense on having been consolidated 

to the same effective stress, they will exhibit different shearing strengths if drainage is 

permitted during shear for one, while it is not for the other. 

These ideas lead to a statement that ‘‘the strength of a soil is a unique function of the 

effective stress acting on the failure plane’’. 

s = c′ + σf tan φ′ 

where c′ and φ′ are called the effective cohesion and effective angle of internal friction. 

Collectively, they are called ‘effective stress parameters’, while c and φ are called ‘‘total 

stress parameters’’. 
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TYPES OF SHEAR TESTS BASED ON DRAINAGE CONDITIONS 

A cohesionless or a coarse-grained soil may be tested for shearing strength either in the dry 

condition or in the saturated condition.  

A cohesive or fine-grained soil is usually tested in the saturated condition. Depending upon 

whether drainage is permitted before and during the test, shear tests on such saturated soils 

are classified as follows: 

1- Unconsolidated Undrained Test (UU) 

Drainage is not permitted at any stage of the test, that is, either before the test during the 

application of the normal stress or during the test when the shear stress is applied. Hence no 

time is allowed for dissipation of pore water pressure and consequent consolidation of the 

soil; also, no significant volume changes are expected. Usually, 5 to 10 minutes may be 

adequate for the whole test, because of the shortness of drainage path. However, undrained 

tests are often performed only on soils of low permeability. 

2- Consolidated Undrained Test (CU) 

Drainage is permitted fully in this type of test during the application of the normal stress 

and no drainage is permitted during the application of the shear stress. Thus volume changes 

do not take place during shear and excess pore pressure develops. 5 to 10 minutes may be 

adequate for the test. 

3- Consolidated Drained Test (CD) 

Drainage is permitted fully before and during the test, at every stage. The soil is consolidated 

under the applied normal stress and is tested for shear by applying the shear stress also very 

slowly while drainage is permitted at every stage. Practically no excess pore pressure 

develops at any stage and volume changes take place. It may require 4 to 6 weeks to 

complete a single test of this kind in the case of cohesive soils 

The shear parameters c and φ vary with the type of test or drainage conditions. The suffixes 

u, cu, and d are used for the parameters obtained from the UU, CU and CD-tests respectively. 

For problems of short-term stability of foundations, excavations and earth dams UU-tests 

are appropriate. For problems of long-term stability, either CU-test or CD tests are 

appropriate, depending upon the drainage conditions in the field. 

SHEARING STRENGTH TESTS 

Laboratory Tests 

1. Direct Shear Test 

2. Triaxial Compression Test 
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3. Unconfined Compression Test 

4. Laboratory Vane Shear Test 

5. Torsion Test 

6. Ring Shear Tests 

Field Tests 

1. Vane Shear Test 

2. Penetration Test 

Direct Shear Test 
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Direct shear device 

- Two types of application of shear are possible—one in which the shear stress is controlled 

and the other in which the shear strain is controlled. The principles of these two types of 

devices are illustrated schematically in Fig above. (b) and (c), respectively. 

- The shear strain may be plotted against the shear stress; 

The stress-conditions on the failure plane and the corresponding Mohr’s circle for direct 

shear test are shown in Fig. below (a) and (b) respectively. 

 

Triaxial Compression Test 

The soil specimen is subjected to three compressive stresses in mutually perpendicular 

directions, one of the three stresses being increased until the specimen fails in shear. Usually 

a cylindrical specimen with a height equal to twice its diameter is used. The desired three-

dimensional stress system is achieved by an initial application of all-round fluid pressure or 

confining pressure through water. While this confining pressure is kept constant throughout 

the test, axial or vertical loading is increased gradually and at a uniform rate. 
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Principle and stress conditions of triaxial compression test 

 
Triaxial cell with accessories 

 

Unconfined Compression Test 

This is a special case of a triaxial compression test; the confining pressure being zero. A 

cylindrical soil specimen, usually of the same standard size as that for the triaxial 

compression, is loaded axially by a compressive force until failure takes place. Since the 

specimen is laterally unconfined, the test is known as ‘unconfined compression test’. No 

rubber membrane is necessary to encase the specimen. The axial or vertical compressive 

stress is the major principal stress and the other two principal stresses are zero. 

This test may be conducted on undisturbed or remoulded cohesive soils. 
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The Mohr’s circles for the unconfined compression test are shown in the following Fig. 

From 

Eq., recognizing that σ3 = 0 

σ1 = 2c tan (45° + φ/2) 

 

 
 

Vane Shear Test 

If suitable undisturbed for remoulded samples cannot be got for conducting triaxial or 

unconfined compression tests, the shear strength is determined by a device called the Shear 

Vane 
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The applied torque is measured by a calibrated torsion spring, the angle of twist being 

read on a special gauge. A uniform rotation of about 1° per minute is used. 

 
If only one end of the vane partakes in shearing the soil, then 

 

 
Here, T = torque 

D = diameter of the vane 

H = height of the vane 

The shearing force at the cylindrical surface = π.D.H.S.,  

where S is the shearing strength of the soil.  

The moment of this force about the axis of the vane contributes to the torque and is given 

by πDH.S. D/2 or π.S. H . D2/2 

For the circular faces at top or bottom, considering the shearing strength of a ring of 

thickness dr at a radius r, the elementary torque is (2π r dr) . s . r 

and the total for one face is  

 
If we add these contributions considering both the top and bottom faces and equate to the 

torque T at failure, we get Eqs above. 

 

PORE PRESSURE PARAMETERS 
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Pore water pressures play an important role in determining the strength of soil. The change 

in pore water pressure due to change in applied stress is characterised by dimensionless 

coefficients, called ‘Pore pressure coefficients’ or ‘Pore pressure parameters’ A and B 

In an undrained triaxial compression test, pore water pressures develop in the first stage of 

application of cell pressure or confining pressure, as also in the second stage of application 

of additional axial stress or deviator stress. 

The ratio of the pore water pressure developed to the applied confining pressure is called 

the B-parameter: 

 
Since no drainage is permitted, the decrease in volume of soil skeleton is equal to that in 

the volume of pore water. Using this and the principles of theory of elasticity, it can be 

shown that 

 
the pore pressure coefficient or parameter A is defined from A as follows : 

 
where Δud = port pressure developed due to an increase of deviator stress 

(Δσ1 – Δσ3), and A is the product of A and B. 

The general expression for the pore water pressure developed and changes in applied 

stresses is as follows: 

 
Sensitivity of clays 

This is an important phenomenon which is quantitatively characterised by 

‘Sensitivity’, defined as follows: 
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Stress-strain curves for a sensitive clay in the 
undisturbed and remoulded states 

 
Overconsolidated clays are rarely sensitive, although some quick clays have been found 

to be overconsolidated. 

 

Example 32: The stresses at failure on the failure plane in a cohesionless soil mass were: 

Shear stress = 4 kN/m2; normal stress = 10 kN/m2. Determine the resultant stress on the 

failure plane, the angle of internal friction of the soil and the angle of inclination of the 

failure plane to the major principal plane. 

 

Graphical solution 

The procedure is first to draw the σ-and τ-axes from an origin O and then, to a suitable scale, 

set-off point D with coordinates (10,4), Joining O to D, the strength envelope is got. The 

Mohr Circle should be tangential to OD to D. DC is drawn perpendicular to OD to cut OX 

in C, which is the centre of the circle. With C as the center and CD as radius, the circle is 

completed to cut OX in A and B. 

 

By scaling, the resultant stress = OD = 10.8 kN/m2. With protractor, φ = 22° and θ = 55°53′ 

.We also observe than σ3 = OA = 7.25 kN/m2 and σ1 = OB = 15.9 kN/m2. 
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Example 33: Clean and dry sand samples were tested in a large shear box, 25 cm × 25 cm 

and the following results were obtained: 

Normal load (kN)                               5                 10                      15 

Peak shear load (kN)                         5                  10                       15 

Ultimate shear load (kN)                  2.9                5.8                      8.7 

Determine the angle of shearing resistance of the sand in the dense and loose states. 

The value of φ obtained from the peak stress represents the angle of shearing resistance of 

the sand in its initial compacted state; that from the ultimate stress corresponds to the sand 

when loosened by the shearing action.  

The area of the shear box = 25 × 25 = 625 cm2= 0.0625 m2. 

Normal stress in the first test = 5/0.0625 kN/m2 = 80 kN/m2 

Similarly the other normal stresses and shear stresses are obtained by dividing by the area 

of the box and are as follows in kN/m2 : 

Normal stress, σ                              80                  160                  240 

Peak shear stress, τmax                      80                 160                   240 

Ultimate shear stress, τf                  46.4                92.8                139.2 

Since more than one set of values are available, graphical method is better 

 

Failure envelopes 

Example 34: Calculate the potential shear strength on a horizontal plane at a depth of 3 m 

below the surface in a formation of cohesionless soil when the water table is at a depth of 

3.5m. The degree of saturation may be taken as 0.5 on the average. Void ratio = 0.50; grain 

specific gravity = 2.70; angle of internal friction = 30°. What will be the modified value of 

shear strength if the water table reaches the ground surface? 
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(a) When the water table is at 3.5 m below the surface: 

Normal stress at 3 m depth, σ = 19.67 × 3 = 59 kN/m2 

Shear strength, s = σ tan φ for a sand 

= 59 tan 30° = 34 kN/m2 (nearly). 

(b) When water table reaches the ground surface: 

Effective Normal stress at 3 m depth = σ = γ ′ . h = 11.33 × 3 = 34 kN/m2 

Shear strength, s = σ tan φ=  34 tan 30°= 19.6 kN/m2 (nearly). 

Example 35: The following data were obtained in a direct shear test. Normal pressure = 20 

kN/m2, tangential pressure = 16 kN/m2. Angle of internal friction = 20°, cohesion = 8 kN/m2. 

Represent the data by Mohr’s Circle and compute the principal stresses and the direction of 

the principal planes. 

 
1- The strength envelope FG is located since both c and φ are given.  

2- Draw Point D with co-ordiantes (20, 16); it should fall on the envelope. 

3- DC is drawn perpendicular to FD to meet the σ-axis in C.  

4- With C as centre and CD as radius, the Mohr’s circle is completed.  

5- The principal stresses σ3 (OA) and σ1 (OB) are found to be 9.2 kN/m2 and 42.5 kN/m2. 

6- scale angle BCD and found to be 110°. Hence the major principal plane is inclined at 55° 

(clockwise) and the minor principal plane at 35° (counter clockwise) to the plane of shear 

(horizontal plane, in this case). 
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Example 36: The following results were obtained in a shear box text. Determine the angle 

of shearing resistance and cohesion intercept: 

Normal stress (kN/m2)             100                   200                 300 

Shear stress (kN/m2)                130                   185                 240 

The normal and shear stresses on the failure plane are plotted as shown: 

 

Failure envelope (Ex. 36) 

c = 74 kN/m2        φ = 29° 

Example 37: The stresses acting on the plane of maximum shearing stress through a given 

point in sand are as follows: total normal stress = 250 kN/m2; pore-water pressure = 88.5 

kN/m2; shearing stress = 85 kN/m2. Failure is occurring in the region surrounding the point. 

Determine the major and minor principal effective stresses, the normal effective stress and 

the shearing stress on the plane of failure and the friction angle of the sand. Define clearly 

the terms ‘plane of maximum shearing stress’ and ‘plane of failure’ in relation to the Mohr’s 

rupture diagram. 

 

Total normal stress = 250 kN/m2 
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Pore water pressure = 88.5 kN/m2 

Effective normal stress on the plane of maximum shear = (250 – 88.5) = 161.5 kN/m2 

Max. Shear stress = 85 kN/m2 

Graphical solution: 

1- Draw Point D with co-ordiantes is (161.5, 85). 

2- CD is plotted perpendicular to σ -axis as the maximum shear stress.  

3- With C as center and CD as radius, the Mohr’s circle is drawn.  

4- A tangent drawn to the circle from the origin O and cut Mohr’s circle in F.  

5- The perpendicular line from F cut σ -axis in E.  

The results are: Major effective principal stress = (OB) = 246.5 kN/m2 

Minor effective principal stress (OA) = 76.5 kN/m2 

Angle of internal friction, φ (angle FOB) = 31°45′ 

Normal effective stress on plane of failure (OE) = 116 kN/m2 

Shearing stress on the plane of failure (EF) = 72 kN/m2 

 

 

Analytical solution: 

 

 

∴ Angle of internal friction φ = 31°45′ nearly. 

Normal stress on the failure plane 
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Shear stress on the failure plane 
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TYPES OF SHEAR TESTS BASED ON DRAINAGE CONDITIONS 

A cohesionless or a coarse-grained soil may be tested for shearing strength either in the dry 

condition or in the saturated condition.  

A cohesive or fine-grained soil is usually tested in the saturated condition. Depending upon 

whether drainage is permitted before and during the test, shear tests on such saturated soils 

are classified as follows: 
1- Unconsolidated Undrained Test (UU) 

Drainage is not permitted at any stage of the test, that is, either before the test during the 

application of the normal stress or during the test when the shear stress is applied. Hence no 

time is allowed for dissipation of pore water pressure and consequent consolidation of the 

soil; also, no significant volume changes are expected. Usually, 5 to 10 minutes may be 

adequate for the whole test, because of the shortness of drainage path. However, undrained 

tests are often performed only on soils of low permeability. 
2- Consolidated Undrained Test (CU) 

Drainage is permitted fully in this type of test during the application of the normal stress 
and no drainage is permitted during the application of the shear stress. Thus volume changes 
do not take place during shear and excess pore pressure develops. 5 to 10 minutes may be 
adequate for the test. 
3- Consolidated Drained Test (CD) 
Drainage is permitted fully before and during the test, at every stage. The soil is consolidated 
under the applied normal stress and is tested for shear by applying the shear stress also very 
slowly while drainage is permitted at every stage. Practically no excess pore pressure 
develops at any stage and volume changes take place. It may require 4 to 6 weeks to 
complete a single test of this kind in the case of cohesive soils 

The shear parameters c and φ vary with the type of test or drainage conditions. The suffixes 
u, cu, and d are used for the parameters obtained from the UU, CU and CD-tests respectively. 
For problems of short-term stability of foundations, excavations and earth dams UU-tests 
are appropriate. For problems of long-term stability, either CU-test or CD tests are 
appropriate, depending upon the drainage conditions in the field. 

SHEARING STRENGTH TESTS 

Laboratory Tests 

1. Direct Shear Test 

2. Triaxial Compression Test 
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3. Unconfined Compression Test 

4. Laboratory Vane Shear Test 

5. Torsion Test 

6. Ring Shear Tests 

Field Tests 

1. Vane Shear Test 

2. Penetration Test 

Direct Shear Test 
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Direct shear device 

- Two types of application of shear are possible—one in which the shear stress is controlled 
and the other in which the shear strain is controlled. The principles of these two types of 
devices are illustrated schematically in Fig above. (b) and (c), respectively. 
- The shear strain may be plotted against the shear stress; 

The stress-conditions on the failure plane and the corresponding Mohr’s circle for direct 
shear test are shown in Fig. below (a) and (b) respectively. 

 

Triaxial Compression Test 

The soil specimen is subjected to three compressive stresses in mutually perpendicular 
directions, one of the three stresses being increased until the specimen fails in shear. Usually 
a cylindrical specimen with a height equal to twice its diameter is used. The desired three-
dimensional stress system is achieved by an initial application of all-round fluid pressure or 
confining pressure through water. While this confining pressure is kept constant throughout 
the test, axial or vertical loading is increased gradually and at a uniform rate. 
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Principle and stress conditions of triaxial compression test 

 
Triaxial cell with accessories 

 
Unconfined Compression Test 
This is a special case of a triaxial compression test; the confining pressure being zero. A 
cylindrical soil specimen, usually of the same standard size as that for the triaxial 
compression, is loaded axially by a compressive force until failure takes place. Since the 
specimen is laterally unconfined, the test is known as ‘unconfined compression test’. No 
rubber membrane is necessary to encase the specimen. The axial or vertical compressive 
stress is the major principal stress and the other two principal stresses are zero. 
This test may be conducted on undisturbed or remoulded cohesive soils. 
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The Mohr’s circles for the unconfined compression test are shown in the following Fig. 
From 
Eq., recognizing that σ3 = 0 

σ1 = 2c tan (45° + φ/2) 
 

 
 
Vane Shear Test 
If suitable undisturbed for remoulded samples cannot be got for conducting triaxial or 
unconfined compression tests, the shear strength is determined by a device called the Shear 
Vane 
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The applied torque is measured by a calibrated torsion spring, the angle of twist being 
read on a special gauge. A uniform rotation of about 1° per minute is used. 

 
If only one end of the vane partakes in shearing the soil, then 
 

 
Here, T = torque 
D = diameter of the vane 
H = height of the vane 
The shearing force at the cylindrical surface = π.D.H.S.,  
where S is the shearing strength of the soil.  
The moment of this force about the axis of the vane contributes to the torque and is given 
by πDH.S. D/2 or π.S. H . D2/2 
For the circular faces at top or bottom, considering the shearing strength of a ring of 
thickness dr at a radius r, the elementary torque is (2π r dr) . s . r 
and the total for one face is  

 
If we add these contributions considering both the top and bottom faces and equate to the 
torque T at failure, we get Eqs above. 
 
PORE PRESSURE PARAMETERS 
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CHAPTER 7
STRESSES, STRAINS, AND ELASTIC
DEFORMATIONS OF SOILS

7.0 INTRODUCTION

In this chapter, we will review some fundamental principles of mechanics and strength of materials and 

apply these principles to soils treated as elastic porous materials. This chapter contains a catalog of a 

large number of equations for soil stresses and strains. You may become weary of these equations, but 

they are necessary for analyses of the mechanical behavior of soils. You do not have to memorize these 

equations except the fundamental ones.

When you complete this chapter, you should be able to:

• Calculate stresses and strains in soils (assuming elastic behavior) from external loads.

• Calculate elastic settlement.

• Calculate stress states.

• Calculate effective stresses.

You will use the following principles learned from statics and strength of materials:

• Stresses and strains

• Mohr’s circle

• Elasticity—Hooke’s law

Importance

You would have studied in mechanics the stresses imposed on homogeneous, elastic, rigid bodies by 

external forces. Soils are not homogeneous, elastic, rigid bodies, so the determination of stresses and 

strains in soils is a particularly diffi cult task. You may ask: “If soils are not elastic materials, then why do 

I have to study elastic methods of analysis?” Here are some reasons why a knowledge of elastic analysis 

is advantageous.

An elastic analysis of an isotropic material involves only two constants—Young’s modulus and 

Poisson’s ratio—and thus if we assume that soils are isotropic elastic materials, then we have a powerful, 

but simple, analytical tool to predict a soil’s response under loading. We will have to determine only the 

two elastic constants from our laboratory or fi eld tests.

A geotechnical engineer must ensure that a geotechnical structure must not collapse under 

any anticipated loading condition and that settlement under working load (a fraction of the col-

lapse load) must be within tolerable limits. We would prefer the settlement under working loads 

to be elastic so that no permanent settlement would occur. To calculate the elastic settlement, we 

have to use an elastic analysis. For example, in designing foundations on coarse-grained soils, we 

normally assume that the settlement is elastic, and we then use elastic analysis to calculate the 

settlement.
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An important task of a geotechnical engineer is to determine the stresses and strains that are 

imposed on a soil mass by external loads. It is customary to assume that the strains in the soils are small, 

and this assumption allows us to apply our knowledge of mechanics of elastic bodies to soils. Small 

strains mean infi nitesimal strains. For a realistic description of soils, elastic analysis is not satisfactory. 

We need soil models that can duplicate the complexity of soil behavior. However, even for complex soil 

models, an elastic analysis is a fi rst step.

Various types of surface loads or stresses are applied to soils. For example, an oil tank will impose a 

uniform, circular, vertical stress on the surface of the soil while an unsymmetrical building may impose a 

nonuniform vertical stress. We would like to know how the surface stresses are distributed within the soil 

mass and the resulting deformations. The induced stresses can lead to soil failure, or the deformations 

may be intolerable. Here is a sample practical situation. Two storage tanks are to be founded on a deep 

layer of stiff, saturated clay. Your client and the mechanical engineer who is designing the pipe works 

need an estimate of the settlement of the tanks when they are completely fi lled. Because of land restrictions, 

your client desires that the tanks be as close as possible to each other. If two separate foundations are placed 

too close to each other, the stresses in the soil induced by each foundation will overlap and cause intolerable 

tilting of the structures and their foundations. An example of tilting of structures caused by stress overlap is 

shown in Figure 7.1.

The settlement of soils is caused by the stress transmitted to the soil particles. This stress is called 

effective stress. It is important that you know how to calculate effective stress in soils.

FIGURE 7.1  The “kissing” silos. (Bozozuk, 1976, permission 
from National Research Council of Canada.) These silos tilt 
toward each other at the top because stresses in the soil overlap 
at and near the internal edges of their foundations. The foundations 
are too close to each other.
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7.1 DEFINITIONS OF KEY TERMS

Stress, or intensity of loading, is the load per unit area. The fundamental defi nition of stress is the ratio 

of the force DP acting on a plane DS to the area of the plane DS when DS tends to zero; D denotes a 

small quantity.

Effective stress (s9) is the stress carried by the soil particles.

Total stress (s) is the stress carried by the soil particles and the liquids and gases in the voids.

Strain, or intensity of deformation, is the ratio of the change in a dimension to the original dimension 

or the ratio of change in length to the original length.

Stress (strain) state at a point is a set of stress (strain) vectors corresponding to all planes passing through 

that point. Mohr’s circle is used to graphically represent stress (strain) state for two-dimensional bodies.

Porewater pressure, u, is the pressure of the water held in the soil pores.

Isotropic means the material properties are the same in all directions, and also the loadings are the same 

in all directions.

Anisotropic means the material properties are different in different directions, and also the loadings are 

different in different directions.

Elastic materials are materials that return to their original confi guration on unloading and obey Hooke’s 

law.

Plastic materials do not return to their original confi guration on unloading.

7.2 QUESTIONS TO GUIDE YOUR READING

  1. What are normal and shear stresses?

  2. What is stress state and how is it determined?

  3. Is soil an elastic material?

  4.  What are the limitations in analyzing soils based on the assumption that they (soils) are elastic 

materials?

  5. What are shear strains, vertical strains, volumetric strains, and deviatoric strains?

  6. How do I use elastic analysis to estimate the elastic settlement of soils, and what are the limitations?

  7. What are the differences between plane strain and axisymmetric conditions?

  8.  How do I determine the stresses and strains/displacements imposed on a soil mass by external loads?

  9. What is effective stress?

10. Is deformation a function of effective or total stress?

7.3 STRESSES AND STRAINS

7.3.1 Normal Stresses and Strains

Consider a cube of dimensions x 5 y 5 z that is subjected to forces Px, Py, Pz, normal to three adjacent 

sides, as shown in Figure 7.2. The normal stresses are

 sz 5
Pz

xy
,  sx 5

Px

yz
,  sy 5

Py

xz
 (7.1)
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Let us assume that under these forces the cube compressed by Dx, Dy, and Dz in the X, Y, and Z 

directions. The strains in these directions, assuming they are small (infi nitesimal), are

 εz 5
Dz
z

,  εx 5
Dx
x

,  εy 5
Dy
y

 (7.2)

7.3.2 Volumetric Strain

The volumetric strain is

 εp 5 εx 1 εy 1 εz (7.3)

7.3.3 Shear Stresses and Shear Strains

Let us consider, for simplicity, the XZ plane and apply a force F that causes the square to distort into a 

parallelogram, as shown in Figure 7.3. The force F is a shearing force, and the shear stress is

 t 5
F
xy

 (7.4)

Simple shear strain is a measure of the angular distortion of a body by shearing forces. If the horizontal 

displacement is Dx, the shear strain or simple shear strain, gzx, is

gzx 5 tan21 
Dx
z

Py

x 

z 

y 

Pz 

Z 

X 

Y 

y

x 
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Px 

y 

z

x

σ

σ

σ

Δ

Δ

Δ

FIGURE 7.2  Stresses and displacements due to applied loads.
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FIGURE 7.3 Shear stresses and shear strains.
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For small strains, tan gzx 5 gzx, and therefore

 gzx 5
Dx
z

 (7.5)

If the shear stress on a plane is zero, the normal stress on that plane is called a principal stress. We will 

discuss principal stresses later. In geotechnical engineering, compressive stresses in soils are assumed to 

be positive. Soils cannot sustain any appreciable tensile stresses, and we normally assume that the tensile 

strength of soils is negligible. Strains can be compressive or tensile.

THE ESSENTIAL POINTS  ARE:
1. A normal stress is the load per unit area on a plane normal to the direction of the load.

2. A shear stress is the load per unit area on a plane parallel to the direction of the shear force.

3. Normal stresses compress or elongate a material; shear stresses distort a material.

4. A normal strain is the change in length divided by the original length in the direction of the original 
length.

5. Principal stresses are normal stresses on planes of zero shear stress.

6. Soils can only sustain compressive stresses.

What’s next . . . What happens when we apply stresses to a deformable material? From the last 
section, you may answer that the material deforms, and you are absolutely correct. Different materials 
respond differently to applied loads. Next, we will examine some typical responses of deformable materials 
to applied loads to serve as a base for characterizing the loading responses of soils.

7.4 IDEALIZED STRESS–STRAIN
RESPONSE AND YIELDING

7.4.1 Material Responses to Normal Loading and Unloading

If we apply an incremental vertical load, DP, to a deformable cylinder (Figure 7.4) of cross-sectional area A, 

the cylinder will compress by, say, Dz and the radius will increase by Dr. The loading condition we apply 

here is called uniaxial loading. The change in vertical stress is

 Dsz 5
DP
A

 (7.6)

Ho 

ro 

z 

r 

P

Original
configuration

Deformed
configuration

Δ

Δ

Δ

FIGURE 7.4
Forces and displacements 
on a cylinder.
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The vertical and radial strains are, respectively,

 Dεz5
Dz
Ho

 (7.7)

 Dεr5
Dr
ro

 (7.8)

where Ho is the original length and ro is the original radius. In Equations (7.7) and (7.8), a negative sign 

should be inserted for expansion and a positive sign for compression. Thus, for radial expansion, Equa-

tion (7.8) should have a negative sign. It is not included here for generality. The ratio of the radial (or 

lateral) strain to the vertical strain is called Poisson’s ratio, n, defi ned as

 n 5
2Dεr

Dεz
 (7.9)

Typical values of Poisson’s ratio for soil are listed in Table 7.1.

We can plot a graph of sz 5 SDsz versus εz 5 SDεz. If, for equal increments of DP, we get the same 

value of Dz, then we will get a straight line in the graph of sz versus εz, as shown by OA in Figure 7.5. If at 

some stress point, say, at A (Figure 7.5), we unload the cylinder and it returns to its original confi guration, 

the material comprising the cylinder is called a linearly elastic material. Suppose for equal increments 

of DP we get different values of Dz, but on unloading the cylinder it returns to its original confi guration. 

Then a plot of the stress–strain relationship will be a curve, as illustrated by OB in Figure 7.5. In this 

case, the material comprising the cylinder is called a nonlinearly elastic material. If we apply a load P1 

that causes a displacement Dz1 on an elastic material and a second load P2 that causes a displacement Dz2, 

TABLE 7.1  Typical Values of Poisson’s Ratio

Soil type Description na

Clay Soft 0.35–0.40
 Medium 0.30–0.35
 Stiff 0.20–0.30

Sand Loose 0.15–0.25
 Medium 0.25–0.30
 Dense 0.25–0.35

aThese values are effective values, n9.

S
tr

es
s 

( 
 z

)

Strain (  z)O 

Linearly elastic

A 

B 
Slope is E,
the initial
tangent
elastic
modulus

Slope is Es, the secant
elastic modulus

Nonlinearly elastic

Slope is Et, the tangent
elastic modulus

σ

ε

FIGURE 7.5
Linear and nonlinear stress–strain 
curves of an elastic material.
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then the total displacement is Dz 5 Dz1 1 Dz2. Elastic materials obey the principle of superposition. 

The order in which the load is applied is not important; we could apply P2 fi rst and then P1, but the fi nal 

displacement would be the same.

Some materials—soil is one of them—do not return to their original confi gurations after unloading. 

They exhibit a stress–strain relationship similar to that depicted in Figure 7.6, where OA is the loading 

response, AB the unloading response, and BC the reloading response. The strains that occur during 

loading, OA, consist of two parts—an elastic or recoverable part, BD, and a plastic or unrecoverable 

part, OB. Such material behavior is called elastoplastic. Part of the loading response is elastic, the other 

plastic.

As engineers, we are particularly interested in the plastic strains since these are the result of 

permanent deformations of the material. But to calculate the permanent deformation, we must know 

the elastic deformation. Here, elastic analyses become useful. The stress at which permanent deformation 

initiates is called the yield stress.

The elastic modulus or initial tangent elastic modulus (E) is the slope of the stress–strain line for 

linear isotropic material (Figure 7.5). For a nonlinear elastic material, either the tangent modulus (Et) 

or the secant modulus (Es) or both is determined from the stress–strain relationship (Figure 7.5). 

The tangent elastic modulus is the slope of the tangent to the stress–strain point under consideration. 

The secant elastic modulus is the slope of the line joining the origin (0, 0) to some desired stress–strain 

point. For example, some engineers prefer to determine the secant modulus by using a point on the 

stress–strain curve corresponding to the maximum stress, while others prefer to use a point on the 

stress–strain curve corresponding to a certain level of strain, for example, 1% or one-half the maximum 

stress (the corresponding secant elastic modulus is normally denoted by E50). The tangent elastic 

modulus and the secant elastic modulus are not constants. These moduli tend to decrease as shear 

strains increase. It is customary to determine the initial tangent elastic modulus for an elastoplastic 

material by unloading it and calculating the initial slope of the unloading line as the initial tangent 

elastic modulus (Figure 7.6).

Strictly speaking, these moduli determined as indicated are not true elastic moduli. The true elastic 

moduli are determined by small, incremental loading and unloading of the soil. If the stress–strain path 

followed during the loading is the same as the path followed during unloading, then the slope gives the 

true elastic modulus.

7.4.2 Material Response to Shear Forces

Shear forces distort materials. A typical response of an elastoplastic material to simple shear is shown 

in Figure 7.7. The initial shear modulus (Gi) is the slope of the initial straight portion of the tzx versus 

gzx curve. The secant shear modulus (G) is the slope of a line from the desired shear stress–shear strain 

point to the origin of the tzx versus gzx plot (Figure 7.7).
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Elastic response
during unloading

FIGURE 7.6
Idealized stress–strain curves of 
an elastoplastic material.
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7.4.3   Yield Surface

Let us consider a more complex situation than the uniaxial loading of a cylinder (Figure 7.8a). In this 

case, we are going to apply increments of vertical and radial stresses. Since we are not applying any shear 

stresses, the axial stresses and radial stresses are principal stresses: sz 5 s1 5 SDsz and sr 5 s3 5 SDsr, 

respectively. Let us, for example, set s3 to zero and increase s1. The material will yield at some value of 

s1, which we will call (s1)y, and plots as point A in Figure 7.8b. If, alternatively, we set s1 5 0 and increase 

s3, the material will yield at (s3)y and is represented by point B in Figure 7.8b. We can then subject the 

cylinder to various combinations of s1 and s3 and plot the resulting yield points. Linking the yield points 

results in a curve, AB, which is called the yield curve or yield surface, as shown in Figure 7.8b. A material 

subjected to a combination of stresses that lies below this curve will respond elastically (recoverable 

deformation). If loading is continued beyond the yield stress, the material will respond elastoplastically 

(irrecoverable or permanent deformations occur). If the material is isotropic, the yield surface will be 

symmetrical about the s1 and s3 axes.

Secant shear modulus, G

zx 

zx 

Initial tangent shear modulus, GiShear stress, τ

Shear strain, γ

Tangent shear modulus, Gt

FIGURE 7.7
Shear stress–shear strain response 
of elastoplastic material.
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σ
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FIGURE 7.8
Elastic, yield, and elastoplastic 
stress states.

THE ESSENTIAL POINTS  ARE:
1. An elastic material recovers its original confi guration on unloading; an elastoplastic material 

undergoes both elastic (recoverable) and plastic (permanent) deformation during loading.

2. Soils are elastoplastic materials.

3. At small strains soils behave like an elastic material, and thereafter like an elastoplastic material.

4. The locus of the stresses at which a soil yields is called a yield surface. Stresses below the yield 
stress cause the soil to respond elastically; stresses beyond the yield stress cause the soil to 
respond elastoplastically.

What’s next . . . In the next two sections, we will write the general expression for Hooke’s law, which 
is the fundamental law for linear elastic materials, and then consider two loading cases appropriate to 
soils.
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7.5 HOOKE’S LAW

Access www.wiley.com/college/budhu, and click Chapter 7 and then elastic.xls for a spreadsheet to 

calculate stresses and strains using Hooke’s law.

7.5.1 General State of Stress

Stresses and strains for a linear, isotropic, elastic soil are related through Hooke’s law. For a general state 

of stress (Figure 7.9), Hooke’s law is

 g εx

εy

εz

gxy

gyz

gzx

w 5 1

E
 G 1 2n 2n 0 0 0

2n 1 2n 0 0 0

2n 2n 1 0 0 0

0 0 0 2 11 1 n 2 0 0

0 0 0 0 2 11 1 n 2 0

0 0 0 0 0 2 11 1 n 2
W gsx

sy

sz

txy

tyz

tzx

w  (7.10)

where E is the elastic (or Young’s) modulus and n is Poisson’s ratio. Equation (7.10) is called the 

elastic equation or elastic stress–strain constitutive equation. From Equation (7.10), we have, for 

example,

 gzx 5
2 11 1 n 2

E
tzx 5

tzx

G
 (7.11)

where

 G 5
E

2 11 1 n 2  (7.12)

is the shear modulus. We will call E, G, and n the elastic parameters. Only two of these parameters—

 either E or G and n—are required to solve problems dealing with isotropic, elastic materials. We can 

calculate G from Equation (7.12), if E and v are known. Poisson’s ratio for soils is not easy to determine, 

and a direct way to obtain G is to subject the material to shearing forces, as described in Section 7.4.2. For 

nonlinear elastic materials, the tangent modulus or the secant modulus is used in Equation (7.10) and 

the calculations are done incrementally for small increments of stress.
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FIGURE 7.9
General state of stress.
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The elastic and shear moduli for soils depend on the stress history, the direction of loading, and the 

magnitude of the applied strains. In Chapter 10 we will study a few tests that are used to determine E 

and G, and in Chapter 11 we will explore the details of the use of E and G in the mechanical analyses of 

soils. Typical values of E and G are shown in Table 7.2.

7.5.2 Principal Stresses

If the stresses applied to a soil are principal stresses, then Hooke’s law reduces to

 • ε1

ε2

ε3

¶ 5 1

E
£ 1 2n 2n

2n 1 2n

2n 2n 1

§ •s1

s2

s3

¶  (7.13)

The matrix on the right-hand side of Equation (7.13) is called the compliance matrix. The inverse of 

Equation (7.13) is

 •s1

s2

s3

¶ 5 E11 1 n 2 11 2 2n 2  £
1 2 n n n

n 1 2 n n

n n 1 2 n

§ • ε1

ε2

ε3

¶  (7.14)

The matrix on the right-hand side of Equation (7.14) is called the stiffness matrix. If you know the 

stresses and the material parameters E and v, you can use Equation (7.13) to calculate the strains; or if 

you know the strains, E, and v, you can use Equation (7.14) to calculate the stresses.

7.5.3 Displacements from Strains and Forces from Stresses

The displacements and forces are obtained by integration. For example, the vertical displacement, Dz, is

 Dz 5 3εzdz (7.15)

and the axial force is

 Pz 5 3DszdA (7.16)

where dz is the height or thickness of the element and dA is the elemental area.

TABLE 7.2  Typical Values of E and G

Soil type Description E a (MPa) Ga (MPa)

Clay Soft   1–15 0.5–5
 Medium 15–30    5–15
 Stiff 30–100  15–40

Sand Loose 10–20    5–10
 Medium 20–40  10–15
 Dense 40–80  15–35

aThese are average secant elastic moduli for drained condition
(see Chapter 10).
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THE ESSENTIAL POINTS  ARE:
1. Hooke’s law applies to a linearly elastic material.

2. As a fi rst approximation, you can use Hooke’s law to calculate stresses, strains, and elastic 
settlement of soils.

3. For nonlinear materials, Hooke’s law is used with an approximate elastic modulus (tangent 
modulus or secant modulus) and the calculations are done for incremental increases in stresses or 
strains.

What’s next . . . The stresses and strains in three dimensions become complicated when applied to 
real problems. For practical purposes, many geotechnical problems can be solved using two-dimensional 
stress and strain parameters. In the next section, we will discuss two conditions that simplify the stress 
and strain states of soils.

7.6 PLANE STRAIN AND AXIAL SYMMETRIC CONDITIONS

7.6.1 Plane Strain Condition

There are two conditions of stresses and strains that are common in geotechnical engineering. One is the 

plane strain condition in which the strain in one direction is zero. As an example of a plane strain condi-

tion, let us consider an element of soil, A, behind a retaining wall (Figure 7.10). Because the displacement 

that is likely to occur in the Y direction (Dy) is small compared with the length in this direction, the strain 

tends to zero; that is, εy 5 Dy/y > 0. We can then assume that soil element A is under a plane strain 

condition. Since we are considering principal stresses, we will map the X, Y, and Z directions as 3, 2, and 

1 directions. In the case of the retaining wall, the Y direction (2 direction) is the zero strain direction, and 

therefore ε2 5 0 in Equation (7.13).

Hooke’s law for a plane strain condition is

 ε15
1 1 n

E
 3 112n 2s12 ns3 4 (7.17)

 ε3 5
1 1 n

E
3 11 2 n 2s3 2 ns1 4 (7.18)

Z (1)

Y (2)

X (3)

x 

z 

y,    y = 0

Retaining wall

A 

σ

σ

σ ε

FIGURE 7.10 Plane strain condition in a soil element 
behind a retaining wall.
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142 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

and

 s2 5 n 1s1 1 s3 2  (7.19)

In matrix form, Equations (7.17) and (7.18) become

 e ε1

ε3

f 5 1 1 n

E
 c1 2 n 2n

2n 1 2 n
d es1

s3

f  (7.20)

The inverse of Equation (7.20) gives

 es1

s3

f 5 E11 1 n 2 11 2 2n 2  c1 2 n n

n 1 2 n
d e ε1

ε3

f  (7.21)

7.6.2 Axisymmetric Condition

The other condition that occurs in practical problems is axial symmetry, or the axisymmetric condition, 

where two stresses are equal. Let us consider a water tank or an oil tank founded on a soil mass, as 

illustrated in Figure 7.11.

The radial stresses (sr) and circumferential stresses (su) on a cylindrical element of soil directly under 

the center of the tank are equal because of axial symmetry. The oil tank will apply a uniform vertical 

(axial) stress at the soil surface and the soil element will be subjected to an increase in axial stress, Dsz 5 

Ds1, and an increase in radial stress, Dsr 5 Dsu 5 Ds3. Will a soil element under the edge of the tank 

be under an axisymmetric condition? The answer is no, since the stresses at the edge of the tank are all 

different; there is no symmetry.

Hooke’s law for the axisymmetric condition is

 ε1 5
1

E
 3s1 2 2ns3 4 (7.22)

 ε3 5
1

E
 3 11 2 n 2s3 2 ns1 4 (7.23)

or, in matrix form,

 e ε1

ε3

f 5 1

E
 c 1 22n

2n 1 2 n
d es1

s3

f  (7.24)

Z 

r 

z 

Tank

z 

r =

Δσ

Δσ Δσθ
FIGURE 7.11
Axisymmetric condition on a soil 
element under the center of a tank.
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The inverse of Equation (7.24) gives

 es1

s3

f 5 E11 1 n 2 11 2 2n 2  c1 2 n 2n

n 1
d e ε 1

ε 3

f  (7.25)

Plane strain and axisymmetric stress conditions are ideal conditions. In reality, the stress conditions 

imposed on soils are much more complicated.

THE ESSENTIAL POINTS  ARE:
1. A plane strain condition is one in which the strain in one or more directions is zero or small 

enough to be neglected.

2. An axisymmetric condition is one in which two stresses are equal.

EXAMPLE 7.1 Application of Hooke’s Law for Plane Strain Condition
A retaining wall moves outward, causing a lateral strain of 0.1% and a vertical strain of 0.05% on a soil element 

located 3 m below ground level. Assuming the soil is a linear, isotropic, elastic material with E 5 5000 kPa and n 5 

0.3, calculate the increase in stresses imposed. If the retaining wall is 6 m high and the stresses you calculate are the 

average stresses, determine the lateral force increase per unit length of wall.

Strategy You will have to make a decision whether to use the plane strain or axisymmetric condition and then 

use the appropriate equation. You are asked to fi nd the increase in stresses, so it is best to write the elastic equations 

in terms of increment. The retaining wall moves outward, so the lateral strain is tensile (2) while the vertical strain 

is compressive (1). The increase in lateral force is found by integration of the average lateral stress increase.

Solution 7.1

Step 1: Determine the appropriate stress condition and write the appropriate equation.

 The soil element is likely to be under the plane strain condition (ε2 5 0); use Equation (7.21).

eDs1

Ds3

f 5 500011 1 0.3 2 11 2 2 3 0.3 2  c1 2 0.3 0.3

0.3 1 2 0.3
d e 0.0005

20.001
f

Step 2: Solve the equation.

Ds1 5 9615.4 5 10.7 3 0.0005 2 1 30.3 3 120.001 2 4 6 5 0.5 kPa

Ds3 5 9615.4 5 10.3 3 0.0005 2 1 30.7 3 120.001 2 4 6 525.3 kPa

 The negative sign means reduction.

Step 3: Calculate the lateral force per unit length.

Ds3 5 Dsx

DPx 5 3
6

0

Dsx dA 523
6

0

5.3 1dx 3 1 2 52 35.3x 460 5231.8 kN/m

EXAMPLE 7.2 Application of Hooke’s Law for Axisymmetric Condition
An oil tank is founded on a layer of medium sand 5 m thick underlain by a deep deposit of dense sand. The 

geotechnical engineer assumed, based on experience, that the settlement of the tank would occur from settlement 

in the medium sand. The vertical and lateral stresses at the middle of the medium sand directly under the center 
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144 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

of the tank are 50 kPa and 20 kPa, respectively. The values of E and v are 20 MPa and 0.3, respectively. Assuming 

a linear, isotropic, elastic material behavior, calculate the strains imposed in the medium sand and the vertical 

settlement.

Strategy You have to decide on the stress conditions on the soil element directly under the center of the tank. 

Once you make your decision, use the appropriate equations to fi nd the strains and then integrate the vertical 

strains to calculate the settlement. Draw a diagram illustrating the problem.

Solution 7.2

Step 1: Draw a diagram of the problem—see Figure E7.2.

Step 2: Decide on a stress condition.

 The element is directly under the center of the tank, so the axisymmetric condition prevails.

Step 3: Choose the appropriate equations and solve.

 Use Equation (7.24).

eDε1

Dε3

f 5 1

20 3 103
 c 1 20.6

20.3 0.7
d e 50

20
f

 Using algebra, we get

Dε 1 5
1

20 3 103
 31 3 50 2 0.6 3 20 4 5 1.9 3 1023

Dε 3 5
1

20 3 103
 320.3 3 50 1 0.7 3 20 4 5 25 3 1025

Step 4: Calculate vertical displacement.

Dε1 5 Dεz

  Dz 5 3
5

0

Dεzdz 5 31.9 3 102
3z 450 5 9.5 3 102

3
m 5 9.5 mm

What’s next . . . We have used the elastic equations to calculate stresses, strains, and displacements in 
soils assuming that soils are linear, isotropic, elastic materials. Soils, in general, are not linear, isotropic, 
elastic materials. We will briefl y discuss anisotropic, elastic materials in the next section.

Tank

Medium sand

20 kPa

Dense sand

50 kPa
2.5 m

5 m

FIGURE E7.2
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7.7 ANISOTROPIC, ELASTIC STATES

Anisotropic materials have different elastic parameters in different directions. Anisotropy in soils results 

from essentially two causes.

1. The manner in which the soil is deposited. This is called structural anisotropy and it is the result of 

the kind of soil fabric that is formed during deposition. You should recall (Chapter 2) that the soil 

fabric produced is related to the history of the environment in which the soil is formed. A special 

form of structural anisotropy occurs when the horizontal plane is a plane of isotropy. We call this 

form of structural anisotropy transverse anisotropy.

2. The difference in stresses in the different directions. This is known as stress-induced anisotropy.

Transverse anisotropy, also called cross anisotropy, is the most prevalent type of anisotropy in 

soils. If we were to load the soil in the vertical direction (Z direction) and repeat the same loading 

in the horizontal direction, say, the X direction, the soil would respond differently; its stress–strain 

characteristics and strength would be different in these directions. However, if we were to load the 

soil in the Y direction, the soil’s response would be similar to the response obtained in the X direction. 

The implication is that a soil mass will, in general, respond differently depending on the direction of the 

load. For transverse anisotropy, the elastic parameters are the same in the lateral directions (X and 

Y directions) but are different from the vertical direction.

To fully describe anisotropic soil behavior we need 21 elastic constants (Love, 1927), but for trans-

verse anisotropy we need only fi ve elastic constants; these are Ez, Ex, nxx, nzx, and nzz. The fi rst letter in the 

double subscripts denotes the direction of loading and the second letter denotes the direction of mea-

surement. For example, nzx means Poisson’s ratio determined from the ratio of the strain in the lateral 

direction (X direction) to the strain in the vertical direction (Z direction) with the load applied in the 

vertical direction (Z direction).

In the laboratory, the direction of loading of soil samples taken from the fi eld is invariably vertical. 

Consequently, we cannot determine the fi ve desired elastic parameters from conventional laboratory 

tests. Graham and Houlsby (1983) suggested a method to overcome the lack of knowledge of the fi ve 

desired elastic parameters in solving problems on transverse anisotropy. However, their method is 

beyond the scope of this book.

For axisymmetric conditions, the transverse anisotropic, elastic equations are

 eDεz

Dεr
f 5 ≥ 1

Ez

22nrz

Er

2nzr

Ez

11 2 nrr 2
Er

¥ eDsz

Dsr
f  (7.26)

where the subscript z denotes vertical and r denotes radial. By superposition, nrz/nzr 5 Er/Ez.

THE ESSENTIAL  POINTS  ARE:
1. Two forms of anisotropy are present in soils. One is structural anisotropy, which is related to the 

history of loading and environmental conditions during deposition, and the other is stress-induced 
anisotropy, which results from differences in stresses in different directions.

2. The prevalent form of structural anisotropy in soils is transverse anisotropy; the soil properties and 
the soil response in the lateral directions are the same but are different from those in the vertical 
direction.

3. You need to fi nd the elastic parameters in different directions of a soil mass to determine elastic 
stresses, strains, and displacements.
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146 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

EXAMPLE 7.3 Application of Hooke’s Law for Transverse Anisotropic Soils
Redo Example 7.2, but now the soil under the oil tank is an anisotropic, elastic material with Ez 5 20 MPa, Er 5 25 MPa, 

nrz 5 0.15, and nrr 5 0.3.

Strategy  The solution of this problem is a straightforward application of Equation (7.26).

Solution 7.3

Step 1: Determine nzr (by superposition).

 
nrz

nzr
5

Er

Ez

 nzr 5
20

25
3 0.15 5 0.12

Step 2: Find the strains.

 Use Equation (7.26).

                              eDεz

Dεr
f 5 1023 ≥ 1

20

22 3 0.15

25

20.12

20

11 2 0.3 2
25

¥ e 50

20
f

 The solution is εz 5 2.26 3 1023 5 0.23% and εr 5 0.26 3 1023 5 0.03%.

Step 3: Determine vertical displacement.

Dz 5 3
5

0

εzdz 5 32.26 3 102
3z 450 5 11.3 3 102

3 
m 5 11.3 mm

 The vertical displacement in the anisotropic case is about 19% more than in the isotropic case (Example 7.2). 

Also, the radial strain is tensile for the isotropic case but compressive in the anisotropic case for this 

problem.

What’s next . . . We now know how to calculate stresses and strains in soils if we assume soils are elastic, 
homogeneous materials. One of the important tasks for engineering works is to determine strength or 
failure of materials. We can draw an analogy of the strength of materials with the strength of a chain. The 
chain is only as strong as its weakest link. For soils, failure may be initiated at a point within a soil mass 
and then propagate through it; this is known as progressive failure. The stress state at a point in a soil 
mass due to applied boundary forces may be equal to the strength of the soil, thereby initiating failure. 
Therefore, as engineers, we need to know the stress state at a point due to applied loads. We can use 
Equation (7.10) to fi nd stress states, but geoengineers have been using a two-dimensional stress system 
based on Mohr’s circle. We will discuss stress and strain states next using your knowledge of Mohr’s circle 
in strength of materials.

7.8 STRESS AND STRAIN STATES

Access www.wiley.com/college/budhu, and click Chapter 7 and then Mohrcircle.zip to download an 

application to plot, interpret, and explore a variety of stress states interactively.
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7.8.1 Mohr’s Circle for Stress States

Suppose a cuboidal sample of soil is subjected to the stresses shown in Figure 7.9. We would like to 

know what the stresses are at a point, say, A, within the sample due to the applied stresses. One 

approach to fi nd the stresses at A, called the stress state at A, is to use Mohr’s circle. The stress state at 

a point is the set of stress vectors corresponding to all planes passing through that point. For simplicity, 

we will consider a two-dimensional element with stresses, as shown in Figure 7.12a. Let us draw Mohr’s 

circle. First, we have to choose a sign convention. We have already decided that compressive stresses are 

positive for soils. We will assume counterclockwise shear is positive and sz . sx. The two coordinates of 

the circle are (sz, tzx) and (sx, txz). Recall from your strength of materials course that, for equilibrium, 

txz 5 2tzx; these are called complementary shear stresses and are orthogonal to each other. Plot these 

two coordinates on a graph of shear stress (ordinate) and normal stress (abscissa), as shown by A and B 

in Figure 7.12b. Draw a circle with AB as the diameter. The circle crosses the normal stress axis at 1 and 3. 

The stresses at these points are the major principal stress, s1, and the minor principal stress, s3.

The principal stresses are related to the stress components sz, sx, tzx by

 s1 5
sz 1 sx

2
1 Å asz 2 sx

2
b2

1 t2
zx (7.27)

 s3 5
sz 1 sx

2
2 Å asz 2 sx

2
b2

1 t2
zx (7.28)

The angle between the major principal stress plane and the horizontal plane (c) is

 tan  c 5
tzx

s1 2 sx
 (7.29)

The stresses on a plane oriented at an angle u from the major principal stress plane are

 su 5
s1 1 s3

2
1

s1 2 s3

2
  cos  2u (7.30)

 tu 5
s1 2 s3

2
  sin  2u (7.31)

M 

N 

zx 

xz 

max

x 

3 1

(  z,  zx)

3

1

z N 
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FIGURE 7.12  Stresses on a two-dimensional element and Mohr’s circle.
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148 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

The stresses on a plane oriented at an angle u from the horizontal plane are

 su 5
sz 1 sx

2
1

sz 2 sx

2
 cos 2u 1 tzx sin 2u (7.32)

 tu 5 tzx  cos 2u 2
sz 2 sx

2
 sin 2u (7.33)

In the above equations, u is positive for counterclockwise orientation.

The maximum (principal) shear stress is at the top of the circle with magnitude

 tmax 5
s1 2 s3

2
 (7.34)

For the stresses shown in Figure 7.9 we would get three circles, but we have simplifi ed the problem by 

plotting one circle for stresses on all planes perpendicular to one principal direction.

The stress sz acts on the horizontal plane and the stress sx acts on the vertical plane for our case. If 

we draw these planes in Mohr’s circle, they intersect at a point, P. Point P is called the pole of the stress 

circle. It is a special point because any line passing through the pole will intersect Mohr’s circle at a point 

that represents the stresses on a plane parallel to the line. Let us see how this works. Suppose we want 

to fi nd the stresses on a plane inclined at an angle u from the horizontal plane, as depicted by MN in 

Figure 7.12a. Once we locate the pole, P, we can draw a line parallel to MN through P as shown by M9N9 
in Figure 7.12b. The line M9N9 intersects the circle at N9 and the coordinates of N9, (su, tu), represent the 

normal and shear stresses on MN.

7.8.2 Mohr’s Circle for Strain States

So far, we have studied stress states. The strain state is found in a similar manner to the stress state. With 

reference to Figure 7.13, the principal strains are

  Major principal strain:  ε1  5
εz 1 εx

2
1 Å aεz 2 εx

2
b2

1 agzx

2
b2

 (7.35)

 Major principal strain:  ε3  5
εz 1 εx

2
2 Å aεz 2 εx

2
b2

1 agzx

2
b2

 (7.36)

where gzx is called the engineering shear strain or simple shear strain.

The maximum simple shear strain is

 gmax 5 ε1 2 ε3 (7.37)

O 

(+)

(–)

zx/2

max/2

3 1

(  z,  zx/2)

(  x,–  zx/2)

γ

γ

γ

γε

ε

ε

ε ε

FIGURE 7.13
Mohr’s circle of strain.
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In soils, strains can be compressive or tensile. There is no absolute reference strain. For stresses, we 

can select atmospheric pressure as the reference, but not so for strains. Usually, we deal with changes or 

increments of strains resulting from stress changes.

THE ESSENTIAL  POINTS  ARE:
1. Mohr’s circle is used to fi nd the stress state or strain state from a two-dimensional set of stresses or 

strains on a soil.

2. The pole on a Mohr’s circle identifi es a point through which any plane passing through it will inter-
sect the Mohr’s circle at a point that represents the stresses on that plane.

EXAMPLE 7.4 Mohr’s Circle for Stress State
A sample of soil (0.1 m 3 0.1 m) is subjected to the forces shown in Figure E7.4a. Determine (a) s1, s3, and C; 

(b) the maximum shear stress; and (c) the stresses on a plane oriented at 308 counterclockwise from the major 

principal stress plane.

Strategy There are two approaches to solve this problem. You can use either Mohr’s circle or the appropriate 

equations. Both approaches will be used here.

Solution 7.4

Step 1: Find the area.

Area:  A 5 0.1 3 0.1 5 1022  m2

Step 2: Calculate the stresses.

     sz 5
Force

Area
5

5

1022
5 500 kPa

     sx 5
3

1022
5 300 kPa

tzx 5
1

1022
5 100 kPa;  txz 5 2tzx 5 2 100 kPa

Step 3: Draw Mohr’s circle and extract s1, s3, and tmax.

 Mohr’s circle is shown in Figure E7.4b.

s1 5 540 kPa,  s3 5 260 kPa,  tmax 5 140 kPa

5 kN

1 kN

1 kN

3 kN

FIGURE E7.4a
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150 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

Step 4: Draw the pole on Mohr’s circle. The pole of Mohr’s circle is shown by point P in Figure E7.4b.

Step 5: Determine c.

 Draw a line from P to s1 and measure the angle between the horizontal plane and this line.

c 5 22.5°

 Alternatively, the angle AOC 5 2c 5 458.

6 c 5 22.5°

Step 6: Determine the stresses on a plane inclined at 308 from the major principal stress plane.

 Draw a line M1N1 through P with an inclination of 308 from the major principal stress plane, angle CPN9. 
The coordinate at point N9 is (470, 120).

Alternatively:

Step 1: Use Equations (7.27) to (7.29) and (7.34) to fi nd s1, s3, c, and tmax.

s1 5
500 1 300

2
1 Å a500 2 300

2
b2

1 1002 5 541.4 kPa

s3 5
500 1 300

2
2 Å a500 2 300

2
b2

1 1002 5 258.6 kPa

 tan c 5
tyx

s1 2 sx
5

100

541.4 2 300
5 0.414

  6 c 5 22.5°

 tmax 5
s1 2 s3

2
5

541.4 2 258.6

2
5 141.4 kPa

 Check Equilibrium

Length of 2 2 3 5 0.1 m

Length of 3 2 1 5 0.1 3 1 tan 22.5° 2 5 0.0414 m

300
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100

0
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FIGURE E7.4b
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Length of 1 2 2 5 0.1/ 1cos 22.5° 2 5 0.1082 m

SFx 5  0: 2300 3 0.0414 2 100 3 0.1 1 541.4 3 0.1082 3 cos 122.5° 2 5 0

SFy 5 0:  2100 3 0.0414 2 500 3 0.1 1 541.4 3 0.1082 3 sin 122.5° 2 5 0

Step 2: Use Equations (7.30) and (7.31) to fi nd su and tu.

su 5
541.4 1 258.6

2
1

541.4 2 258.6

2
 cos  12 3 30 2 5 470.7 kPa

  tu 5
541.4 2 258.6

2
 sin 12 3 30 2 5 122.5 kPa

What’s next . . . The stresses we have calculated are for soils as solid elastic materials. We have not 
accounted for the pressure within the soil pore spaces. In the next section, we will discuss the principle 
of effective stresses that accounts for the pressures within the soil pores. This principle is the most 
important principle in soil mechanics.

7.9 TOTAL AND EFFECTIVE STRESSES

7.9.1 The Principle of Effective Stress

The deformations of soils are similar to the deformations of structural framework such as a truss. The 

truss deforms from changes in loads carried by each member. If the truss is loaded in air or submerged 

in water, the deformations under a given load will remain unchanged. Deformations of the truss are 

independent of hydrostatic pressure. The same is true for soils.

Let us consider an element of a saturated soil subjected to a normal stress, s, applied on the 

horizontal boundary, as shown in Figure 7.14. The stress s is called the total stress, and for equilibrium 

(Newton’s third law) the stresses in the soil must be equal and opposite to s. The resistance or reaction 

to s is provided by a combination of the stresses from the solids, called effective stress (s9), and from 

water in the pores, called porewater pressure (u). We will denote effective stresses by a prime (9) following 

the symbol for normal stress, usually s. The equilibrium equation is

 s 5 s r 1 u (7.38)

so that

 s r 5 s 2 u (7.39)

500 kPa

32

1

100 kPa

300 kPa

100 kPa
541.4 kPa

22.5°

(+)Y 

(+)X 

FIGURE E7.4c
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152 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

Equation (7.39) is called the principle of effective stress and was fi rst recognized by Terzaghi 

(1883–1963) in the mid-1920s during his research into soil consolidation (Chapter 9). The principle of 
effective stress is the most important principle in soil mechanics. Deformations of soils are a function 
of effective stresses, not total stresses. The principle of effective stresses applies only to normal stresses 
and not to shear stresses. The porewater cannot sustain shear stresses, and therefore the soil solids must 

resist the shear forces. Thus t 5 t9, where t is the total shear stress and t9 is the effective shear stress. The 

effective stress is not the contact stress between the soil solids. Rather, it is the average stress on a plane 

through the soil mass.

Soils cannot sustain tension. Consequently, the effective stress cannot be less than zero. Porewater 

pressures can be positive or negative. The latter are sometimes called suction or suction pressure.

For unsaturated soils, the effective stress (Bishop et al., 1960) is

 s r 5 s 2 ua 1 x 1ua 2 u 2  (7.40)

where ua is the pore air pressure, u is the porewater pressure, and x is a factor depending on the 

degree of saturation. For dry soil, x 5 0; for saturated soil, x 5 1. Values of x for a silt are shown in 

Figure 7.15.

7.9.2 Effective Stresses Due to Geostatic Stress Fields

The effective stress in a soil mass not subjected to external loads is found from the unit weight of the soil 

and the depth of groundwater. Consider a soil element at a depth z below the ground surface, with the 

groundwater level (GWL) at ground surface (Figure 7.16a). The total vertical stress is

Internal resistance from
solids or effective stress

Plane on which effective
stress is calculated

Internal resistance
from water or porewater
pressure

Contact area

External force
or total stressσ

σFIGURE 7.14
Effective stress.
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0.1

0
0 20 40 60

Degree of saturation (%)
80 100

χ

FIGURE 7.15
Values of x for a silt at different 
degrees of saturation.
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 s 5 gsat 
z (7.41)

The porewater pressure is

 u 5 gwz (7.42)

and the effective stress is

 s r 5 s 2 u 5 gsat 
z 2 gw 

z 5 1gsat 2 gw 2z 5 g rz (7.43)

If the GWL is at a depth zw below ground level (Fig. 7.16b), then

s 5 gzw 1 gsat 1z 2 zw 2  and  u 5 gw 1z 2 zw 2  
The effective stress is

 s r 5 s 2 u 5 gzw 1 gsat 1z 2 zw 2 2 gw 1z 2 zw 2
 5 gzw 1 1gsat 2 gw 2 1z 2 zw 2 5 gzw 1 g r 1z 2 zw 2

7.9.3 Effects of Capillarity

In silts and fi ne sands, the soil above the groundwater can be saturated by capillary action. You would 

have encountered capillary action in your physics course when you studied menisci. We can get an 

understanding of capillarity in soils by idealizing the continuous void spaces as capillary tubes. Con-

sider a single idealized tube, as shown in Figure 7.17. The height at which water will rise in the tube 

can be found from statics. Summing forces vertically (upward forces are negative), we get

SFz 5 weight of water 2 the tension forces from capillary action

that is,

 
pd2

4
 zcgw 2 pdT cos u 5 0 (7.44)

Solving for zc, we get

 zc 5
4T cos u

dgw
 (7.45)

Ground level GWL = Groundwater level

z

(a)

Ground level

z

zw

(b)

sat

sat

γ

γ

γ

FIGURE 7.16 Soil element at a depth z with groundwater 
level (a) at ground level and (b) below ground level.
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154 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

where T is the surface tension (force per unit length), u is the contact angle, zc is the height of capillary 

rise, and d is the diameter of the tube representing the diameter of the void space. The surface tension 

of water is 0.073 N/m and the contact angle of water with a clean glass surface is 0. Since T, u, and gw are 

constants,

 zc ~
1

d
 (7.46)

For soils, d is assumed to be equivalent to 0.1 D10 where D10 is the effective size. The interpretation of 

Equation (7.46) is that the smaller the soil pores, the higher the capillary zone. The capillary zone in fi ne 

sands will be larger than for medium or coarse sands.

The porewater pressure due to capillarity is negative (suction), as shown in Figure 7.17, and is a 

function of the size of the soil pores and the water content. At the groundwater level, the porewater 

pressure is zero and decreases (becomes negative) as you move up the capillary zone. The effective 

stress increases because the porewater pressure is negative. For example, for the capillary zone, zc, the 

porewater pressure at the top is 2zcgw and the effective stress is s9 5 s 2 (2zcgw) 5 s 1 zcgw.

The approach we have taken to interpret capillary action in soils is simple, but it is suffi cient for 

most geotechnical applications. For a comprehensive treatment of capillary action, you can refer to 

Adamson (1982).

7.9.4 Effects of Seepage

In Chapter 6, we discussed one-dimensional fl ow of water through soils. As water fl ows through soil it 

exerts a frictional drag on the soil particles, resulting in head losses. The frictional drag is called seepage 

force in soil mechanics. It is often convenient to defi ne seepage as the seepage force per unit volume (it 

has units similar to unit weight), which we will denote by js. If the head loss over a fl ow distance, L, is 

Dh, the seepage force is

 js 5
Dhgw

L
5 igw (7.47)

If seepage occurs downward (Figure 7.18a), then the seepage stresses are in the same direction as 

the gravitational effective stresses. From static equilibrium, the resultant vertical effective stress is

 s rz 5 g rz 1 izgw 5 g rz 1 jsz (7.48)

zc   w

z  w

+

–

z

zcd

T T

Porewater pressure
distribution

Idealization

γ

γ

θ

Soil

FIGURE 7.17
Capillary simulation 
in soils.
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If seepage occurs upward (Figure 7.18b), then the seepage stresses are in the opposite direction to 

the gravitational effective stresses. From static equilibrium, the resultant vertical effective stress is

 s rz 5 g rz 2 izgw 5 g rz 2 jsz (7.49)

Seepage forces play a very important role in destabilizing geotechnical structures. For example, 

a cantilever retaining wall, shown in Figure 7.19, depends on the depth of embedment for its stability. 

The retained soil (left side of wall) applies an outward lateral pressure to the wall, which is resisted by an 

inward lateral resistance from the soil on the right side of the wall. If a steady quantity of water is avail-

able on the left side of the wall, for example, from a broken water pipe, then water will fl ow from the left 

side to the right side of the wall. The path followed by a particle of water is depicted by AB in Figure 7.19, 

and as water fl ows from A to B, head loss occurs. The seepage stresses on the left side of the wall are in 

the direction of the gravitational stresses. The effective stress increases and, consequently, an additional 

outward lateral force is applied on the left side of the wall. On the right side of the wall, the seepage 

stresses are upward and the effective stress decreases. The lateral resistance provided by the embedment 

is reduced. Seepage stresses in this problem play a double role (increase the lateral disturbing force and 

reduce the lateral resistance) in reducing the stability of a geotechnical structure. In Chapters 14 through 

15, you will study the effects of seepage on the stability of several types of geotechnical structures.

(a) Downward seepage

z

(b) Upward seepage

z

FIGURE 7.18
Seepage in soils.

B

Effective stresses
increase

Effective stresses
decrease

A

FIGURE 7.19
Effects of seepage on the 
effective stresses near a 
retaining wall.

7.9 TOTAL AND EFFECTIVE STRESSES 155 

THE ESSENTIAL  POINTS  ARE:
1. The effective stress represents the average stress carried by the soil solids and is the difference 

between the total stress and the porewater pressure.

2. The effective stress principle applies only to normal stresses and not to shear stresses.

3. Deformations of soils are due to effective, not total, stress.

4. Soils, especially silts and fi ne sands, can be affected by capillary action.

5. Capillary action results in negative porewater pressures and increases the effective stresses.

6. Downward seepage increases the resultant effective stress; upward seepage decreases the resultant 
effective stress.
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156 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

EXAMPLE 7.5 Calculating Vertical Effective Stress
Calculate the effective stress for a soil element at depth 5 m in a uniform deposit of soil, as shown in Figure E7.5. 

Assume that the pore air pressure is zero.

Ground level

S = 0.6
w = 30%

w = 40%

2 m

5 m

FIGURE E7.5

Strategy  You need to get unit weights from the given data, and you should note that the soil above the ground-

water level is not saturated.

Solution 7.5

Step 1: Calculate unit weights.

 Above groundwater level

 g 5 aGs 1 Se

1 1 e
b  gw 5

Gs 11 1 w 2
1 1 e

  gw

 Se 5 wGs,   6  e 5
0.3 3 2.7

0.6
5 1.35

 g 5
2.7 11 1 0.3 2

1 1 1.35
3 9.8 5 14.6 kN/m3

 Below groundwater level

 Soil is saturated, S 5 1.

 e 5 wGs 5 0.4 3 2.7 5 1.08

 gsat 5 aGs 1 e

1 1 e
b  gw 5 a2.7 1 1.08

1 1 1.08
b  9.8 5 17.8 kN/m3

Step 2: Calculate the effective stress.

Total stress:  sz 5 2g 1 3gsat 5 2 3 14.6 1 3 3 17.8 5 82.6 kPa

Porewater pressure:  u 5 3gw 5 3 3 9.8 5 29.4 kPa

Effective stress:  s rz 5 sz 2 u 5 82.6 2 29.4 5 53.2 kPa

Alternatively:

s rz 5 2g 1 3 1gsat 2 gw 2 5 2g 1 3g r 5 2 3 14.6 1 3 117.8 2 9.8 2 5 53.2 kPa
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EXAMPLE 7.6 Calculating and Plotting Vertical Effective Stress Distribution
A borehole at a site reveals the soil profi le shown in Figure E7.6a. Plot the distribution of vertical total and effective 

stresses with depth. Assume pore air pressure is zero.

Elevation (m)

20.6

5.4

3.0
2.0

0 Very fine wet sand with silt
w = 5%, S = 40%
Fine sand saturated by capillary action

Fine sand, w = 12%

Soft blue clay, w = 28%

FIGURE E7.6a
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Strategy  From the data given, you will have to fi nd the unit weight of each soil layer to calculate the stresses. 

You are given that the 1.0 m of fi ne sand above the groundwater level is saturated by capillary action. Therefore, the 

porewater pressure in this 1.0 m zone is negative.

Solution 7.6

Step 1: Calculate the unit weights.

  0–2 m

 S 5 40% 5 0.4;  w 5 0.05

 e 5
wGs

S
5

0.05 3 2.7

0.4
5 0.34

 g 5
Gs 11 1 w 2

1 1 e
 gw 5

2.7 11 1 0.05 2
1 1 0.34

 9.8 5 20.7 kN/m3

  2–5.4 m

 S 5 1;  w 5 0.12

 e 5 wGs 5 0.12 3 2.7 5 0.32

 gsat 5 aGs 1 e

1 1 e
bgw 5 a2.7 1 0.32

1 1 0.32
b9.8 5 22.4 kN/m3

  5.4–20.6 m

 S 5 1;  w 5 0.28

 e 5 wGs 5 0.28 3 2.7 5 0.76

 gsat 5 a2.7 1 0.76

1 1 0.76
b9.8 5 19.3 kN/m3
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158 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

Step 2: Calculate the stresses using a table or a spreadsheet program.

Depth (m) Thickness (m) sz (kPa) u (kPa) s9z 5 s 2 u (kPa)

 0 0 0 0 0
 2 2 20.7 3 2 5 41.4 21 3 9.8 5 29.8 51.2
 3 1 41.4 1 22.4 3 1 5 63.8 0 63.8
 5.4 2.4 63.8 1 22.4 3 2.4 5 117.6 2.4 3 9.8 5 23.5 94.1
 20.6 15.2 117.6 1 19.3 3 15.2 5 411 23.5 1 15.2 3 9.8 5 172.5 238.5 
    or 17.6 3 9.8 5 172.5

Step 3: Plot the stresses versus depth—see Figure E7.6b.

0

5

10

15

20

25

–50 0 50 100 150 200
Stress (kPa)

250 300 350 400 450

Vertical total stress

Porewater pressure

Vertical effective stress

FIGURE E7.6b

Ground level

6 m

1 m 2 m

6.8 m
Seepage

A

B

sat = 18.5 kN/m3γ

FIGURE E7.7

Strategy You have to calculate the seepage stress. But to obtain this you must know the hydraulic gradient, 

which you can fi nd from the data given.

Solution 7.7

Step 1: Find the hydraulic gradient.

DH 5 0.2 m;  L 5 2 m;  i 5
DH
L
5

0.2

2
5 0.1

EXAMPLE 7.7 Effects of Seepage on Effective Stress
Water is seeping downward through a soil layer, as shown in Figure E7.7. Two piezometers (A and B) located 2 m 

apart (vertically) showed a head loss of 0.2 m. Calculate the resultant vertical effective stress for a soil element at 

a depth of 6 m.
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Step 2: Determine the effective stress.

 Assume the hydraulic gradient is the average for the soil mass; then

s rz 5 1gsat 2 gw 2z 1 igw 
z 5 118.5 2 9.8 26 1 0.1 3 9.8 3 6 5 58.1 kPa

EXAMPLE 7.8 Effects of Groundwater Condition on Effective Stress
(a) Plot the total and effective stresses and porewater pressure with depth for the soil profi le shown in Figure E7.8a 

for steady-state seepage condition. A porewater pressure transducer installed at the top of the sand layer 

gives a pressure of 58.8 kPa. Assume Gs 5 2.7 and neglect pore air pressure.

(b) If a borehole were to penetrate the sand layer, how far would the water rise above the groundwater level?

4 m

1 m

3 m

4 m

Clay: w = 19.6%, S = 60%

Clay: w = 40%

Sand: γsat = 16.8 kN/m3

Clay: γsat = 18.8 kN/m3

Bedrock

FIGURE E7.8a

4 m

1 m

3 m

4 m

Clay: w = 19.6%, S = 60%

Clay: w = 40%

Layer 1

Layer 2

Layer 3

Layer 4

Sand: γsat = 16.8 kN/m3

Clay: γsat = 18.8 kN/m3

Bedrock

FIGURE E7.8b
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Strategy You have to calculate the unit weight of the top layer of clay. From the soil profi le, the groundwater 

appears to be under artesian condition, so the effective stress would change sharply at the interface of the top clay 

layer and the sand. It is best to separate the soil above the groundwater from the soil below the groundwater. So, 

divide the soil profi le into artifi cial layers.

Solution 7.8

Step 1: Divide the soil profi le into artifi cial layers.

 See Figure E7.8b.

Step 2: Find the unit weight of the top clay layers.

 Above groundwater level: g 5
Gs 1 Se

1 1 e
 gw 5

Gs 11 1 w 2
1 1

wGs

S

 gw 5
2.7 11 1 0.196 2

1 1
0.196 3 2.7

0.6

3 9.8 5 16.8 kN/m3

  Below groundwater level: gsat 5
Gs 1 e

1 1 e
 gw 5

Gs 11 1 w 2
1 1 wGs

 gw 5
2.7 11 1 0.12 2

1 1 0.12 3 2.7
3 9.8 5 17.8 kN/m3
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160 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

Step 3: Determine the effective stress.

 See spreadsheet. Note: The porewater pressure at the top of the sand is 58.8 kPa.

 Layer Depth (m) Thickness (m) g (kN/m3) sz (kPa) u (kPa) s9z (kPa)

 1 - top 0 
1 16.8

 0 0 0
 1 - bottom 1   16.8 0.0 16.8

 2 - top 1 
4 17.8

 16.8 0.0 16.8
 2 - bottom 5   88.0 39.2 48.8

 3 - top 5 
3 16.8

 88.0 58.8 29.2
 3 - bottom 8   138.4 88.2 50.2

 4 - top 8 
4 18.8

 138.4 88.2 50.2
 4 - bottom 12   213.6 127.4 86.2

Step 4: Plot vertical stress and porewater pressure distributions with depth.

10

14

12

8

6

4

2

0
0 50 100 150 200 250

D
ep

th
 (

m
)

Vertical stress (kPa)

Vertical total stress

Layer 1

Layer 2

Layer 3

Layer 4

Porewater pressure

Vertical effective stress

FIGURE E7.8c

 Note:
 (1) The vertical effective stress changes abruptly at the top of the sand layer due to the artesian condition.

 (2)  For each layer or change in condition (groundwater or unit weight), the vertical stress at the bottom 

of the preceding layer acts a surcharge, transmitting a uniform vertical stress of equal magnitude to 

all subsequent layers. As an example, the vertical total stress at the bottom of layer 2 is 88 kPa. This 

stress is transferred to both layers 3 and 4. Thus, the vertical total stress at the bottom of layer 3 from 

its own weight is 3 3 16.8 5 50.4 kPa, and adding the vertical total stress from the layers above gives 

88 1 50.4 5 138.4 kPa.

Step 5: Calculate the height of water.

h 5
58.8

9.8
5 6 m

 Height above existing groundwater level 5 6 2 4 5 2 m, or 1 m above ground level.

What’s next . . . We have only considered vertical stresses. But an element of soil in the ground is 
also subjected to lateral stresses. Next, we will introduce an equation that relates the vertical and 
lateral effective stresses.
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7.10 LATERAL EARTH PRESSURE AT REST

The ratio of the horizontal principal effective stress to the vertical principal effective stress is called the 

lateral earth pressure coeffi cient at rest (Ko), that is,

 Ko 5
s r3
s r1

 (7.50)

The at-rest condition implies that no deformation occurs. We will revisit the at-rest coeffi cient in later 

chapters. You must remember that Ko applies only to effective principal, not total principal, stresses. To 

fi nd the lateral total stress, you must add the porewater pressure. Remember that the porewater pressure 

is hydrostatic and, at any given depth, the porewater pressures in all directions are equal.

For a soil that was never subjected to effective stresses higher than its current effective stress (normally 

consolidated soil), Ko 5 Ko
nc is reasonably predicted by an equation suggested by Jaky (1944) as

 Knc
o < 1 2 sin frcs (7.51)

where f9cs is a fundamental frictional soil constant that will be discussed in Chapter 10.

The value of Ko
nc is constant. During unloading or reloading, the soil stresses must adjust to be in 

equilibrium with the applied stress. This means that stress changes take place not only vertically but also 

horizontally. For a given surface stress, the changes in horizontal total stresses and vertical total stresses 

are different, but the porewater pressure changes in every direction are the same. Therefore, the current 

effective stresses are different in different directions. A soil in which the current effective stress is lower 

than the past maximum stress is called an overconsolidated soil (to be discussed further in Chapter 9). 

The Ko values for overconsolidated soils are not constants. We will denote Ko for overconsolidated soils 

as Ko
oc. Various equations have been suggested linking Ko

oc to Ko
nc. One equation that is popular and 

found to match test data reasonably well is an equation proposed by Meyerhof (1976) as

 Koc
o 5 Knc

o 1OCR 2 1/2 5 11 2 sin f rcs 2 1OCR 2 1/2 (7.52)

where OCR is the overconsolidation ratio (see Chapter 9 for more information), defi ned as the ratio of 

the past vertical effective stress to the current vertical effective stress.

EXAMPLE 7.9 Calculating Horizontal Effective and Total Stresses
Calculate the horizontal effective stress and the horizontal total stress for the soil element at 5 m in Example 7.5 if 

Ko 5 0.5.

Strategy The stresses on the horizontal and vertical planes on the soil element are principal stresses (no shear 

stress occurs on these planes). You need to apply Ko to the effective principal stress and then add the porewater 

pressure to get the lateral total principal stress.

Solution 7.9

Step 1: Calculate the horizontal effective stress.

Ko 5
s r3
s r1
5

s rx
s rz

 ;  s rx 5 Kos rz 5 0.5 3 53.2 5 26.6 kPa

Step 2: Calculate the horizontal total stress.

sx 5 s rx 1 u 5 26.6 1 29.4 5 56 kPa
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162 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

EXAMPLE 7.10 Calculating Horizontal Total and Effective Stresses from Dissipation of 
Excess Porewater Pressure
Determine the horizontal effective and total stresses on a normally consolidated soil sample for:

(a) time: t 5 t1, Du 5 20 kPa

(b) time: t n `, Du 5 0

The vertical total stress is 100 kPa and the frictional constant f9cs 5 308.

Strategy The horizontal earth pressure coeffi cient must be applied to the vertical effective stress, not the 

vertical total stress. You need to calculate the vertical effective stress, then the horizontal effective stress. Add the 

excess porewater pressure to the horizontal effective stress to fi nd the horizontal total stress.

Solution 7.10

Step 1: Calculate the vertical effective stresses.

s rz 5 sz 2 Du

 (a) s rz 5 100 2 20 5 80 kPa

 (b) s rz 5 100 2 0 5 100 kPa

Step 2: Calculate the horizontal effective stress.

Knc
o 5 1 2 sin f rcs 5 1 2 sin 30° 5 0.5

s rx  5 Knc
o s rz

 (a) s rx 5 0.5 3 80 5 40 kPa

 (b) s rx 5 0.5 3 100 5 50 kPa

Step 3: Calculate the total horizontal stresses.

sx 5 s rx 1 Du

 (a) sx 5 40 1 20 5 60 kPa

 (b) sx 5 50 1 0 5 50 kPa

What’s next . . . The stresses we have considered so far are called geostatic stresses, and when we 
considered elastic deformation of soils, the additional stresses imposed on the soil were given. But in 
practice, we have to fi nd these additional stresses from applied loads located either on the ground surface 
or within the soil mass. We will use elastic analysis to fi nd these additional stresses. Next, we will consider 
increases in stresses from a number of common surface loads. You will encounter myriad equations. You 
are not expected to remember these equations, but you are expected to know how to use them.

7.11 STRESSES IN SOIL FROM SURFACE LOADS

Computer Program Utility

Access www.wiley.com/college/budhu, and click on Chapter 7 and then STRESS.zip to download 

and run a computer application to obtain the stress increases and displacements due to surface 

loads. You can use this program to explore stress changes due to different types of loads, and pre-

pare and print Newmark charts for vertical stresses beneath arbitrarily shaped loads (described in 

Section 7.11.8). This computer program will also be helpful in solving problems in later chapters.
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The distribution of stresses within a soil from applied surface loads or stresses is determined by assum-

ing that the soil is a semi-infi nite, homogeneous, linear, isotropic, elastic material. A semi-infi nite mass 

is bounded on one side and extends infi nitely in all other directions; this is also called an “elastic half-

space.” For soils, the horizontal surface is the bounding side. Because of the assumption of a linear elastic 

soil mass, we can use the principle of superposition. That is, the stress increase at a given point in a soil 

mass in a certain direction from different loads can be added together.

Surface loads are divided into two general classes, fi nite and infi nite. However, these are qualita-

tive classes and are subject to interpretation. Examples of fi nite loads are point loads, circular loads, and 

rectangular loads. Examples of infi nite loads are fi lls and surcharges. The relative rigidity of the founda-

tion (a system that transfers the load to the soil) to the soil mass infl uences the stress distribution within 

the soil. The elastic solutions presented are for fl exible loads and do not account for the relative rigidity 

of the soil foundation system. If the foundation is rigid, the stress increases are generally lower (15% 

to 30% less for clays and 20% to 30% less for sands) than those calculated from the elastic solutions 

presented in this section. Traditionally, the stress increases from the elastic solutions are not adjusted 

because soil behavior is nonlinear and it is better to err on the conservative side. The increases in soil 

stresses from surface loads are total stresses. These increases in stresses are resisted initially by both the 

porewater and the soil particles.

Equations and charts for several types of fl exible surface loads based on the above assumptions 

are presented. Most soils exist in layers with fi nite thicknesses. The solution based on a semi-infi nite soil 

mass will not be accurate for these layered soils. In Appendix C, you will fi nd selected graphs and tables 

for vertical stress increases in one-layer and two-layer soils. A comprehensive set of equations for a 

variety of loading situations is available in Poulos and Davis (1974).

7.11.1 Point Load

Boussinesq (1885) presented a solution for the distribution of stresses for a point load applied on the 

soil surface. An example of a point load is the vertical load transferred to the soil from an electric power 

line pole.

The increases in stresses on a soil element located at point A (Figure 7.20a) due to a point load, Q, are

  Dsz 5
3Q

2pz2 c1 1 a r
z
b2 d 5/2

 (7.53)
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Point load, Q (force)
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FIGURE 7.20  Point load and vertical stress distribution with 
depth and radial distance.
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164 CHAPTER 7 STRESSES, STRAINS, AND ELASTIC DEFORMATIONS OF SOILS

  Dsr 5
Q
2p

  a 3r2z1r2 1 z2 2 5/2
2

1 2 2v

r2 1 z2 1 z 1r2 1 z2 2 1/2
b  (7.54)

  Dsu 5
Q
2p

 11 2 2n 2 a z1r2 1 z2 2 3/2
2

1

r2 1 z2 1 z 1r 2 1 z2 2 1/2
b  (7.55)

  Dtrz 5
3Q
2p
c rz21r2 1 z2 2 5/2

d  (7.56)

where n is Poisson’s ratio. Most often, the increase in vertical stress is needed in practice. Equation (7.53) 

can be written as

 Dsz 5
Q

z2  I  (7.57)

where I is an infl uence factor, and

 I 5
3

2p
 

1c1 1 a r
z
b2 d 5/2

 (7.58)

The distributions of the increase in vertical stress from Equations (7.57) and (7.58) reveal that the 

increase in vertical stress decreases with depth (Figure 7.20b) and radial distance (Figure 7.20c).

The vertical displacement is

 Dz 5
Q 11 1 n 2

2pEz c1 1 a r
z
b2 d 1/2

 £ 2 11 2 n 2 1 1

1 1 a r
z
b2 §  (7.59)

and the radial displacement is

 Dr 5
Q 11 1 n 2

2p Ez c1 1 a r
z
b2 d 1/2

 ≥ a r
z
b

e1 1 a r
z
b2 f 2

11 2 2n 2 a r
z
b

e1 1 a r
z
b2 f 1/2

1 1

¥  (7.60)

where E is Young’s modulus.

EXAMPLE 7.11 Vertical Stress Increase Due to a Point Load
A pole carries a vertical load of 200 kN. Determine the vertical total stress increase at a depth 5 m (a) directly below 

the pole and (b) at a radial distance of 2 m.

Strategy The fi rst step is to determine the type of surface load. The load carried by the pole can be approxi-

mated to a point load. You can then use the equation for the vertical stress increase for a point load.

Solution 7.11

Step 1: Determine the load type.

 Assume the load from the pole can be approximated by a point load.

c07Stresses,Strains,andElasticDe164 Page 164  9/1/10  1:56:27 PM user-f391 /Users/user-f391/Desktop/Ravindra_01.09.10/JWCL339:BUDHU:203/Ch-07



Step 2: Use the equation for a point load. Use Equation (7.57):

 z 5 5 m,  Q 5 200 kN;  Under load, r 5 0,  6
r
z
5 0

 From Equation 17.58 2 :  r
z
5 0,  I 5

3

2p
5 0.48

 Dsz 5
Q

z2
 I 5

200

52
3 0.48 5 3.8 kPa

Step 3: Determine the vertical stress at the radial distance.

         r 5 2 m,  
r
z
5

2

5
5 0.4,  I 5

3

2p
 

131 1 10.4 2 2 45/2
5 0.33

Dsz 5
200

52
3 0.33 5 2.6 kPa

7.11.2 Line Load

With reference to Figure 7.21a, the increases in stresses due to a line load, Q (force/length), are

 Dsz  5
2Qz3

p 1x2 1 z2 2 2 (7.61)

 Dsx  5
2Qx2z

p 1x2 1 z2 2 2 (7.62)

 Dtzx 5
2Qxz2

p 1x2 1 z2 2 2 (7.63)

A practical example of a line load is the load from a long brick wall.

7.11.3 Line Load Near a Buried Earth-Retaining Structure

The increase in lateral stress on a buried earth-retaining structure (Figure 7.21b) due to a line load of 

intensity Q (force/length) is

 Dsx 5
4Qa2b

pHo 1a2 1 b2 2 2  (7.64)

Line load, Q (force/m) Line load, Q (force/m)

z Ho

bHo

x

z

x

(a) (b)

Px

aHo

Δσ

Δσ

Δ

FIGURE 7.21 (a) Line load and (b) line load near a 
retaining wall.
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The increase in lateral force is

 DPx 5
2Q

p 1a2 1 1 2  (7.65)

7.11.4 Strip Load

A strip load is the load transmitted by a structure of fi nite width and infi nite length on a soil surface. Two 

types of strip loads are common in geotechnical engineering. One is a load that imposes a uniform stress 

on the soil, for example, the middle section of a long embankment (Figure 7.22a). The other is a load that 

induces a triangular stress distribution over an area of width B (Figure 7.22b). An example of a strip load 

with a triangular stress distribution is the stress under the side of an embankment.

The increases in stresses due to a surface stress qs (force/area) are as follows:

 (a) Area transmitting a uniform stress (Figure 7.22a)

 Dsz  5
qs

p
 3a 1 sin a cos 1a 1 2b 2 4 (7.66)

 Dsx  5
qs

p
 3a 2 sin a cos 1a 1 2b 2 4 (7.67)

 Dtzx 5
qs

p
 3sin a sin 1a 1 2b 2 4  (7.68)

where qs is the applied surface stress.

qs(force/area)

qs(force/area)

x

B

z

x

x

z

(a)

(c)

qs(force/area)

x

B

R2

R1 z

x

z

(b)

B

z
/2

Ho

qs(force/area)

Px

(d)

Ba

z
1

Ho

2
θ

θ

ΔΔσ

ββ

β
β

Δσ

Δσ

Δσ

Δσ

α α

α

FIGURE 7.22  Strip load imposing (a) a uniform surface stress 
and (b) a linear varying surface stress. (c) Strip load imposing a 
uniform surface stress near a retaining wall and (d) lateral force 
on a retaining wall from a strip load imposing a uniform surface 
stress.
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The vertical displacement due to a strip loading is useful only as relative displacement between 

two points not located at infi nity. The relative vertical displacement between the center of the strip load 

(0, 0) and a point at the surface (x, 0) is

Dz 1x, 0 2 2Dz 10, 0 2 5 2qs 112n2 2
pE

 eax 2
B
2
b  ln ` x 2 B

2
`  2  ax 1

B
2
b  ln ` x 1 B

2
` 1 B ln aB

2
b f  (7.69)

 (b) Area transmitting a triangular stress (Figure 7.22b)

 Dsz  5
qs

p
 a x

B
 a2

1

2
 sin 2bb  (7.70)

 Dsx  5
qs

p
 a x

B
 a 2

z
B

 ln 
R2

1

R2
2

1
1

2
 sin 2bb  (7.71)

 Dtzx 5
qs

2p
 a1 1 cos 2b 2 2 

z
B

 ab  (7.72)

The relative vertical displacement between the center of the strip load (0, 0) and a point at the surface (x, 0) is

 Dz 1x, 0 2 2 Dz 10, 0 2 5 qs 11 2 n2 2
pE aB

2
b  eB2

2
 ln B 2

x2

2
 ln x 1 ax2

2
2

B2

2
b  ln 0B 2 x 0 1 B

2
 x f  (7.73)

 (c) Area transmitting a uniform stress near a retaining wall (Figure 7.22c, d)

 Dsx 5
2qs

p
 1b 2 sin b cos 2a 2  (7.74)

The lateral force and its location were derived by Jarquio (1981) and are

 DPx 5
qs

90
 3Ho 1u2 2 u1 2 4 (7.75)

 z5
H 2

o 1u2 2 u1 2 2 1R1 2 R2 2 1 57.3BHo

2Ho 1u2 2 u1 2  (7.76)

where

u1  5 tan21a a
Ho
b ,  u2 5 tan21aa 1 B

Ho
b

R1 5 1a 1 B 2 2  190 2 u2 2 ,  and  R2 5 a2 190 2 u1 2
7.11.5 Uniformly Loaded Circular Area

An example of a circular area that transmits stresses to a soil mass is a circular foundation of an oil or water 

tank. The increases of vertical and radial stresses under the center of a circular area of radius ro are

 Dsz 5 qs c1 2 a 1

1 1 1ro/z 2 2b3/2 d 5 qsIc (7.77)
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where

Ic 5  c1 2  a 1

1 1 1ro/z 2 2b3/2 d
is an infl uence factor and

 Dsr 5 Dsu 5
qs

2
£ 11 1 2n 2 2  

4 11 1 n 231 1 1ro/z 2 2 41/2
1

131 1 1ro/z 2 2 43/2
§  (7.78)

The vertical elastic settlement at the surface due to a circular fl exible loaded area is

 Below center ofloaded area:  Dz 5
qsD 11 2 n2 2

E
 (7.79)

 Below edge:  Dz 5
2

p
 
qsD 11 2 n2 2

E
 (7.80)

where D 5 2ro is the diameter of the loaded area. The vertical stress increases and vertical elastic settle-

ments at all points in the soil mass from a circular loaded area are shown in Appendix B.

EXAMPLE 7.12 Vertical Stress Increase Due to a Ring Load
A silo is supported on a ring foundation, as shown in Figure E7.12a. The total vertical load is 4 MN. (a) Plot the 

vertical stress increase with depth up to 8 m under the center of the ring (point O, Figure E7.12a). (b) Determine 

the maximum vertical stress increase and its location.

5 m

O

3 m

FIGURE E7.12a FIGURE E7.12b

5 m

Large

Small

3 m
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Strategy To use the equation for a uniform circular area to simulate the ring foundation, you need to create two 

artifi cial circular foundations, one with a radius of 5 m and the other with a radius of 3 m. Both foundations must 

be fully loaded with the applied uniform, vertical stress. By subtracting the vertical stress increase of the smaller 

foundation from the larger foundation, you would obtain the vertical stress increase from the ring foundation. You 

are applying here the principle of superposition.

Solution 7.12

Step 1: Identify the loading type.

 It is a uniformly loaded ring foundation.

Step 2: Calculate the imposed surface stress.

r2 5 5 m, r1 5 3 m

Area 5 p 1r 2
2 2 r 2

1 2 5 p 152 2 32 2 5 16p m2

qs 5
Q

A
5

4000

16p
5 79.6 kPa

Step 3: Create two solid circular foundations of radii 5 m and 3 m.

 See Figure E7.12b. Let “large” denotes the foundation of radius 5 m and “small” denotes the foundation 

of radius 3 m.

Step 4: Create a spreadsheet to do the calculations.

Ring load

Load 4000 kN
Outer radius 5 m
Inner radius 3 m
Area 50.3 m2

qs 79.6 kPa

 Large Small Idiff Dsz (kPa)

z r/z (Ic)large ro/z (Ic)small (Ic)large 2 (Ic)small qs 3 Idiff

1 7.00 0.992 3.00 0.968 0.024 1.9
2 2.50 0.949 1.50 0.829 0.119 9.5
3 1.67 0.864 1.00 0.646 0.217 17.3
4 1.25 0.756 0.75 0.488 0.268 21.3
5 1.00 0.646 0.60 0.369 0.277 22.0
6 0.83 0.547 0.50 0.284 0.262 20.9
7 0.71 0.461 0.43 0.223 0.238 18.9
8 0.63 0.390 0.38 0.179 0.211 16.8

 The coffi cients Ic were obtained from the application program, STRESS.zip. You can 
download this application from www.wiley.com/college/budhu.

Step 5: Plot the vertical stress increase variation with depth.

 See Figure E7.12c.
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FIGURE E7.12c
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Step 6: Determine the maximum vertical stress increase and depth of occurrence.

 From Figure E7.12c, the maximum vertical stress increase is 22 kPa and the depth of occurrence is 5 m 

from the surface.

7.11.6 Uniformly Loaded Rectangular Area

Many structural foundations are rectangular or approximately rectangular in shape. The increases in 

stresses below the corner of a rectangular area of width B and length L are

   Dsz 5
qs

2p
c tan21

 

LB
zR3

1
LBz
R3

 a 1

R2
1

1
1

R2
2

b d  (7.81)

   Dsx 5
qs

2p
c tan21

 

LB
zR3

2
LBz

R2
1R3

d  (7.82)

   Dsy 5
qs

2p
c tan21

 

LB
zR3

2
LBz

R2
2R3

d  (7.83)

 Dtzx 5
qs

2p
c B
R2

2
z2B

R2
1R3

d  (7.84)

where R1 5 (L2 1 z2)1/2, R2 5 (B2 1 z2)1/2, and R3 5 (L2 1 B2 1 z2)1/2.

These equations can be written as

 Dsz 5 qsIz (7.85)

 Dsx 5 qsIx (7.86)

 Dsy 5 qsIy (7.87)

   tzx 5 qsIt (7.88)

where I denotes the infl uence factor. The infl uence factor for the vertical stress is

 Iz 5
1

4p
c 2mn"m2 1 n2 1 1

m2 1 n2 1 m2n2 1 1
 am2 1 n2 1 2

m2 1 n2 1 1
b 1 tan21a 2mn"m2 1 n2 1 1

m2 1 n2 2 m2n2 1 1
b d  (7.89)

where m 5 B/z and n 5 L/z. You can program your calculator or use a spreadsheet program to fi nd Iz. 

You must be careful in the last term (tan21) in programming. If m2 1 n2 1 1 , m2n2, then you have to add 

p to the bracketed quantity in the last term. The distribution of vertical stress below a uniformly loaded 

square foundation is shown in Figure 7.23. The increase in vertical stress is about 10% below a depth of 
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2B; B is the diameter of the foundation. The vertical stress decreases from the center of the foundation 

outward, reaching a value of about 10% at a horizontal distance of B/2 from the edge at a depth of B. 

A chart for Iz for the corner of rectangular loaded area is shown in Figure 7.24 on page 172. You would 

have to calculate m 5 B/z and n 5 L/z and read Iz from the chart; m and n are interchangeable. In general, 

the vertical stress increase is less than 10% of the surface stress when z . 2B.

The vertical elastic settlement at the ground surface under a rectangular fl exible surface load is

 Dz 5
qsB 11 2 n2 2

E
 Is (7.90)

where Is is a settlement infl uence factor that is a function of the L/B ratio (L is length and B is width). 

Setting js 5 L/B, the equations for Is are

At center of a rectangle (Giroud, 1968):

 Is 5
2

p
  £ ln Ajs 1 "1 1 j2

s B 1 js ln  

1 1 "1 1 j2
s

js
§  (7.91)

At corner of a rectangle (Giroud, 1968):

 Is 5
1

p
£ ln Ajs 1 "1 1 j2

s B 1 js ln  

1 1 "1 1 j2
s

js
§  (7.92)

B B 2B 3B 4B

2BB0 3B 4B

B

2B
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B
qs

0.08qs

0.1qs

0.2qs

0.04qs

0.02qs

0.01qs

0.005qs

0.4qs

FIGURE 7.23 Vertical stress 
contour below a square 
foundation.
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The above equations can be simplifi ed to the following for js $ 1:

  At center of a rectangle:  Is > 0.62 ln 1js 2 1 1.12 (7.93)

 At corner of a rectangle:  Is > 0.31 ln 1js 2 1 0.56 (7.94)

7.11.7 Approximate Method for Rectangular Loads

In preliminary analyses of vertical stress increases under the center of rectangular loads, geotechnical 

engineers often use an approximate method (sometimes called the 2:1 method). The surface load on an 

area B 3 L is dispersed at a depth z over an area (B 1 z) 3 (L 1 z), as illustrated in Figure 7.25. The 

vertical stress increase under the center of the load is

 Dsz 5
Q1B 1 z 2 1L 1 z 2 5 qsBL1B 1 z 2 1L 1 z 2  (7.95)

The approximate method is reasonably accurate (compared with Boussinesq’s elastic solution) when z . B.
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FIGURE 7.24  Infl uence factor for calculating the vertical 
stress increase under the corner of a rectangle. (Source: 
NAV-FAC-DM 7.1.)
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EXAMPLE 7.13  Vertical Stress Increase Due to a Rectangular Load
A rectangular concrete slab, 3 m 3 4.5 m, rests on the surface of a soil mass. The load on the slab is 2025 kN. Deter-

mine the vertical stress increase at a depth of 3 m (a) under the center of the slab, point A (Figure E7.13a); (b) under 

point B (Figure E7.13a); and (c) at a distance of 1.5 m from a corner, point C (Figure E7.13a).

B 

z 

B + z 

L 

L + z

qs =  ;   Q is total load
Q

———
B x L

FIGURE 7.25
Dispersion of load for approximate increase 
in vertical stress under a rectangular loaded 
area.
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Plan

Section

4.5 m

3 m 1.5 m

A B

C

C

(a)

A B

3 m

Soil
3 m

FIGURE E7.13a

Strategy The slab is rectangular and the equations for a uniformly loaded rectangular area are for the corner 

of the area. You should divide the area so that the point of interest is a corner of a rectangle(s). You may have to 

extend the loaded area if the point of interest is outside it (loaded area). The extension is fi ctitious, so you have to 

subtract the fi ctitious increase in vertical stress for the extended area.

Solution 7.13

Step 1: Identify the loading type.

 It is a uniformly loaded rectangle.
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 From the chart in Figure 7.24, Iz 5 0.107.

Step 3: Find the vertical stress increase at the center of the slab (point A, Figure E7.13b).

qs 5
Q

A
5

2025

3 3 4.5
5 150 kPa

Dsz 5 4qsIz 5 4 3 150 3 0.105 5 63 kPa

 Note: The approximate method [Equation (7.95)] gives

Dsz 5
Q1B 1 z 2 1L 1 z 2 5 202513 1 3 2 14.5 1 3 2 5 45 kPa

 which is about 30% less than the elastic solution.

Step 4: Find the vertical stress increase for point B.

 Point B is at the corner of two rectangles, each of width 3 m and length 2.25 m. You need to fi nd the 

vertical stress increase for one rectangle and multiply the result by 2.

m 5
3

3
5 1;  n 5

2.25

3
5 0.75

 From the chart in Figure 7.24, Iz 5 0.158.

Dsz 5 2qsIz 5 2 3 150 3 0.158 5 47.4 kPa

 You should note that the vertical stress increase at B is lower than at A, as expected.

Step 5: Find the stress increase for point C.

 Stress point C is outside the rectangular slab. You have to extend the rectangle to C (Figure E7.13c) and 

fi nd the stress increase for the large rectangle of width B 5 4.5 m, length L 5 4.5 m and then subtract the 

stress increase for the smaller rectangle of width B 5 1.5 m and length L 5 4.5 m.

1.5 m

2.25 m

3 m

3 m 1.5 m

4.5 m
A B 

C 

(c)(b)

FIGURE E7.13b, c

Step 2: Divide the rectangle so that the center is a corner.

 In this problem, all four rectangles, after the subdivision, are equal (Figure E7.13b; point C is excluded 

for simplicity), so you only need to fi nd the vertical stress increase for one rectangle of size B 5 1.5 m, 

L 5 2.25 m and multiply the results by 4.

m 5
B
z
5

1.5

3
5 0.5;  n 5

L
z
5

2.25

3
5 0.75
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 Large rectangle

m 5
4.5

3
5 1.5,  n 5

4.5

3
5 1.5;  from chart in Figure 7.24, Iz 5 0.22

 Small rectangle

m 5
1.5

3
5 0.5,  n 5

4.5

3
5 1.5;  from chart in Figure 7.24, Iz 5 0.13

Dsz 5 qsDIz 5 150 3 10.22 2 0.13 2 5 13.5 kPa

7.11.8 Vertical Stress Below Arbitrarily Shaped Areas

Newmark (1942) developed a chart to determine the increase in vertical stress due to a uniformly loaded area 

of any shape. The chart consists of concentric circles divided by radial lines (Figure 7.26). The area of each seg-

ment represents an equal proportion of the applied surface stress at a depth z below the surface. If there are 10 

concentric circles and 20 radial lines, the stress on each circle is qs/10 and on each segment is qs/(10 3 20). The 

radius-to-depth ratio of the fi rst (inner) circle is found by setting Dsz 5 0.1qs in Equation (7.77), that is,

0.1qs 5 qs c1 2 e 1

 1 1 1ro/z 2 2 f 3/2 d
from which r/z 5 0.27. For the other circles, substitute the appropriate value for Dsz; for example, for the 

second circle Dsz 5 0.2qs, and fi nd r/z. The chart is normalized to the depth; that is, all dimensions are 

scaled by a factor initially determined for the depth. Every chart should show a scale and an infl uence 

factor IN. The infl uence factor for Figure 7.26 is 0.001.

The procedure for using Newmark’s chart is as follows:

1. Set the scale, shown on the chart, equal to the depth at which the increase in vertical stress is 

required. We will call this the depth scale.
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IN = 0.001
Δ  z = 0.001 Nsqs

where Ns is the number of
segments covered by the

loaded area

σ 

Depth scale
x 

y 

This scale represents the depth at which
you want to calculate the vertical stress increase

FIGURE 7.26
Newmark’s chart for increase 
in vertical stress.
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2. Identify the point below the loaded area where the stress is required. Let us say this point is A.

3. Plot the loaded area, scaling its plan dimension using the depth scale with point A at the center of 

the chart.

4. Count the number of segments (Ns) covered by the scaled loaded area. If certain segments are not 

fully covered, you can estimate what fraction is covered.

5. Calculate the increase in vertical stress as Dsz 5 qsINNs.

EXAMPLE 7.14 Vertical Stress Increase Due to an Irregular Loaded Area
The plan of a foundation of uniform thickness for a building is shown in Figure E7.14a. Determine the vertical 

stress increase at a depth of 4 m below the centroid. The foundation applies a vertical stress of 200 kPa on the soil 

surface.

Depth scale

(b)

(a)

IN = 0.005

(2) (3)

(1)

2.0 m

10.0 m

2.5 m

1.0 m

y

x x

y

FIGURE E7.14a, b

Strategy You need to locate the centroid of the foundation, which you can fi nd using the given dimensions. The 

shape of the foundation does not fi t neatly into one of the standard shapes (e.g., rectangles or circles) discussed. The 

convenient method to use for this (odd) shape foundation is Newmark’s chart.

Solution 7.14

Step 1: Find the centroid.

 Divide the loaded area into a number of regular shapes. In this example, we have three. Take the 

sum of moments of the areas about y-y (Figure E7.14a) and divide by the sum of the areas to get x. 

Take moments about x-x (Figure E7.14a) to get y.

 x 5

11.0 3 10.0 3 5.0 2 1 11.5 3 2.0 3 1.0 2 1 c 1

2
3 8.0 3 1.5 3 a2 1

1

3
3 8.0b d

11.0 3 10.0 2 1 11.5 3 2.0 2 1 1

2
3 8.0 3 1.5

5
81

19
5 4.26 m
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 y 5

11 3 10 3 0.5 2 1 11.5 3 2 3 1.75 2 1 c 1

2
3 8.0 3 1.5 3 a1.0 1

1.5

3
b d

11.0 3 10.0 2 1 11.5 3 2.0 2 1 1

2
3 8.0 3 1.5

5
19.25

19
< 1 m

Step 2: Scale and plot the foundation on a Newmark’s chart.

 The scale on the chart is set equal to the depth. The centroid is located at the center of the chart and the 

foundation is scaled using the depth scale (Figure E7.14b).

Step 3: Count the number of segments covered by the foundation.

Ns 5 61

Step 4: Calculate the vertical stress increase.

Dsz 5 qsINNs 5 200 3 0.005 3 61 5 61 kPa

7.11.9 Embankment Loads

Loads from an embankment can be considered as a combination of a rectangle and two triangular strip loads. 

The vertical stress increase due to an embankment load is shown in Figure 7.27.  The applied vertical, surface 

stress is the height of the embankment multiplied by the unit weight of the embankment (fi ll) material.

7.11 STRESSES IN SOIL FROM SURFACE LOADS 177 

FIGURE 7.27 
Vertical stress increase 
due to an embankment.
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THE ESSENTIAL POINTS  ARE:
1. The increases in stresses below a surface load are found by assuming the soil is an elastic, semi-

infi nite mass.

2. Various equations are available for the increases in stresses from surface loading.

3. The stress increase at any depth depends on the shape and distribution of the surface load.

4. A stress applied at the surface of a soil mass by a loaded area decreases with depth and lateral 
distance away from the center of the loaded area.

5. The vertical stress increases are generally less than 10% of the surface stress when the depth-to-
width ratio is greater than 2.

7.12 SUMMARY

Elastic theory provides a simple, fi rst approximation to calculate the deformation of soils at small strains. 

You are cautioned that the elastic theory cannot adequately describe the behavior of most soils, and 

more involved theories are required. The most important principle in soil mechanics is the principle 

of effective stress. Soil deformation is due to effective, not total, stresses. Applied surface stresses are 

distributed such that their magnitudes decrease with depth and distance away from their points of 

application.

Self-Assessment

Access Chapter 7 at http://www.wiley.com/college/budhu to take the end-of-chapter quiz to test your 

understanding of this chapter.

Practical Examples

EXAMPLE 7.15  Vertical Stress Increase Due to an Electric Power Transmission Pole
A Douglas fi r electric power transmission pole is 12 m above ground level and embedded 2 m into the ground. The 

butt diameter is 450 mm and the tip diameter (the top of the pole) is 320 mm. The weight of the pole, cross arms, 

and wires is 33 kN. Assuming the pole transmits the load as a point load, plot the vertical stress increase with depth 

up to a depth where the stress increase is less than 5 kPa along the center of the pole.

Strategy This is a straightforward application of Boussinesq’s equation.

Solution 7.15

Step 1: Calculate vertical stress increase.

 At center of pole, r 5 0, r/z 5 0.

 Equation (7.58): I 5
3

2p
5 0.477

7.11.10 Infi nite Loads  

Uniform loads of large lateral extent such as fi lls and surcharges are assumed to be transferred to the 

soil as a uniformly distributed vertical stress throughout the depth. For example, if a fi ll of unit weight 

15 kN/m3 and height 2 m is placed on the surface of a soil, then the vertical stress at any depth below the 

surface is 2 3 15 5 30 kPa.
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 The vertical stress increase with depth is shown in the table below.

   Dsz

   Equation (7.57)
z (m) r/z I (kPa)

  0.1 0.00 0.477 1577.6
  0.2 0.00 0.477 393.9
  0.5 0.00 0.477 63.0
  1 0.00 0.477 17.8
  2 0.00 0.477 3.9

Step 2: Plot the vertical stress distribution with depth.

 See Figure E7.15.
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FIGURE E7.15

EXAMPLE 7.16   Height of Embankment to Obtain a Desired Vertical Stress Increase

A route for a proposed highway passes through a 2-km stretch of soft clay (ASTM-CS: CH) approximately 4 m thick 

underlain by poorly graded gravel with clay (ASTM-CS: GP-GC). The geotechnical engineer estimated the settle-

ment (Chapter 9) of the soft clay due to the pavement and traffi c loads and found that it is intolerable. One solution 

is to preload the soft clay by constructing a temporary embankment in stages. Each loading stage will remain on the 

soft clay for about 6 months to allow the porewater to drain and to cause the clay to settle. The loading must be of 

such a magnitude that the soft clay would not fail. The estimated maximum vertical stress increase at the center of 

the soil clay layer along a vertical line through the center of the embankment for the fi rst stage of the loading 

is 20 kPa. Calculate the height of embankment required if the pavement width is 8 m and the embankment slope 

cannot exceed 1 (V): 1.5 (H). The unit weight of the fi ll is 16 kN/m3.

Strategy The solution of this type of problem may require iteration. The constraints on the problem are the 

maximum vertical stress increase and the slope of the embankment. Since you are given the maximum vertical stress 

increase, you need to fi nd a (Figure 7.27) and use the maximum slope of the embankment to fi nd H.

Solution 7.16

Step 1: Make a sketch of the problem.

 See Figure E7.16.
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H

Max slopeFill

1
1
5

Soft clay

Poorly graded gravel with clay

4 m

FIGURE E7.16

Step 2: Calculate 
b
z

 ratio.

 
b
z
5

4

2
5 2; 

a
z

 ratio has to be determined.

Step 3: Determine I required.

 From Figure 7.27, I 5 0.48 for 
b
z
5 2 and 

a
z
5 0.001 to 2.

Step 4: Determine a/z ratio required.

 Since Figure 7.27 only gives the vertical stress increase for one half the embankment load, you have to 

divide the desired vertical stress increase by 2.

6
Dsz

2
5 qsI 5 gHI 5 16 HI

        I 5
20

2 3 16H
5

1

1.6H

 Since the minimum value of a is 1.5H, then

I 5
1

1.6H
5

1

1.6 
a

1.5

5
0.94

a

 a 5
0.94

I
5

0.94

0.48
5 1.96 m; 

a
z
5

1.96

2
5 0.88, which lies within the range 0.001 to 2. 

 Therefore, I 5 0.48.

 If 
a
z

  were not within the range 0.001 to 2, then you would have to do iterations by choosing a value 

of I for 
b
z
5 2 and then check that 

a
z

 corresponds to that value of I.

Step 5: Determine H required.

H 5
a

1.5
5

1.96

1.5
5 1.3 m

EXAMPLE 7.17  Vertical Stress Increase Due to a Foundation

A building foundation of width 10 m and length 40 m transmits a load of 80 MN to a deep deposit of stiff saturated 

clay (Figure E7.17a). The elastic modulus of the clay varies with depth (Figure E7.17b) and n 5 0.32. Estimate the 

elastic settlement of the clay under the center of the foundation.
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FIGURE E7.17

Strategy The major decision in this problem is what depth to use to determine an appropriate elastic modulus. 

One option is to use an average elastic modulus over a depth of 2B or 3B. Beyond a depth of about 2B, the vertical 

stress increase is less than 10%. Let us use a depth of 3B.

Solution 7.17

Step 1: Find the applied vertical surface stress.

qs 5
Q

A
5

80 3 103

10 3 40
5 200 kPa

Step 2: Determine the elastic modulus.

 Assume an effective depth of 3B 5 3 3 10 5 30 m.

 The average value of E is 34.5 MPa.

Step 3: Calculate the vertical settlement.

 Use Equation 17.90 2 :  Dz 5
qsB 1  1 2 n2 2

E
 Is

L
B
5

40

10
5 4,  Is 5 0.62 ln aL

B
b 1 1.12 5 0.62 ln 14 2 1 1.12 5 1.98

 Dz 5
200 3 5 3 11 2 0.322 2

34.5 3 106
 1.98 5 51.5 3 1026 m 5 51.5 3 1023 mm

Theory

 7.1 An elastic soil is confined laterally and is axially 

compressed under drained conditions. In soil mechanics, 

the loading imposed on the soil is called Ko compression 

or consolidation. Show that under the Ko condition,

s rx
s rz
5

n r
1 2 n r

  where n9 is Poisson’s ratio for drained condition.

 7.2 Show that if an elastic, cylindrical soil is confi ned in the 

lateral directions, the constrained elastic modulus is

Ec 5
E r 11 2 n r 2

11 1 n r 2 11 2 2v r 2
  where E9 5 Young’s modulus and n9 is Poisson’s ratio 

for drained condition.

 7.3 The increase in porewater pressure in a saturated soil 

is given by Du 5 Ds3 1 A(Ds1 2 Ds3). Show that if the 

EXERCISES
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8 kN 

4 kN 

2 kN 

2 kN 

FIGURE P7.10

GWL 

4.5 m 

5 m w = 28%

eo = 0.7, S = 0.85

FIGURE P7.12

 7.11 The initial principal stresses at a certain depth in a clay 

soil are 100 kPa on the horizontal plane and 50 kPa on 

the vertical plane. Construction of a surface foundation 

induces additional stresses consisting of a vertical stress 

of 45 kPa, a lateral stress of 20 kPa, and a counterclock-

wise (with respect to the horizontal plane) shear stress 

of 40 kPa. Plot Mohr’s circle (1) for the initial state of 

the soil and (2) after construction of the foundation. 

Determine (a) the change in magnitude of the principal 

stresses, (b) the change in maximum shear stress, and 

(c) the change in orientation of the principal stress plane 

resulting from the construction of the foundation.

Effective stress

 7.12 Plot the distribution of total stress, effective stress, and pore-

water pressure with depth for the soil profi le shown in 

Figure P7.12. Neglect capillary action and pore air pressure.

soil is a linear, isotropic, elastic material, A 5 1
3  for the 

axisymmetric condition.

Problem Solving

Stresses and strains

 7.4 A cylindrical soil, 75 mm in diameter and 150 mm long, 

is axially compressed. The length decreases to 147 mm 

and the radius increases by 0.3 mm. Calculate:

  (a) The axial and radial strains

  (b) The volumetric strains

  (c) Poisson’s ratio

 7.5 A cylindrical soil, 75 mm in diameter and 150 mm long, 

is radially compressed. The length increases to 153 mm 

and the radius decreases to 37.2 mm. Calculate:

  (a) The axial and radial strains

  (b) The volumetric strains

 7.6 A soil, 100 mm 3 150 mm 3 20 mm high, is subjected to 

simple shear deformation (see Figure 7.3). The normal 

force in the Z direction is 1 kN and the shear force is 

0.5 kN. The displacements at the top of the soil in the 

X and Z directions are Dx 5 1 mm and Dz 5 1 mm. 

Calculate:

  (a) The shear and normal stresses

  (b) The axial and shear strains

Elastic deformation

 7.7 A long embankment is located on a soil profi le consisting 

of 4 m of medium clay followed by 8 m of medium-

to-dense sand on top of bedrock. A vertical settlement 

of 5 mm at the center of the embankment was measured 

during construction. Assuming all the settlement is 

elastic and occurs in the medium clay, determine the 

average stresses imposed on the medium clay under the 

center of the embankment using the elastic equations. 

The elastic parameters are E 5 15 MPa and n 5 0.3. 

(Hint: Assume the lateral strain is zero.)

 7.8  An element of soil (sand) behind a retaining wall is sub-

jected to an increase in vertical stress of 5 kPa and a 

decrease in lateral stress of 25 kPa. Determine the 

change in vertical and lateral strains, assuming the soil is 

a linearly elastic material with E 5 20 MPa and n 5 0.3.

Stress state using Mohr’s circle

 7.9 A cylindrical specimen of soil is compressed by an axial 

principal stress of 500 kPa and a radial principal stress 

of 200 kPa. Plot Mohr’s circle of stress and determine 

(a) the maximum shear stress and (b) the normal and 

shear stresses on a plane inclined at 308 counterclock-

wise from the horizontal.

 7.10 A soil specimen (100 mm 3 100 mm 3 100 mm) is 

subjected to the forces shown in Figure P7.10. Deter-

mine (a) the magnitude of the principal stresses, (b) the 

orientation of the principal stress plane to the horizon-

tal, (c) the maximum shear stress, and (d) the normal 

and shear stresses on a plane inclined at 208 clockwise 

to the horizontal.

 7.13 If the groundwater in problem 7.12 were (a) to rise to the 

surface, (b) to rise 2 m above the surface, and (c) to rap-

idly decrease from 2 m above the surface to 1 m below 

its present level, determine and plot the distributions of 

vertical effective and total stresses and porewater pres-

sure with depth.

 7.14 At what depth would the vertical effective stress in a 

deep deposit of clay be 100 kPa, if e 5 1.1? The ground-

water level is at 1 m below ground surface and S 5 95% 

above the groundwater level. Neglect pore air pressure.

 7.15 A culvert is to be constructed in a bed of sand (e 5 0.5) 

for drainage purposes. The roof of the culvert will be 
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 7.18 A soil section, as shown in Figure P7.18, has a perched 

groundwater level. Plot the vertical total and effective 

stresses and porewater pressures with depth along sec-

tions A-A and B-B. Neglect pore air pressure.

Stresses in soil from surface loads

 7.19 A pole is held vertically on a soil surface by three equally 

spaced wires tied to the top of the pole. Each wire has 

a tension of 1 kN and is inclined at 458 to the vertical. 

Calculate:

  (a)  The increase in vertical stress at a depth 1 m below 

the surface

  (b)  The amount of elastic settlement below the axis of 

the pole if E 5 40 MPa and n 5 0.45

 7.20 A rectangular foundation 4 m 3 6 m (Figure P7.20) trans-

mits a stress of 100 kPa on the surface of a soil deposit. 

Plot the distribution of increases of vertical stresses with 

depth under points A, B, and C up to a depth of 20 m. At 

what depth is the increase in vertical stress below A less 

than 10% of the surface stress?

EXERCISES 183 

located 3 m below ground surface. Currently, the ground-

water level is at ground surface. But, after installation of 

the culvert, the groundwater level is expected to drop 

to 2 m below ground surface. Calculate the change in 

vertical effective stress on the roof of the culvert after 

installation. You can assume the sand above the ground-

water level is saturated.

 7.16 A soil profi le consists of 10-m-thick fi ne sand of effective 

size 0.15 mm above a very thick layer of clay. Ground-

water level is at 3 m below the ground surface. 

(a) Determine the height of capillary rise, assuming that 

the equivalent capillary tube diameter is 10% of the 

effective size and the sand surface is similar to smooth 

glass. (b) Plot the distribution of vertical effective stress 

and porewater pressure with depth if the void ratio 

of the sand is 0.6 and the degree of saturation is 90%. 

Neglect pore air pressure.

 7.17 A soil profi le consists of a clay layer underlain by a sand 

layer, as shown in Figure P7.17. If a tube is inserted into 

the bottom sand layer and the water level rises to 1 m 

above the ground surface, determine the vertical effec-

tive stresses and porewater pressures at A, B, and C. If 

Ko is 0.5, determine the lateral effective and lateral total 

stresses at A, B, and C. What is the value of the pore-

water pressure at A to cause the vertical effective stress 

there to be zero?

GWL 1 m
Clay

1.5 m

2 m

2 m

γ 

1 m

sat = 17.0 kN/m3

γ sat = 19.0 kN/m3

γ sat = 18.5 kN/m3

Sand B 

C 

A 

FIGURE P7.17
 7.21 Determine the increase in vertical stress at a depth of 5 m 

below the centroid of the foundation shown in Figure P7.21.

3 m

4 m

3 m

1 m

Perched water
table

A B

A B

w = 18%

w = 8%

w = 12%, S = 0.9

FIGURE P7.18

C 

B 

6 m 

4 m 

2 m 

2 m 
A 

FIGURE P7.20
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the owners of the existing building, and their technical 

staff. You are expected to determine what effects your 

offi ce building would have on the existing building. You 

only have one hour to make the preliminary calculations. 

You are expected to present the estimated increase in 

stresses and settlement of the existing offi ce complex 

will due to the construction of your offi ce building. 

Prepare your analysis and presentation.

 7.24 A house (plan dimension: 10 m 3 15 m) is located on a 

deep deposit of sand mixed with some clays and silts. 

The groundwater at the time the house was completed 

was 0.5 m below the surface. A utility trench, 4 m deep, 

was later dug on one side along the length of the house. 

Any water that accumulated in the trench was pumped 

out so that the trench remained dry. Because of a labor 

dispute, work on laying the utility in the trench ceased, 

but the open trench was continuously pumped. Some-

time during the dispute, the owners noticed cracking 

of the walls in the house. Assuming S 5 0.9 for the soil 

above the groundwater level and a void ratio of 0.7, write 

a short, preliminary technical report (not more than a 

page) to the owner explaining why the cracks devel-

oped. The walls of the trench did not move laterally. The 

hydraulic conductivities of the soil in the vertical and 

horizontal directions are 0.5 3 1024 cm/sec and 2.3 3 

1024 cm/sec, respectively. The calculations should be in 

an appendix to the report. Neglect pore air pressure.

 7.25 A farmer requires two steel silos to store wheat. Each 

silo is 8 m in external diameter and 10 m high. The foun-

dation for each silo is a circular concrete slab thickened 

at the edge. The total load of each silo fi lled with wheat 

is 9552 kN. The soil consists of a 30 m thick deposit of 

medium clay above a deep deposit of very stiff clay. The 

farmer desires that the silos be a distance of 2 m apart 

and hires you to recommend whether this distance is 

satisfactory. The area is subjected to a gust wind speed 

of 100 kilometers per hour.

  (a)  Plot the distribution of vertical stress increase at 

the edges and at the center of one of the silos up 

to a depth of 16 m. Assume the soft clay layer is 

semi-infi nite and the concrete slab is fl exible. Use 

a spreadsheet to tabulate and plot your results.

  (b)  Calculate the elastic settlement at the surface of one 

of the silos at the edges and at the center, assuming 

E 5 30 MPa and n 5 0.7.

  (c)  Calculate the elastic tilt of the foundation of one 

of the silos and sketch the deformed shape of the 

foundation slab.

  (d)  Would the tops of the silos touch each other based 

on the elastic tilt? Show calculations in support of 

your answer.

  (e)  What minimum separation distance would you rec-

ommend? Make clear sketches to explain your rec-

ommendation to the owner.

 7.22 Three foundations are located next to each other 

(Figure P7.22). Determine the stress increases at A, B, 

and C at a depth of 2 m below the ground surface.

1 m 

10 m 

2 m 

8 m 

5 m 

1 m 

qs = 200 kPa 

FIGURE P7.21

qs = 120 kPa
A B 

C 

qs = 90 kPa

qs = 100 kPa

4 m 

4 m 

5 m 

3 m 

3 m 2.5 m 6 m 

5 m 

FIGURE P7.22

Practical

 7.23 You are the geotechnical engineer for a proposed offi ce 

building in a densely clustered city. The offi ce building 

will be constructed adjacent to an existing offi ce com-

plex. The soil at the site is a deposit of very dense sand 

with E 5 E9 5 45 MPa and n 5 n9 5 0.3. The sand rests 

on a deep deposit of dense gravel. The existing high-rise 

complex is founded on a concrete slab, 100 m 3 120 m, 

located at 2 m below ground surface, and transmits a 

load of 2400 MN to the soil. Your offi ce foundation is 

50 m 3 80 m and transmits a load of 1000 MN. You also 

intend to locate your foundation at 2 m below ground 

level. The front of your building is aligned with the exist-

ing offi ce complex, and the side distance is 0.5 m. The 

lesser dimension of each building is the frontal dimen-

sion. The owners of the existing building are concerned 

about possible settlement of their building due to your 

building. You are invited to a meeting with your client, 
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  (a)  Plot the distribution of the lateral force increase 

with depth up to a depth of 4 m.

  (b)  What is the maximum value of the lateral force in-

crease, and where does it occur?

  (c)  If the embedment depth of the retaining wall is 

4 m, calculate the maximum additional moment 

about the base of the wall (point O in Figure P7.27) 

from constructing the building.

  (d)  What advice would you give to the developer 

regarding how far the apartment should be located 

from the existing retaining wall?

 7.28 A 10-m-thick, water-bearing sand layer (permeable), 

called an aquifer, is sandwiched between a 6-m clay 

layer (impermeable) at the top and bedrock (imper-

meable) at the bottom. The groundwater level is at the 

ground surface. An open pipe is placed at the top of the 

sand layer. Water in the pipe rises to a height of 5 m 

above the groundwater level. The water contents of the 

clay and sand are 52% and 8%, respectively.

  (a) Does an artesian condition exist? Why?

  (b)  Plot the distribution of vertical total and effective 

stresses, and porewater pressure with depth up to 

a depth of 10 m.

  (c)  If Ko of the clay is 0.5 and Ko of the sand is 0.45, plot 

the distribution of lateral total and effective stresses.

  (d)  An invert (surface of the bottom arc) level of 4 m 

from the ground surface is proposed for a water 

pipe 2 m in diameter. Draw the soil profi le and lo-

cate the water pipe. Explain any issue (justify with 

calculations) with locating the water pipe at the 

proposed invert level.
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1 m

3 m

2 m

4 m

0.5 m

Water tank

FIGURE P7.26

 7.27 A developer proposes to construct an apartment build-

ing near an existing retaining wall (Figure P7.27). The 

building of width 12 m and length 300 m (parallel to the 

retaining wall) will impose a surface stress of 150 kPa. In 

the preliminary design, the long edge of the building is 

located 1 m from the wall. Assume the building load can 

be treated as a strip load.

  (f)  Explain how the wind would alter the stress distri-

bution below the silos. (Hint: Use the charts in 

Appendix B.)

 7.26 A water tank, 15 m in diameter and 10 m high, is 

proposed for a site where there is an existing pipeline 

(Figure P7.26). Plot the distribution of vertical and lat-

eral stress increases imposed by the water tank on the pipe-

line along one-half the circumference nearest to the tank. 

The empty tank’s weight (deal load) is 350 kN. Assume the 

water tank is fi lled to its capacity.

5 m

1 m
12 m

Apartment
building

O

FIGURE P7.27
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STRESS PATH
CHAPTER 8

8.0 INTRODUCTION

In this chapter, you will learn about stress paths and their importance in understanding soil behavior 

under loads. When you complete this chapter, you should be able to:

• Calculate stresses and strains invariants.

• Plot stress paths for common soil loadings.

• Understand the difference between total and effective stress paths.

Importance

The stresses and strains discussed in Chapter 7 are all dependent on the axis system chosen. We have 

arbitrarily chosen the Cartesian coordinate and the cylindrical coordinate systems. We could, however, 

defi ne a set of stresses and strains that are independent of the axis system. Such a system, which we will 

discuss in this chapter, will allow us to use generalized stress and strain parameters to analyze and inter-

pret soil behavior. In particular, we will be able to represent a three-dimensional system of stresses and 

strains by a two-dimensional system.

We have examined how applied surface stresses are distributed in soils as if soils were linear, iso-

tropic, elastic materials. Different structures will impose different stresses and cause the soil to respond 

differently. For example, an element of soil under the center of an oil tank will experience a continuous 

increase or decrease in vertical stress while the tank is being fi lled or emptied. However, the soil near 

a retaining earth structure will suffer a reduction in lateral stress if the wall moves out. These different 

loading conditions would cause the soil to respond differently. Therefore, we need to trace the history 

of stress increases/decreases in soils to evaluate possible soil responses, and to conduct tests that repli-

cate the loading history of the in situ soil. Figure 8.1 shows an excavation near a high-rise building. The 

FIGURE 8.1 An excavation 
near a high-rise building. The 
applied loading history of soil 
elements at the same depth at 
the edge of the excavation and 
at, say, the center of the build-
ing will be different.
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