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Definition

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The

set of inputs is called the domain of the function. The set of outputs is called the range of the function.

For example, consider the function f, where the domain is the set of all real numbers and the rule is to square the input.

. . . 2 . :
Then, the input x = 3 is assigned to the output 3 = 9. Since every nonnegative real number has a real-value square root,

For a general function f with domain D, we often use x to denote the input and y to denote the output associated with
x. When doing so, we refer to x as the independent variable and y as the dependent variable, because it depends on x.

Using function notation, we write y = f(x), and we read this equation as “y equals f of x.” For the squaring function

) . . . 2
described earlier, we write f(x) = x~.



The concept of a function can be visualized using Figure 1.2, Figure 1.3, and
Figure 1.4.
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Figure 1.2 A function can be visualized as an input/output variahle
device. y =lf{x)
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\. J \ / Domain = {1, 2, 3} variable
Domain Range Figure 1.4 In this case, a graph of a function [ has a domain
Figure 1.3 A function maps every element in the domain to of {1, 2, 3} andarange of {1, 2}. The independent variable

exactly one element in the range. Although each input can be
sent to only one output, two different inputs can be sent to the

same output. . KS

is X and the dependent variable is y.



We can also visualize a function by plotting points (x. y) in the coordinate plane where y = fix). The graph of a function
is the set of all these points. For example, consider the function f, where the domain is the set ) = {1, 2, 3} and the

rule is f(x) = 3 —x. In Figure 1.5, we plot a graph of this function.
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Figure 1.5 Here we see a graph of the function [ with

domain {1, 2, 3} and rule f(x) = 3 — x. The graph consists IS
of the points (x, f(x)) forall x in the domain.



Every function has a domain. However, sometimes a function is described by an equation, as in f(x) = x%, with no

specific domain given. In this case, the domain is taken to be the set of all real numbers x for which f(x) is a real number.

For the functions f(x) = x? and f(x) = vx,

2

the domain of f(x) = x set of all real numbers.

the domain of the function f(x) = vx is the set of nonnegative real numbers



Example 1.1

Evaluating Functions

For the function f(x) = 3x%+2x— 1, evaluate

a. f(=2)

b. f(V2)

c. fla+h)
Solution

Substitute the given value for x in the formula for f(x).
a. f(=2)=3(=2)2+2(=2)=1=12-4—-1=7
b. f(2)=3(2)2+2V2—1=6+2V2—-1=5+2V2

fla+hy=3@+h*+2a+h -1 =3(a*+2ah+h*)+2a+2h- 1
C.

=30 4+ 6ah+3h*+2a+2h— 1



Example 1.2 a. f)=(x—-4)>2+5

Finding Domain and Range b. f(x)=V3x+2—1

For each of the following functions, determine the i. domain and ii. range. C. f(.x) — 3

x—2

a. Consider f(x) = (x— 4)2 + 3.
i. Since f(x)= (x— 4)2 + 5 is a real number for any real number x, the domain of f is the

interval (—o0, 00).

,..)
=

ii. Since (x — 4)2 >0, weknow f(x)=(x—-4)"+52>5.
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b. Consider f(x)=V3x+2—1.

i. To find the domain of f, we need the expression 3x+ 2 > 0. Solving this inequality, we

conclude that the domain is {x]x > —2/3}.

ii. To find the range of f,

V3x+2>0, f(x) =V3x+2—-1> —1.

the range of f is {y|ly > —11.



c. Consider f(x)= 3/(x—2).

i. Since 3/(x — 2) is defined when the denominator is nonzero, the domain is {x|x % 2}.

ii. To find the range of f,

3 _
x—2 7
Solving this equation for x, we find that
—3
x—y+2

Therefore, as long as y # 0, there exists a real number x in the domain such that f(x) = y.

Thus, the range is {y|y # O}.



Representing Functions

Typically, a function is represented using one or more of the following tools:

o A table Hours after Midnight | Temperature (°F) Hours after Midnight | Temperature (°F)
0 58 12 84 Yi
e A graph -
1 54 13 85
e A formula
2 53 14 85
80 +
3 52 15 83 ™
LI
4 52 16 82 ()
§ 70 +
5 55 17 80 E
()
Q.
: - c " E 60
k
7 64 19 74
8 72 20 69
50 4
9 75 21 65 <
0 , : ' ' ' S X
10 78 22 60 4 8 12 16 20
Hours after midnight
- > 2 > Figure 1.7 Connecting the dots in Figure 1.6 shows the
Table 1.1 Temperature as a Function of Time of Day general pattern of the data.

the area of a circle of radius r is given by the formula A(r) = xr.



Parallel and Perpendicular Lines
Lines that are parallel have equal angles of inclination, so they have the same slope (if they 7
are not vertical). Conversely, lines with equal slopes have equal angles of inclination and
so are parallel. \b
[f two nonvertical lines L, and L, are perpendicular, their slopes m; and m, satisfy
mymy = —1, so each slope is the negative reciprocal of the other: g
_ _ 1
n _—m_:!' mz——”—”.
To see this, notice by inspecting similar triangles in Figure 1.15 that my = a/h, and 0 c\bx
my = —h/a. Hence, mymy = (a/h)(—h/a) = —1.
y : :
A . L FIGURE 1.14 Line L has x-intercept a
2 and y-intercept b.
C
|
Slope m I*”é;l Slope m,
B
b | _$ DEFINITION  Slope
: }_\ f-\ > X The constant
0 A D a B : -

is the slope of the nonvertical line P, P;.

FIGURE 1.15 AADC is similar to

ACDB. Hence ¢, is also the upper angle
in ACDB . From the sides of ACDB. we

read tan ¢, = a/h.



Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the
Pythagorean theorem (Figure 1.16).

Y This distance is

d= \/|"‘2"‘f1|2 + |J’2‘l"||2

X5,
o= \/(xz‘xl)z + (3"2‘3’1)2 00 72)
| =l
P('xl. »)
i B C(xy. ¥y)
| =]
' | > X
0 xl x2

FIGURE 1.16 To calculate the distance
between P(x, y1) and Q(xz, y2), apply the
Pythagorean theorem to triangle PCQ.

Distance Formula for Points in the Plane
The distance between P(xy, y;) and Q(x3. y7) is

d=V(Ax)* + (Ay) = V(v — x> + (1 — m)>.




P(x,y)

x-mn+@y-bi=d

0

FIGURE 1.17 A circle of radius a in the
xy-plane, with center at (h, k).

EXAMPLE 5 C(Calculating Distance

(a) The distance between P(—1, 2) and O(3, 4) is
VB = (D)) + (4 —2?%= V(@2 + (2% =V20 = V4.5 =2V5.
(b) The distance from the origin to P(x, y) is

Vix — 0)? + (v — 0)2 = Vx? + 2, [ ]

By definition, a circle of radius a is the set of all points P(x, y) whose distance from
some center C(h, k) equals a (Figure 1.17). From the distance formula, P lies on the circle
if and only if

Vix — h)? + (v — k)?

SO

(x —h)?> + (y — k? =a”. (1)

Equation (1) is the standard equation of a circle with center (4, k) and radius a. The circle
of radius @ = 1 and centered at the origin is the unit circle with equation

X2+ =1,



(x — h)? + (v — k? = a’. (1)

EXAMPLE 6
(a) The standard equation for the circle of radius 2 centered at (3, 4) is
(x =3+ (y—4)PF=2=4.
(b) The circle
(x— 12+ (y+5?%=3

hash = 1,k= —5,anda = \/3. The center is the point (h, k) = (1, —5) and the
radius isa = \f3 -



EXAMPLE 7  Finding a Circle’s Center and Radius

Find the center and radius of the circle

x2+y2+4x—6y—3=0.

(x— )+ (v — k?=a%

Solution ~ We convert the equation to standard form by completing the squares in x and y:

2+l +4x—6y—3=0

y
P Exterior: (x — W2+ (v — k)2 > o (+4x )+ (P =6y )=3
e _ e 2 2 \2
PE— D +0-b=a Prde+ (2] )+ (- () )=
2 2
2 2
4 —6
! NONCS
(P +dr+4)+ (2P -6y +9)=3+4+9
(x+2?+(y—-3)P=16
Interior: (x — h)? + (y — b)> < a® The center is (—2, 3) and the radius isa = 4.
5 ;I >X The points (x, y) satisfying the inequality

(x = h)? + (y — k) < d’

FIGURE 1.18 The interior and exterior of

the circle (x — h)> + (y — k)? = a°.

circle’s exterior consists of the points (x, y) satisfying

(x — h)? + (v — k)? > a°.

Start with the given equation.

Gather terms. Move the constant
to the right-hand side.

Add the square of half the
coefficient of x to each side of the
equation. Do the same for y. The
parenthetical expressions on the
left-hand side are now perfect
squares.

Write each quadratic as a squared
linear expression.

make up the interior region of the circle with center (4, k) and radius a (Figure 1.18). The



Parabolas

The geometric definition and properties of general parabolas are reviewed in Section 10.1.
Here we look at parabolas arising as the graphs of equations of the form

y =ax?+ bx + c.

FIGURE 1.19 The parabola
y = x2 (Example 8).

EXAMPLE 8  The Parabola y = x?2

Consider the equation y = x2. Some points whose coordinates satisfy this equation are
(0,0),(1,1), (% %) (—1,1),(2,4),and (-2, 4). These points (and all others satisfying

the equation) make up a smooth curve called a parabola (Figure 1.19). |

The graph of an equation of the form

v = ax”
is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point
where the parabola and axis cross) lies at the origin. The parabola opens upward if @ > 0
and downward if @ << 0. The larger the value of |a/|, the narrower the parabola (Figure
1.20).
Generally, the graph of y = ax? + bx + ¢ is a shifted and scaled version of the
parabola y = x%. We discuss shifting and scaling of graphs in more detail in Section 1.5.



The Graphof y =ax’ + bx+¢, a#0

The graph of the equation y = ax? + bx + ¢, a # 0, is a parabola. The para-
bola opens upward if ¢ > 0 and downward if ¢ < 0. The axis is the line

x=—z. (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its

x-coordinate is x = —b/2a; its y-coordinate is found by substituting x = —b/2a
in the parabola’s equation.

4 3 2
1k
5| N\ g
Vertex at =in Y="%
origin <L
a y=-x?

FIGURE 1.20 Besides determining the
direction in which the parabola y = ax?
opens, the number a is a scaling factor.
The parabola widens as a approaches zero
and narrows as | a | becomes large.



EXAMPLE 9  Graphing a Parabola

Graph the equation y = —%xz —x+ 4.

Solution ~ Comparing the equation with y = ax? + hx + ¢ we see that

Since @ < 0, the parabola opens downward. From Equation (2) the axis is the vertical line

X = —i — —& — _1
" 2a — 2(—1/2) '
Vertex is (1. 2 y When x = —1, we have
ertex 15(— ,5) y
Point symmetric V= _%(_1)2 —(—1)+4= %
with y-intercept Interceptaty = 4
(—Zh ©.4) The vertex is (=1, 9/2).

1

1, The x-intercepts are where y = 0:
y="3x"—x+ L ’

—3x = x+4=0
> X 2+ 2r—8=0
x=2)x+4)=0

x = 2, x = —4

Intercepts at
x=-4andx =2 We plot some points, sketch the axis, and use the direction of opening to complete the

FIGURE 1.21 The parabola in Example 9.  graph in Figure 1.21. .



EXAMPLE 10 Sketching a Graph

2

Graph the function y = x* over the interval [—2, 2].

Solution
1. Make a table of xy-pairs that satisfy the function rule, in this case the equation y = x?.

2. Plot the points (x, y) whose 3. Draw a smooth curve through the
coordinates appear in the table. Use plotted points. Label the curve with
fractions when they are convenient its equation.

computationally.

X y=x? ¥ A
-2 4 L2 4L o9
—1 | .

0 0 39

1 1 2+ ¢ (E’?J

3 9 LD 1L oD

2 4 | | | | > x

5 4 -2 -l OT 12 '

How do we know that the graph of y = x? doesn’t look like one of these curves?



Identifying Functions

There are a number of important types of functions frequently encountered in calculus. We
identify and briefly summarize them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is
called a linear function. Figure 1.34 shows an array of lines f(x) = mx where b = 0, so
these lines pass through the origin. Constant functions result when the slope m = 0
(Figure 1.35).

m=-3 T m="2

FIGURE 1.34 The collection of lines
y = mx has slope m and all lines pass FIGURE 1.35 A constant function
through the origin. has slopem = 0.



Power Functions

tion. There are several important cases to consider.

(a) a = n, apositive integer.

A function f(x) = x“, where «a is a constant, is called a power func-

The graphs of f(x) = x", forn = 1, 2, 3, 4, 5, are displayed in Figure 1.36. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and also rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin.

y

/

FIGURE 1.36

3
A V=X
| -
» X
1

A

\

0
-1

Graphs of f(x) = x".,n = 1, 2, 3, 4, 5 defined for —o0 < x < 00.




(bya=-1 o a=-2.

The graphs of the functions f(x) = x' = 1/x and g(x) = x> = 1/x? are shown in
Figure 1.37. Both functions are defined for all x # 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1 which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes.

r

Domain: x # 0
Range: y # 0 0

Domain: x # 0
Range: y >0

(a) (b)

FIGURE 1.37 Graphs of the power functions f(x) = x“ for part
(a)a = —1 and for part (b)a = —2.



_1 13 2
(c) a—2,3,2.and3.

The functions f(x) = x'/?

\Vx and g(x) =x'3 = Vx are the square root and cube

root functions, respectively. The domain of the square root function is [0, o0), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.38 along
with the graphs of y = x¥?and y = x?3. (Recall that x*? = (x'?)} and x?* = (x'3)?)

0 1

Domain: 0 =x < =
Range: O0=y<=

L.

Domain: —o < x < =

Range: —-»<y<=

5

1

Domain: 0 =x < =
Range: O=y<=

FIGURE 1.38 Graphs of the power functions f(x) = x“ fora =

>
>

]_

0 1

Domain: — < x < =
Range: O=y<=

b | 2

11
g

2
,and3.



Polynomials A function p is a polynomial if
p(x) = apx™ + a1 x" '+ -+ ax + ap

where n 1s a nonnegative integer and the numbers aq, a;, as, ..., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If
the leading coefficient @, # 0 and n > 0, then »n 1s called the degree of the polynomial.
Linear functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usu-
ally written as p(x) = ax? + bx + c, are called quadratic functions. Likewise, cubic
functions are polynomials p(x) = ax® + bx? + cx + d of degree 3. Figure 1.39 shows
the graphs of three polynomials.

16

|“‘
T y=@G-2%+1)yx-1)

3 2
X xt 5 1
V= 3 2x + 3
v
A
4+
“.‘
B A v=8x*—14x3 —9xZ 4+ 1Ix— 1
If(x) = mx + bl \ )|
/N ,x
~1 / 1 2
> X <
4
-6
-8+
_]0 =
4 12}

(@) (b)

FIGURE 1.39 Graphs of three polynomial functions.

(c)



Rational Functions A rational function is a quotient or ratio of two polynomials:

_ )
q(x)

where p and g are polynomials. The domain of a rational function is the set of all real x for
which g(x) # 0. For example, the function

f(x)

_2xr -3
) =573

is a rational function with domain {x| x # —4/7}. Its graph is shown in Figure 1.40a
with the graphs of two other rational functions in Figures 1.40b and 1.40c.

y poxt+8r—3

: 32 +2
2_/\\
4_
5

-2 NOT TO SCALE

(a) (b) (c)

FIGURE 1.40 Graphs of three rational functions.



Algebraic Functions An algebraic function is a function constructed from polynomials
using algebraic operations (addition, subtraction, multiplication, division, and taking
roots). Rational functions are special cases of algebraic functions. Figure 1.41 displays the
graphs of three algebraic functions.

A

v= .'\'”3(.'\' _ 4}

: y= %(12 — )23
n1..
2 A
1 -
I > X > X
-10 0
-1k
-2
3k
(a) (b)

FIGURE 1.41 Graphs of three algebraic functions.

vy=x(1 — .1‘)2"5

~1|h —

(c)



Trigonometric Functions We review trigonometric functions in Section 1.6. The graphs
of the sine and cosine functions are shown in Figure 1.42.

.1I

VAV ANV VARV,

(a) f(x) =sinx (b) f(x) = cos x

FIGURE 1.42  Graphs of the sine and cosine functions.



Exponential Functions Functions of the form f(x) = a*, where the base @ > 0 is a
positive constant and @ # 1, are called exponential functions. All exponential functions
have domain (—02©, o0) and range (0, 0). So an exponential function never assumes the
value 0. The graphs of some exponential functions are shown in Figure 1.43.

v = 10" vy=107"
12 - 12 -
10 - 10
8 8

-1 -0.5 0 0.5 1
(a) y=2%v=3"y=10"

FIGURE 1.43 Graphs of exponential functions.



Logarithmic Functions These are the functions f(x) = log, x, where the base a # 1 is
a positive constant. They are the inverse functions of the exponential functions, and the

calculus of these functions 1s studied in Chapter 7. Figure 1.44 shows the graphs of four
logarithmic functions with various bases. In each case the domain is (0, ©©) and the range
is (—00, 00).

Vv — :
o v = log,a

v = 10"

FIGURE 1.44 Graphs of four

logarithmic functions.




EXAMPLE 1  Recognizing Functions

Identify each function given here as one of the types of functions we have discussed. Keep
in mind that some functions can fall into more than one category. For example, f(x) = x?
is both a power function and a polynomial of second degree.

@ f@)=1+x—35° (@) gh)=T (0 h) =2

(d) »(r) = sin(f — %)

Solution

@ f(x)=1+x— %xs is a polynomial of degree 5.

(b) g(x) = 7* is an exponential function with base 7. Notice that the variable x is the
exponent.

(¢) h(z) = z'is a power function. (The variable z is the base.)

(d) y(7) = sin (r — %) is a trigonometric function. O



Practice example : Recognizing Functions

In Exercises 1—4, identify each function as a constant function, linear
function, power function, polynomial (state its degree), rational func-
tion, algebraic function, trigonometric function, exponential function,
or logarithmic function. Remember that some functions can fall into
more than one category.

1. a. f(x) =7 — 3x b. g(x) = Vx
¥
¢ h(x) =11 d. r(x) = &
x" 41
2.a. F(r) =14 — 1 b. G(t) = 5
c. Hz) = V23 + 1 d. R(z) = V-7
J. a. y= 3rt21r b. y= X —2x + 1
c. y = tanmx d. y = log7x
1 z>
4. a. Yy = lOgs (—) b. f(z) -
. Vz + 1

c. g(x) =2 d. w = Scos (% + %)




Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x e D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

(f + 2)x) = flx) + g(x).
(f — 2)x) = flx) — g(x).
(fg)(x) = f(x)g(x).

Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition

of the real numbers f(x) and g(x).
At any point of D(f) N D(g) at which g(x) # 0, we can also define the function f/g

by the formula

1 - M WNEre X
(g)(x) I (whereg() 2 0)

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf 1s defined for all x in the domain of f by

(cf)(x) = cf(x).



EXAMPLE 1  Combining Functions Algebraically

The functions defined by the formulas
fx) = Vx and g(x)= VI —x,

have domains D(f) = [0, o0) and D(g) = (—00, 1]. The points common to these do-
mains are the points

[0, o) N (=00, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f + g for the product function fg.

Function Formula Domain
f+eg (f +2)(x) = Vx+ V1 —x [0, 1] = D(f) N D(g)
f-g (f —2)() = Vx—VI—x [0, 1]
g—f (g — Nx)=V1I-x-Va [0, 1]
f-g (f-2)x) = f(x)glx) = V(1 — x) [0, 1]
/ f(f) X
f/e E(x) = 2(x) =\1=-=x [0, 1) (x = 1 excluded)
o) [T

(0, 1] (x = 0 excluded)

g
o/ 7 T TN




—-/
~fla) + gla)

FIGURE 1.50 Graphical addition of two

functions.

FIGURE 1.51 The domain of the function f + g is
the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the

function f + g (Example 1).



Composite Functions
Composition is another method for combining functions.
X — 8 &) J — f(g(x))
DEFINITION Composition of Functions
If f and g are functions, the composite function f o g (“f composed with g7) is FIGURE 1.52 Two functions can be composed at
defined by ) : e
x whenever the value of one function at x lies in the
(f ° &)x) = flg(x)). domain of the other. The composite is denoted by
The domain of f o g consists of the numbers x in the domain of g for which g(x) feg.
lies in the domain of f.
fog

The definition says that f o g can be formed when the range of ¢ lies in the domain of
f.To find (f ° g)(x), first find g(x) and second find f(g(x)). Figure 1.52 pictures f o g ‘e f(g(x))
as a machine diagram and Figure 1.53 shows the composite as an arrow diagram.

8(x)

FIGURE 1.53 Arrow diagram for f o g.




EXAMPLE 2  Viewing a Function as a Composite

The function y = V1 — x? can be thought of as first calculating 1 — x? and then taking
the square root of the result. The function y 1s the composite of the function

g(x) = 1 — x? and the function f(x) = \/x. Notice that 1 — x? cannot be negative. The
domain of the composite 1s[—1, 1]. O

To evaluate the composite function g o f (when defined), we reverse the order, find-
ing f(x) first and then g(f(x)). The domain of g o f is the set of numbers x in the domain
of f such that f(x) lies in the domain of g.

The functions f ¢ gand g o f are usually quite different.



EXAMPLE 3  Finding Formulas for Composites
If f(x) = Vx and g(x) =x + 1, find
@ (feglx) () (gefHx) () (feflx) (d) (g°glx).

Somt(];:::nposite Domain
@) (f o 2)x) = fgx)) = Ve(x) = Vx + | —1, 00)
) (g fx) = g(f(--)) = f(x) + 1= Vx + 1 0, 00)
© (f ° )x) = f(f(x) = V(x) = VVa = x4 0, o0)

d) (geg)x)=glgkx)=gx)+1=x+1)+1=x+2 (—00,00)

To see why the domain of f o gis[—1, o©), notice that g(x) = x + | is defined for all
real x but belongs to the domain of fonly if x + 1 = 0, thatis to say, whenx = —1. ™

Notice that if f(x) = x? and g(x) = \/; then (f ° ¢)(x) = (\/_)2 = x. However,
the domain of f o gis [0, o©), not (—0o0, 00).



Shifting a Graph of a Function

To shift the graph of a function y = f(x) straight up, add a positive constant to the right-
hand side of the formula y = f(x).

To shift the graph of a function y = f(x) straight down, add a negative constant to the
right-hand side of the formula y = f(x).

To shift the graph of y = f(x) to the left, add a positive constant to x. To shift the
graph of y = f(x) to the right, add a negative constant to x.

Shift Formulas

Vertical Shifts

vy = flx)+k Shifts the graph of fup k units if & > 0
Shifts it down | k|units if kK < 0

Horizontal Shifts

v = f(x + h) Shifts the graph of f'left hunits it h > 0
Shifts it right | h|units if h < 0




EXAMPLE 4  Shifting a Graph

(a) Adding 1 to the right-hand side of the formula y = x? to get y = x? + 1 shifts the
graph up 1 unit (Figure 1.54).

(b) Adding —2 to the right-hand side of the formula y = x? to get y = x? — 2 shifts the
graph down 2 units (Figure 1.54).

(¢) Adding3toxiny = x*toget y = (x + 3)? shifts the graph 3 units to the left (Figure
1.55).

(d) Adding —2tox in y = |x|, and then adding —1 to the result, gives y = |x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.56).

Add a positive Add a negative
constant to x. ~ constant to x. Y
g .1" — )
A 4 v=|x-2[-1
v=(x+ 3)? v=x% [y=(x—2)? =
1
l | 1 \ I |
-4 2 | o 4
| | | .Y -
-3 0 1 2

FIGURE 1.55 To shift the graph of v = x? to the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x

(Example 4c¢).

FIGURE 1.56  Shifting the graph of

vy = |x| 2 units to the right and 1 unit

down (Example 4d).

1 unit

0 v=x2+2
v=x2+1
v =x2
V= x2 -2

oilz
_l\

2 units

FIGURE 1.54 To shift the graph
of f(x) = x? up (or down), we add

positive (or negative) constants to
the formula for f (Example 4a

and b).




Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally. This 1s accomplished by multiplying the function f, or the independent variable x,
by an appropriate constant c¢. Reflections across the coordinate axes are special cases
where c = —1.

Vertical and Horizontal Scaling and Reflecting Formulas

Forc > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % f(x) Compresses the graph of f vertically by a factor of c.

v = f(cx) Compresses the graph of f horizontally by a factor of c.
v = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y = —f(x) Reflects the graph of f across the x-axis.

v = f(—x) Reflects the graph of f across the y-axis.




A
51 v =3Vx
4l
3 stretch 1=V:
2_
o
1 Compress 4 3\/';
| | | | | _
10 1 2 3 4 :

FIGURE 1.57 Vertically stretching and
compressing the graph y = Vx by a
factor of 3 (Example 5a).

EXAMPLE 5 Scaling and Reflecting a Graph

(a) Vertical: Multiplying the right-hand side of y = Vi by 3 to get y = 3Vx stretches
the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the

graph by a factor of 3 (Figure 1.57).

(b) Horizontal: The graph of y = \/3x is a horizontal compression of the graph of
y = Vx by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3

(Figure 1.58). Note that y = V3x = V/3Vx so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

(c¢) Reflection: The graphof y = — \x is a reflection of y = \/x across the x-axis, and

v = V —x s a reflection across the y-axis (Figure 1.59).

FIGURE 1.58 Horizontally stretching and
compressing the graph y = V/x by a factor of

3 (Example 5b).

y=V=

FIGURE 1.59 Reflections of the graph
vy = VXx across the coordinate axes
(Example 5c¢). [



EXAMPLE 6 Combining Scalings and Reflections

Given the function f(x) = x* — 4x* + 10 (Figure 1.60a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.60b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the
x-axis (Figure 1.60c).

Solution

(a) The formula is obtained by substituting —2x for x in the right-hand side of the equa-
tion for f

y=f(—2x) = (—2x)* — 4(—2x)* + 10
= 16x* + 32x% + 10.
(b) The formula is

=Ly =1 4 3 _
) > f(x) > X+ 2x 5. N

fy=x*—ax3+10

(@)

20

()




Trigonometric Functions
This section reviews the basic trigonometric functions. The trigonometric functions are important because they are

periodic, or repeating.

Radian Measure

In navigation and astronomy, angles are measured in degrees, but in calculus it is best to
use units called radians because of the way they simplify later calculations.

The radian measure of the angle ACB at the center of the unit circle (Figure 1.63)
equals the length of the arc that ACB cuts from the unit circle. Figure 1.63 shows that
s = r@ 1s the length of arc cut from a circle of radius » when the subtending angle 6 pro- Circle ot o™
ducing the arc is measured in radians.

Since the circumference of the circle is 27 and one complete revolution of a circle 1s
360°, the relation between radians and degrees is given by

FIGURE 1.63 The radian measure of
angle ACB is the length 6 of arc AB on the
unit circle centered at C. The value of 8
can be found from any other circle,
however, as the ratio s/r. Thus s = rf is

7r radians = 180°.

For example, 45° in radian measure is the length of arc on a circle of radius r
. when 6 is measured in radians.
T W Conversion Formulas
45« —~ = —rad,
180 4 -
o 1 degree = @{HO.OZ) radians
and 77/6 radians is
: : T
w180 o Degrees to radians: multiply by ——
€ T = 30°. 180

1 radian = ?(EST) degrees

Radians to degrees: multiply by @




Degrees

Radians

45

45 90

30

60 90

FIGURE 1.64 The angles of two common
triangles, in degrees and radians.

Terminal ray

Positive Initial ray

measure

/

Initial ray

L,y

Terminal
ray

FIGURE 1.65 Angles in standard position in the xy-plane.

J Negative

measure




The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in
terms of the sides of a right triangle (Figure 1.67). We extend this definition to obtuse and
negative angles by first placing the angle in standard position in a circle of radius r. We
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.68).

. : Yy r
sine: sinf = 7 cosecant: cscf = v

. X r
cosine: cosf@ = 7 secant: secf = X
y X

tangent: tanf = cotangent: cotf =

v

These extended definitions agree with the right-triangle definitions when the angle is
acute (Figure 1.69).

Notice also the following definitions, whenever the quotients are defined.

__sinf ]
tan @ = cos 0 cotf = an 0
o= o= |
SECV = Cos 0 SV = Sing

hypotenuse

opposite
\ 0 )
adjacent

sin 6 = opP csc f = M
hyp opp

_ adj _ hyp
cosf = h_yp sec 6 = a—dj
di

tan § = ﬂ cotf = =
adj opp

FIGURE 1.67 Trigonometric

ratios of an acute angle.

.“‘
A

P(x,v)

FIGURE 1.68 The trigonometric
functions of a general angle 0 are
defined in terms of x, y, and r.




=

hypotenuse P(x, y)
r
/ Y\ opposite
.\ 0 > X
0 X
adjacent

FIGURE 1.69 The new and old
definitions agree for acute angles.

o _ | m_ 1 . T V3
sin 1 7\/5 sm =3 sin3- = —5—
m_ 1 mzzﬁ cos T =1

4T\ 6 2 32
tan%Z ] t.f:m%:L tan%Z \/5

V3

The CAST rule (Figure 1.70) 1s useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.71, we see that

V3 27 tan___\/—

1
R T 3 2

Using a similar method we determined the values of sin 6, cos €, and tan 8 shown in Table
1.4.



A
S A
sin pos all pos
> X
 § &
tan pos COS pos

FIGURE 1.70 The CAST rule,
remembered by the statement “All
Students Take Calculus,” tells
which trigonometric functions are
positive in each quadrant.

cos =, sin =——
3

( 27 2;):[_%“%3]

“‘fﬂw

1 } :{'

b | —

FIGURE 1.71 The triangle for
calculating the sine and cosine of 277/3
radians. The side lengths come from the

geometry of right triangles.



TABLE 1.4 Values of sin 6, cos @, and tan 0 for selected values of 8 }
Degrees —180 -—-135 -90 -—-45 0 30 45 60 90 120 135 150 180 270 360
. =37 —Tr —T T T T T 2 3 S 37
6 (radlans) - 4 2 4 0 ? Z j 5 T T T ™ T 27 3
3
: -2 -\V2 1 V2 V3 V3 V2 1
sin 0 0 — 50 53 5 5 I 5 5 3 010 - \2 >
0s 0 -1 _7\/5 0 ﬁ 1 ﬁ ﬁ l 0 _ l — \/5 — \/5 —1 0 1
¢ 2 2 2 2 2 2 2 2
tan 6 0 1 -1 0 % I V3 -V3 -l _T3 0 0
FIGURE 1.72 The triangle for
calculating the trigonometric functions in
EXAMPLE 1  Finding Trigonometric Function Values Example 1.

Iftand = 3/2and 0 < @ < 7/2, find the five other trigonometric functions of 6.

Solution  From tan@ = 3/2. we construct the right triangle of height 3 (opposite) and
base 2 (adjacent) in Figure 1.72. The Pythagorean theorem gives the length of the hy-

potenuse, V4 + 9 = V 13. From the triangle we write the values of the other five

trigonometric functions:

V13 Vi3

2 : 3 b
cos = ——, smb=——, secld=—75—, cscl = ——, cotd = 5
V13 V13 . 3 3



In Exercises 7-12, one of sin x, cos x, and tan x is given. Find the other

two if x lies in the specified interval.

3 T — : .
7. sm.t—g__ .15[2.17] 8. tanxy = 2. _15[.2}

1 ™ 5 T
'q"\- ..-:_.. .. __q r1-|.-:_ - ..- T
). cosx = 3 15[ 5 0} 10. cosa 3 15[2 ’?T]
7. cosx=—3.tanx = — = 8. sinx = Zz.cosx =
/8 _ S _
9. sinXx = — 5 .,tanX = \/g [0. sinx = 5. tanx =

u-|;3



Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure 6 + 27 are in standard position,
their terminal rays coincide. The two angles therefore have the same trigonometric func-

tion values:
cos(@ + 27) = cos @ sin(@ + 2m) = sin#@ tan(@ + 27) = tan 6
sec(@ + 2m) = secf csc(f + 2m) = csch cot(@ + 2m) = cot @

Similarly, cos (0 — 27) = cos @, sin (6 — 27) = sin @, and so on. We describe this re-
peating behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION Periodic Function

A function f(x) i1s periodic if there 1s a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period

of f.




A

/N /.

Domain: - < x < =
Range: -1=yv=1
Period: 27

(a)

v
A v=secx

J |
i ﬁ%li

Domain: x qﬁ'_"z, + 3—77, .
2 2
Range: vy=-landy=1

Period: 2w

o

|
Du
oty

(d)

y=sinx

— 9 12}

Domain: —o < x < =

Range: -l1=y=1
Period: 27
(b)
J"
0 yv=cscx

Domain: x # 0, =7, =27, ...
Range: vy=-landv=1
Period: 27

(e)

v

A yv=tanx
m AT 0 T 3
; ,

Domain: x ;tiz, + 3—W, B
2 2
Range: - <y<w

Period: = (©)

b

0 y=cotx

T 2

|
S

3
2

Domain: x # 0, =7, =27, ...
Range: - <y <
Period: 7

()

FIGURE 1.73 Graphs of the (a) cosine, (b) sine, (c) tangent, (d) secant, (e) cosecant, and (f) cotangent
functions using radian measure. The shading for each trigonometric function indicates its periodicity.



‘ Periods of Trigonometric Even Odd
Functions

Period w: tan(x + 7) = tanx cos(—x) = cosx sin(—x) = —sinx
cot(x + ) = cotx sec(—x) = secx tan(—x) = —tanx
Period 27r: sin(x + 27) = sinx esc(—x) = —cscx
cos(x + 2m) = cosx )
sec(x + 27) = secx cot(—x) = —cotx

csc(x + 27) = cscx




Y Identities

P(cos 0, sin 0) <2 The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s

distance from the origin and the angle that ray OP makes with the positive x-axis (Figure
- 1.69). Since x/r = cos @ and y/r = sin 6, we have
sin 6

[

X = rcoséf, y = rsiné.

When r = | we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.74 and obtain the equation

cos> + sin?@ = 1. (1)

FIGURE 1.74 The reference
triangle for a general angle 6.

This equation, true for all values of 8, is the most frequently used identity in trigonometry.
Dividing this identity in turn by cos” @ and sin® @ gives

| + tan® @ = sec? 0.
| + cot? @ = csc? .

Addition Formulas

cos(4 + B) = cosAcosB — sinAsinB

2
sin(4 + B) = sinAcosB + cos AsinB @)




Double-Angle Formulas

cos 20 = cos?@ — sin’6 ]
sin 260 = 2smé@cosb 3)

Additional formulas come from combining the equations
cos’@ + sin’@ = 1, cos’h — sin* 6 = cos 26.

We add the two equations to get 2 cos*6 = | + cos 26 and subtract the second from the

first to get 2 sin®@ = 1 — cos 26. This results in the following identities, which are useful
in integral calculus.

Half-Angle Formulas

cosf = 1 + ;os 20 (4)
| — cos 260

sin?@ = 5 (5)




The Law of Cosines

If a, b, and ¢ are sides of a triangle ABC and if 8 is the angle opposite ¢, then

c* = a* + b* — 2abcos®. (6)

This equation is called the law of cosines.

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.75. The coordinates of 4
are (b. 0); the coordinates of B are (a cos 6. a sin 8). The square of the distance between A4
and B 1s therefore

(acos® — b)? + (asin@)’
a*(cos* @ + sin*0) + b*> — 2abcos @
I

= a® + b® — 2abcos®.

H
I

The law of cosines generalizes the Pythagorean theorem. If @ = /2. then cos @ = ()
and ¢ = a* + b*.

B(a cos 0, a sin 0)

1o
A

C b Ab,0)

FIGURE 1.75 The square of the distance
between A and B gives the law of cosines.




Use the addition formulas to derive the identities in Exercises 31-36.

Addition Formulas

— ) = sinx AT
31. cos (_1 5 ) SIN X 32. cos (:-. + > ) S1N X cos(A + B) = cos A cos B — sinA sin B
sin(4 + B) = sindcosB + cosAsinB
AT AN _ (o _ |
33. sin (.1 + 7) = CO0S ) 34. sin (_1 — ?) = —CO0S 2]
35. cos(4 — B) = cosAcosB + sinAsinB | Even Odd
cos(—x) = cosx sin(—x) = —sinx
36. sin(4 — B) = sindAcosB — cosA4sinB sec(—x) = secx tan(—x) = —tanx
3 . - _ . - 0 . | . csc(—x) = —cscx
31. cos (x — 5) = COS X COS (— 5) — sin X sin (— 5) = (cos x)(0) — (sinx)(—1) = sinx cot(=x) = —cotx
32. cos (x+ 5) = cos x cos (§) — sin x sin (§) = (cos x)(0) — (sin x)(1) = —sin x
33. sin (x + %) — sin X cos (%) + cos X sin (%) = (sin x)(0) 4+ (cos x)(1) = cos x
34. sin (x — %) = sin X cos (— %) ~+ cos X sin (— %) = (sin x)(0) + (cos x)(—1) = —cos x
35. cos(A—B) =cos(A +(—B)) = cos Acos(—B) — sin A sin(—B) = cos A cos B — sin A (—sin B)

=cos Acos B+ sin AsinB

sin(A —B) =sin(A + (—B)) = sin A cos(—B) + cos A sin(—B) = sin A cos B + cos A (—sin B)

=sinAcosB—cos AsinB



In Exercises 3942, express the given quantity in terms of sin x and

COS X.

39. cos(m + x) 40. sin(27m — x)

39. cos(m+X)=cosmcosx —sinmsinX = (—1)(cos x) — (0)(sin Xx) = —cos X

40. sin (27 — x) = sin 27 cos (—x) + cos (27) sin(—x) = (0)(cos (—x)) + (1)(sin(—x)) = —sin X

Find the function values in Exercises 47-50.
2T 2 T
47. cos 3 48. cos 2
.2 T . 2T

49. sin 2 50. sin 3

Half-Angle Formulas

cos’O = m (4)
sin @ = 1 = cos20 ;os 26 (5)

48, cos? I — I+cos (%) 1+3*~,é _ 2+/3
) 12 2 o 2 o 4




LIMITS AND CONTINUITY

OVERVIEW The concept of a limit 1s a central idea that distinguishes calculus from alge-
bra and trigonometry. It is fundamental to finding the tangent to a curve or the velocity of

an object.



Rates of Change and Limits

In this section, we introduce average and instantaneous rates of change. These lead to the
main idea of the section, the idea of limit.

Average and Instantaneous Speed

A moving body’s average speed during an interval of time is found by dividing the dis-
tance covered by the time elapsed. The unit of measure 1s length per unit time: kilometers
per hour, feet per second, or whatever 1s appropriate to the problem at hand.

EXAMPLE1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed

(a) during the first 2 sec of fall?

(b) during the I-sec interval between second 1 and second 2?



the only force acting on the falling body. We call this type of motion free fall.) If y denotes

the distance fallen 1n feet after 7 seconds. then Galileo’s law 1s
y = 1612,

where 16 is the constant of proportionality.

The average speed of the rock during a given time interval is the change in distance,

Ay, divided by the length of the time interval, Af.

Ay 16(2)* — 16(0)°
(a) For the first 2 sec: Y _ (2) (0)° _ 321

Ay 16(2)F — 16(1)F
(b) From sec | to sec 2: A7 7 ] = 3

The next example examines what happens when we look at the average speed of a falling

object over shorter and shorter time intervals.



EXAMPLE 3  The Average Growth Rate of a Laboratory Population

Figure 2.2 shows how a population of fruit flies (Drosophila) grew in a 50-day experi-
ment. The number of flies was counted at regular intervals, the counted values plotted with
respect to time, and the points joined by a smooth curve (colored blue in Figure 2.2). Find
the average growth rate from day 23 to day 45.

Solution  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by 340 — 150 = 190 in 45 — 23 = 22 days. The average rate of change
of the population from day 23 to day 45 was

JAp 340 — 150 _ 190 .
Average rate of change: Ar 453 - © 8.6 flies/day.

p
&~
350 -
O(45, 340)
‘_r 300
2
= 250 Ap= 190
=}
= 200 | —& s
Rt ] Ar=22
100
50
0 10 20 30 40 50

Time (days)

FIGURE 2.2 Growth of a fruit fly population in a controlled

experiment. The average rate of change over 22 days
Ap/ At of the secant line.

is the slope

This average is the slope of the secant through the points P and Q on the graph in Figure

2.2.

The average rate of change from day 23 to day 45 calculated in Example 3 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine

time intervals closer to the day in question.




EXAMPLE 4

The Growth Rate on Day 23

How fast was the number of flies in the population of Example 3 growing on day 23?

Solution

the curve (Figure 2.3).

To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by cal-
culating the slopes of secants from P to Q, for a sequence of points Q approaching P along

Slope of PO = Ap /At

0 (flies /day)

. 340 — 150

(45, 340) 553 86
330 — 150

(40, 330) 03 ~ 106
310 — 150

(35, 310) T3 < 133
265 — 150

(30, 265) 3 ~ 164

‘% = 16.7 flies/day (approximately).
P
A h-

300 (45, 340)

4

g 250 ////
L y /4
'g 150 P(23, 150)
Z.

100

50

0' T \ 20 30 20 - > ¢

A(14,0)  Time (days)

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).

we determine limiting values, or /imits, as we will soon call them. 5




Limits of Function Values

Let f(x) be defined on an open interval about xg, except possibly at xy itself. If f(x)
gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to xy, we say
that f approaches the limit L as x approaches xj, and we write

lim f(x) =L,

X—>Xo which is read “the limit of f(x) as x approaches xo1s L”.

EXAMPLE 5 Behavior of a Function Near a Point

How does the function
x2 -1
x — 1

f(x) =
behave nearx = 1?
Solution  The given formula defines f for all real numbers x except x = | (we cannot di-

vide by zero). For any x # 1, we can simplify the formula by factoring the numerator and
canceling common factors:

flx) = — ' =x+ 1 for x # 1. :



The graph of f is thus the line y = x + | with the point (1, 2) removed. This removed
point is shown as a “hole™ in Figure 2.4. Even though f(1) is not defined, it is clear that
we can make the value of f(x) as close as we want to 2 by choosing x close enough to 1

FIGURE 2.4 The graph of f is
identical with the line y = x + 1
except atx = 1, where f is not
defined (Example 5).

(Table 2.2).
TABLE 2.2 The closer x gets to 1, the closer f(x) = (x2 — 1)/(x — 1)
seems to get to 2
_x =1
Values of x below and above 1 f(x) = c_1-% + 1, x#1
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
T 1.000001 2.000001

lim f(x) = 2,

x—1

or

We say that f(x) approaches the /imit 2 as x approaches |, and write

2

.X
lim = 2.

I—)l -1‘ - ]




EXAMPLE 6  The Limit Value Does Not Depend on How the Function Is
Defined at xg

The function f in Figure 2.5 has limit 2 as x — | even though f is not defined at x = 1.
The function g has limit 2 as x — | even though 2 # g(1). The function /4 is the only one

A4
=

\
o
L

2 1

(a) fix) =2

py— ®gm=1 "1 © h(x)=x+ 1

1, xr=1

FIGURE 2.5 The limits of f(x), g(x), and /(x) all equal 2 as x approaches 1. However,
only /(x) has the same function value as its limit at x = 1 (Example 6).

whose limit as x — | equals its value at x = 1. For A, we have limy— h(x) = A(1). This
equality of limit and function value is special, and we return to it in Section 2.6. |

Sometimes limy—y, f(x) can be evaluated by calculating f(xo). This holds, for exam-
ple, whenever f(x) is an algebraic combination of polynomials and trigonometric func-
tions for which f(xg) is defined. (We will say more about this in Sections 2.2 and 2.6.)



EXAMPLE 8
(a) If f is the identity function f(x) = x, then for any value of xo (Figure 2.6a),

The Identity and Constant Functions Have Limits at Every Point

lim f(x) = lim x = xo.
X—Xp X—Xp
(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of xg (Figure 2.6b),

lim f(x) = lim k = k.
X—Xp X—Xp
For instance,
limx =3 and lim7(4) = 1i1r12(4) = 4.

x—3 Xx——

(b) Constant function

FIGURE 2.6 The functions in Example 8.




Calculating Limits Using the Limit Laws

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combina-
tions of functions whose limits we already know.

THEOREM 1 Limit Laws

It L, M, ¢ and k are real numbers and

lim f(x) = L and lim g(x) = M, then

1. Sum Rule: lin(f(r) +egx) =L+ M

The limit of the sum of two functionsxis '[i‘lﬁ: sum of their limits.

2. Difference Rule: lin(f(r) —gx))=L—-M

The limit of the difference of two fungtiocns 1s the difference of their limits.
3. Product Rule: Jli_twnﬂ(f(x) rg(x))=L-M

The limit of a product of two functions is the product of their limits.

10



4. Constant Multiple Rule: lim(k- f(x)) = k- L

X—>cC
The limit of a constant times a function is the constant times the limit of the
function.

N

S. Quotient Rule: [im flx) L M #0
x—c g(r) M
The limit of a quotient of two functions 1s the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then

lim (f(x))* = L

X—¢

provided that L” /% is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter 1s a real number.




EXAMPLE 1 Using the Limit Laws

properties of limits to find the following limits.

(@) lim(x® + 4x

X—>cC

Solution

2

—3)

(@) lim(x® + 4x? — 3)

X—>¢

(b) lim =

44Xt -

2

X—c¢ X

+ 5

4 2 _
(b) lim > — 1

x—c x4+ 5

= lim x> + lim 4x% — lim 3
X—cC X—C X—¢C

=c + 4c¢? -3
lim(x* + x2 = 1)
X—c¢

lim(x? + 9)

X—>cC

lim x* + lim x2 — lim 1
X—>¢C X—¢ X—/C

lim x2 + lim 5
X—>¢ X—7¢C

et + % —
ct+5

Sum and Difference Rules

Product and Multiple Rules

Quotient Rule

Sum and Difference Rules

Power or Product Rule

12



(¢) lim V4x? — 3

x——2
(¢) lim \/4'1‘_2 — 3 = \/ lim (4,1-2 — 3) Power Rule with r/s = !/
x—>—2 x—>—2
= \/ lim 4x% — lim 3 Difference Rule
x—>—2 x—>—2
= \/4(—2)2 -3 Product and Multiple Rules

13



THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P(x) = apx” + ap—1x" ' + -+ + ag, then

lim P(x) = P(c) = ayc™ + ay_1c" '+ -+ + ay.

X—>cC

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and O(x) are polynomials and O(c¢) # 0, then
s P Ple)
im = :
x—c O(x)  O(c)

14




EXAMPLE 2  Limit of a Rational Function

BAar-3 (1P +4-1)-3 o

lim = =—=10
—-1  x2+5 (—1)* + 5 6
This result 1s similar to the second limit in Example 1 with ¢ = —1, now done 1n one step.

Eliminating Zero Denominators Algebraically

Theorem 3 applies only 1f the denominator of the rational function is not zero at the limit
point c. If the denominator 1s zero, canceling common factors in the numerator and de-
nominator may reduce the fraction to one whose denominator 1s no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction.

15



EXAMPLE 3  Canceling a Common Factor

Evaluate

o ox2 4+ x=2
lim > .
x—1 X —x

Solution  We cannot substitute x = 1 because it makes the denominator zero. We test the
numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x — 1) in common
with the denominator. Canceling the (x — 1)’s gives a simpler fraction with the same val-
ues as the original for x # 1:

.r2+.x—2:(x_1)(-’5‘*‘2):.1:4-2

\ ifx # 1.
x?—x x(x — 1) X
Using the simpler fraction, we find the limit of these values as x — | by substitution:
x4+ x—=2 . x+2 1+2_
lim > = lim —F— = = 3.
x—>1  x° —x x—1 - 1

See Figure 2.8. n
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THEOREM 4 The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval containing c,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim A(x) = L.

Then lim,—. f(x) = L.

The Sandwich Theorem 1s sometimes called the Squeeze Theorem or the Pinching Theorem.

FIGURE 2.9 The graph of f is
sandwiched between the graphs of g and A.

EXAMPLE 5  Applying the Sandwich Theorem

Given that
I‘Y2 "rz
I—Tsu(x)il-l-j forall x # 0,

find limy—¢ u(x), no matter how complicated u is.

Solution Since

1i_1310(1 — (x*4)) =1  and li_%(l + (x%/2)) = 1,

the Sandwich Theorem implies thatlim,_.q u(x) = 1 (Figure 2.10). m

FIGURE 2.10  Any function u(x)

whose graph lies in the region between
y=1+ (x}/2)and y = 1 — (x?/4) has
limit 1 as x — 0 (Example 5).




EXAMPLE 6  More Applications of the Sandwich Theorem

(a) (Figure 2.11a). It follows from the definition of sin 6 that —|@| = sin 6 = |6|for all 6,
and since limg—o(—|0|) = limg—o|@| = 0, we have

lim sin@ = 0.

6—0
.‘I‘
.1_\ A
» v=I0l -
1L v=sinf
al >0 | L
- ™ -2 -1

-1+ v=-l8l (b)

(a)

FIGURE 2.11 The Sandwich Theorem confirms that (a) limg—q sin® = 0 and
(b) limg—o (1 — cosB) = 0 (Example 6).

(b) (Figure 2.11b). From the definition of cos 8,0 = 1 — cos@ = |0| for all §, and we
have limg_o (1 — cos@) = O or

lim cos@ = 1.
6—0

(c) For any function f(x), if limy—.|f(x)| = 0, then lim,—. f(x) = 0. The argument:
—|f(x)| = f(x) = |f(x)| and —|f(x)| and | f(x)| have limit 0 as x —>c. m

Another important property of limits is given by the next theorem. A proof is given in
the next section.



THEOREM 5 If f(x) = g(x) forall x in some open interval containing ¢, except
possibly at x = ¢ 1tself, and the limits of f and g both exist as x approaches c,
then

lim f(x) = lim g(x).

X—>¢ X—>c¢

The assertion resulting from replacing the less than or equal to = 1nequality by the strict
< inequality in Theorem 35 1s false. Figure 2.11a shows that for 6 # 0,
—|0| < sin@ < |8/, but in the limit as § — 0, equality holds.




The Precise Definition of a Limit

A
9
To satisfy
this Lg
5
I : Lower bound:
| | vy=235
| |
L,
4 > X
of 345
/| e
Restrict

to this

FIGURE 2.12 Keeping x within 1 unit
of xo = 4 will keep y within 2 units of
vo = 7 (Example 1).

EXAMPLE 1 A Linear Function

Consider the function y = 2x — | near xo = 4. Intuitively it is clear that y is close to 7
when x is close to 4, so lim,—4(2x — 1) = 7. However, how close to xo = 4 does x have
to be so that y = 2x — 1 differs from 7 by, say, less than 2 units?

Solution  We are asked: For what values of x is |y — 7| < 2? To find the answer we
first express |y — 7| in terms of x:

v — 7| =]@2x — 1) — 7| =|2x — 8.

The question then becomes: what values of x satisfy the inequality [2x — 8| < 2? To
find out, we solve the inequality:

|2x — 8| < 2
-2 < 2x—8 <2
6 < 2x < 10
3 <x<35

-1 <x—-4 <.

Keeping x within 1 unit of xo = 4 will keep y within 2 units of yo = 7 (Figure 2.12). =



DEFINITION

Limit of a Function

Let f(x) be defined on an open interval about xg, except possibly at xg itself. We
say that the limit of f(x) as x approaches x is the number L, and write

lim f(x) = L,

X—>Xxp

if, for every number € > 0, there exists a corresponding number 8 > 0 such that

for all x,

0 < |x—x| <8 = | f(x) = L| <e.

L+eT
f(x) lies
L ._ £x) " in here
L—-—¢€
for all x # x
in here
_ 6 o
£ .—Cx 3 > X
0 C 7

.\'0 — 8 .To .\'0 + 6

FIGURE 2.14 The relation of 8 and € in
the definition of limit.




Examples: Testing the Definition
EXAMPLE 2  Testing the Definition

N
A y=>5 -3
/ Show that
2+e€
! lim (5x — 3) = 2.
| x—1
TR A
: ! Solution  Setxp = 1, f(x) = 5x — 3,and L = 2 in the definition of limit. For any given
2-¢ ( ! € > 0, we have to find a suitable 8 > 0 so that if x # 1 and x is within distance & of
/‘} | xp = 1, that is, whenever
| | >
0 € € —
-5 1 1+ 0<|x—1] <8,
it 1s true that f(x) 1s within distance € of L = 2, so
f(x) - 2| < e.
We find & by working backward from the e-inequality:
-3
/ (5x = 3) = 2|=|5x — 5| < e
NOT TO SCALE
S5x = 1] <€
FIGURE 2.15 If f(x) = 5x — 3, then lx — 1] < €/5.

0 < |x — 1| < €/5 guarantees that ,
|f(x) — 2| < e (Example 2). Thus, we can take 8 = €/5 (Figure 2.15). If 0 < |x — 1| < 8 = €/5, then
|(5x = 3) = 2|=|5x = 5|=5|x — 1| < 5(¢/5) = e,

which proves that limy—(5x — 3) = 2.

The value of 8 = €/5 is not the only value that will make 0 < |x — 1| < & imply
|5x — 5| < €. Any smaller positive & will do as well. The definition does not ask for a
“best” positive 8, just one that will work. u



FIGURE 2.16 For the function f(x) = x,
we find that 0 << |x — x| < & will
guarantee | f(x) — xo| < € whenever

0 = € (Example 3a).

EXAMPLE 3  Limits of the Identity and Constant Functions

Prove:

(@) lim x = xg (b) im &£ =k (k constant).
XXy XX

Solution

(a) Lete > 0 be given. We must find & > 0 such that for all x
0<|x—xo| <6 implies |x — xo| < €.

The implication will hold if & equals € or any smaller positive number (Figure 2.16).
This proves that lim,—,, x = xy.

(b) Let e > 0 be given. We must find & > 0 such that for all x
0 < |x —xo <& implies |k — k| < €.

Since k — k = 0, we can use any positive number for & and the implication will hold
(Figure 2.17). This proves thatlim,_,,, k = k. m



Finding Deltas Algebraically for Given Epsilons

EXAMPLE 4  Finding Delta Algebraically

For the limit limy,—sVx — 1 = 2, find a 6 > 0 that works for € = 1. That is, find a
& > 0 such that for all x

0<|x—-5] <6 = 'Vx —1-2| < 1.

Solution  We organize the search into two steps, as discussed below.

1. Solve the inequality |\'x — 1 — 2| < 1 to find an interval containing xo = 5 on
which the inequality holds for all x # xy.

[Vx—-1-2] <1
-1 < Vx—-1-2<I1
l < Vx—-1<3
l<x—-—1<9
2 <x<10
The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5 in
this interval as well (see Figure 2.19).

2. Find a value of & > 0 to place the centered interval 5 — 6§ < x < 5 + & (centered
at xo = J) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) 1s 3 (Figure 2.18). If we take 6 = 3 or any smaller positive number, then the
inequality 0 < |x — 5| < & will automatically place x between 2 and 10 to make

|Vx — 1 — 2| < I (Figure 2.19)

0<|x—5] <3 = |V —1-2| < 1.

FIGURE 2.18  An open interval of
radius 3 about xo = 5 will lie inside the
open interval (2, 10).

5
NOT TO SCALE

FIGURE 2.19 The function and intervals

in Example 4.




How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a & > 0 such that for all x

0<|x—x| <8 = [ f(x) — L| <€
can be accomplished in two steps.

1. Solve the inequality |f(x) — L| < € to find an open interval (a, b) contain-
ing x¢ on which the inequality holds for all x # xg.

2. Find a value of 8 > 0 that places the open interval (xo — 8, xo + &) centered
at xo inside the interval (a, b). The inequality | f(x) — L| < € will hold for all
X # xp In this é-interval.




EXAMPLE 5 Finding Delta Algebraically

Prove that limy—; f(x) = 4if

{xz, X #2
1, x = 2.

Solution  Our task is to show that given € > () there exists a 8 > 0 such that for all x

1.

0<|x—2| <6 = 1 f(x) — 4| <e.

Solve the inequality |f(x) — 4| < € to find an open interval containing xo = 2 on
which the inequality holds for all x # xq.

Forx # xo = 2, we have f(x) = x?, and the inequality to solve is [x* — 4| < e:
X2 — 4| <€
—e<xrP—4<e¢€
4 —e<x?<4+e€

V4 —€e < Il‘l < V4 + € Assumes € < 4; see below.
V4 — € <x < V4 + €. An open interval about xo = 2

that solves the inequality

The inequality |f(x) — 4| < € holds for all x # 2 in the open interval ( V4 — e,
V4 + €) (Figure 2.20).



The inequality | f(x) — 4| < € holds for all x # 2 in the open interval ( V4 — e,

V4 + E) (Figure 2.20).

2. Find a value of 8 > 0 that places the centered interval (2 — 8,2 + &) inside the in-
terval (\/4 — €, V4 + e).
Take 6 to be the distance from xy = 2 to the nearer endpoint of ( V4 —€ V4 + e).
In other words, take 6 = min {2 — V4 — €, V4 + € — 2}, the minimum (the smaller)
of the two numbers 2 — V4 — e and V4 + € — 2. If é has this or any smaller positive
value, the inequality 0 < |x — 2| < & will automatically place x between V4 — € and
/4 + € to make |f(x) — 4| < €. Forall x,

0<|x—2] <6 = | f(x) — 4| < €.

This completes the proof.



One-Sided Limits and Limits at Infinity

In this section we extend the limit concept to one-sided limits, which are limits as x
approaches the number ¢ from the left-hand side (where x << ¢) or the right-hand side

(x > c) only. v
One-Sided Limits

/'_
To have a limit L as x approaches ¢, a function f must be defined on both sides of ¢ and its \/
values f(x) must approach L as x approaches ¢ from either side. Because of this, ordinary L S

limits are called two-sided.

L
-

If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that is, a 0 ce—x
limit if the approach is only from one side. If the approach is from the right, the limit is a @@ lim f@) =1L

right-hand limit. From the left, it is a left-hand limit. e

L.
-

Intuitively, if f(x) is defined on an interval (¢, b), where ¢ < b, and approaches arbi-
trarily close to L as x approaches ¢ from within that interval, then f has right-hand limit L
at c. We write

lim_f(x) = L. ) - M

X—>cC

The symbol “x — ¢ means that we consider only values of x greater than c. ) > x

Similarly, if f(x) is defined on an interval (a, ¢), where @ < ¢ and approaches arbi- 0 X b C
trarily close to M as x approaches ¢ from within that interval, then f has left-hand limit A/ (b) lim fx)=M
at c. We write =

lim f(x) = M. FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as.x

X—>cC



EXAMPLE 1  One-Sided Limits for a Semicircle
The domain of f(x) = V4 — x?is [—2, 2]; its graph is the semicircle in Figure 2.23. We

have
lim+\/4—x2=0 and lim V4 —x? = 0.

x——2 x—2

The function does not have a left-hand limit at x = —2 or a right-hand limit at x = 2. It
does not have ordinary two-sided limits at either —2 or 2. o

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The N
theorems for limits of polynomials and rational functions hold with one-sided limits, as
does the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the _. 1 _ 12
following way.

THEOREM 6

A function f(x) has a limit as x approaches ¢ if and only if 1t has left-hand and|] _» 0 2

> X

right-hand limits there and these one-sided limits are equal:

. : . . : _ FIGURE 2.23 lim V4 — x? = 0 and
lim f(x) = L & lim f(x) =L and . flx . x—2"

x—>¢ x—>c % lim V4 —x2=0 (Example 1).

x——2"




0 1 2 3 4

FIGURE 2.24  Graph of the function

in Example 2.

EXAMPLE 2
Atx = 0:
Atx = 1:
Atx = 2:
Atx = 3:
Atx = 4:

Limits of the Function Graphed in Figure 2.24

lim, o+ f(x) = 1,

limy—o- f(x) and lim,—g f(x) do not exist. The function is not de--
fined to the left of x = 0.

limy—- f(x) = 0 even though f(1) = 1,
limy—+ f(x) = 1,

lim,_ f(x) does not exist. The right- and left-hand limits are not:
equal.

limy—a f(x) = 1,

limy—a+ f(x) = 1,

limy—> f(x) = 1 even though f(2) = 2.

lim,3- f(x) = lim,3+ f(x) = lime3 f(x) = f(3) = 2.
limy—4- f(x) = 1 even though f(4) # 1,

limy_4+ f(x) and limy_4 f(x) do not exist. The function is not de-
fined to the right of x = 4.

At every other point ¢ in [0, 4], f(x) has limit f(c). ]



DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

lim_f(x) =L (See Figure 2.25)

XXy

if for every number € > 0 there exists a corresponding number 8 > 0 such that

for all x
xo<x<xo+ 6 = | f(x) — L| <e.
y We say that f has left-hand limit L at x,, and write
lim f(x) =L (See Figure 2.26)
X—>Xq
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x
L+ef
4 f(¥) —B<x<m = |[|flx)-I]<e.
f(x) lies
L ™ (inhere
L —e-L
forall x # x;
in l}ere
6 b
o o - > X
0 Xp Xp + 48

FIGURE 2.25 Intervals associated with
the definition of right-hand limit.

A
L+ e 7
0 flx)
f(x) lies
L — in here
L — €
for all x # x
in here
)
X
( ° ~
\ v
0 .\’0 — 8 .\’0

FIGURE 2.26 Intervals associqlted with

the definition of left-hand limit.



EXAMPLE 3

Prove that

Applying the Definition to Find Delta

lim, Vx = 0.

x—0

Solution
that for all x

0<x<2§ = |\/;—O|<e,
or
\/;<e.

0<x<o =

Squaring both sides of this last inequality gives

x<e€ if 0<x<38.
If we choose 8 = € we have
0<x<&=¢€? = \/;<e,
or
0<x< e = |\&—O|<e.

According to the definition, this shows that limx_,m\& = 0 (Figure 2.27).

Let € > 0 be given. Here xo = 0 and L = 0, so we want to find aé > 0 such

‘.'

FIGURE 2.27

lim,Vx = 0 in Example 3.

x—0"




Limits Involving (sin 6)/0

A central fact about (sin 6)/6 is that in radian measure its limit as 8 — 0 is 1. We can see

this in Figure 2.29 and confirm it algebraically using the Sandwich Theorem.

v = sin 0 (radians)
0
L [P — >0
37  2m——“Zn ~—"27 3T

NOT TO SCALE

FIGURE 2.29 The graph of f(8) = (sin6)/8.

THEOREM 7

lim = ] (6 in radians)

(1)

tan 6

FIGURE 2.30 The figure for the proof of
Theorem 7. TA/OA = tan6,but 04 = 1,
so 74 = tan#. 6




0 Half-Angle Formulas

EXAMPLE 5  Using lim 5‘9 =1
6—0
. cosh—1 _ . sin2x _ 2
Show that (a) ;}E»no—h =0 and (b) Jl—% sy 5

Solution

(a) Using the half-angle formulacosh =1 — 2 sinz(h/2), we calculate

. cosh—1 .. 2sin’ (h/2)

Iim ——— = lim —
= —Ji_% 5139 sin 6 Let = h/2.
= —(1)(0) = 0.

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a Sx. We produce it by multiplying numerator and denominator by 2/5:

lim sin 2x _ lim (2/5)« sin2x
x—0 X x—0 (2/5) « Sx
_ ; . sIn 2x Now, Eq. (1) applies with
-3 xl‘_‘}}) 2y f = 2x.
2

_ 2.1 =
=5 =3 .



DEFINITIONS Limit as x approaches ¢ or — o©
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) =L

x—>00

if, for every number € > 0, there exists a corresponding number M such that
for all x

x> M = | f(x) — L| <e.

2. We say that f(x) has the limit L as x approaches minus infinity and write

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = |1f(x) — L| <e.




THEOREM 8 Limit Laws as x — + o©
If L. M, and k., are real numbers and

lim f(x) =L and lim g(x) = M, then

X—>100 xX—>100

1. Sum Rule: lim (f(x) + g(x)) =L+ M
x—>400

2. Difference Rule: liT- (fx) —gx)) =L - M

3. Product Rule: lim (f(x)-g(x)) =L-M
X—>100

4. Constant Multiple Rule: lim (k- f(x)) = k- L
=200

b
S. Quotient Rule: lim fx) — M#*0

oo g(x) M’

6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))”s = L
X—>+00

provided that L™ is a real number. (If s is even, we assume that L > 0.)




EXAMPLE 7  Using Theorem 8

(a) Iim (5 i %) Iim 5 + lim % Sum Rule

xX— 00 X— 00 Xx— 00
=3+t0=5 Known limits
: 'n-\/g . I 1
b) lim === lim 7V3-4-~
X—>—00 X xX—>—0C0 - -
: 1
= lim w\/_ lim ?' lim X Product rule
X——00 X——00 ~ Xx——00

77\/3_’ 0-0=0 Known limits

10



Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — =20, we can divide the numerator
and denominator by the highest power of x in the denominator. What happens then de-

pends on the degrees of the polynomials involved.

EXAMPLE 8  Numerator and Denominator of Same Degree
S+ (8/.1‘) B (3/'r2) Divide numerator and

lim 5x2 + 8& — 3 — lim
x— 00 33.2 + 2 X— 00 3 + (2 /.1‘2) denominator by x2.
5+0-0 5
= = — See Fig. 2.33.
3+ 0 3 See Fig n

EXAMPLE 9  Degree of Numerator Less Than Degree of Denominator
(]l/xz) + (2/.\’3) Divide numerator and

lim [lx + 2 _
x——00 I3 — 1 X—»—00 2 — (]/x3) denominator by x°.
0+ 0
=5 "0 0 See Fig. 2.34. [

We give an example of the case when the degree of the numerator is greater than the
degree of the denominator in the next section (Example 8, Section 2.5).

11



PRELIMINARIES

OVERVIEW This chapter reviews the basic ideas you need to start calculus. The topics include the real

number system, Cartesian coordinates in the plane, straight lines, parabolas, circles, and functions.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are
numbers that can be expressed as decimals, such as

= —0.75000...

= 0.33333 ...

3
4
1
3
V2 = 1.4142. ..



The real numbers can be represented geometrically as points on a number line called
the real line.

| | | 1 |
1 V2 2 37 4

A J

-2 -1 3 0

The symbol R denotes either the real number system or, equivalently, the real line.

The properties of the real number system fall into three categories: algebraic proper-
ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real
numbers under the usual rules of arithmetic. You can never divide by 0.

Rules for Inequalities

If a, b, and c are real numbers, then:
l. a<b=>ate<hte

2. a<b=>=>a-c<b-c

3. a<bandec >0 = ac < bc
4

a<bandc <0 = bc < ac
Special case:a < b = —b < —a

1

N

6. Ifa and b are both positive or both negative, thena < b = % < %




1. The natural numbers, namely 1, 2, 3, 4, ...
The integers, namely 0, +1, +£2, +3,...

The rational numbers, namely the numbers that can be expressed in the form of a
fraction m/n, where m and n are integers and n # 0. Examples are
1 4 _ -4 _ 4 200 _ 7

3 "9~ 9 ~ =g 3c ad =7

The rational numbers are precisely the real numbers with decimal expansions that are
either

(a) terminating (ending in an infinite string of zeros), for example,

2 =075000... =075  or
(b) eventually repeating (ending with a block of digits that repeats over and over), for
example
23 L The bar indicates the
= = 2.090909... = 2.09 block of repeating
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digits.



Real numbers that are not rational are called irrational numbers. They are character-
1ized by having nonterminating and nonrepeating decimal expansions. Examples are

T, \/E, \3/5 and logio3. Since every decimal expansion represents a real number, it
should be clear that there are infinitely many irrational numbers. Both rational and irra-
tional numbers are found arbitrarily close to any point on the real line.

Set notation is very useful for specifying a particular subset of real numbers. A set is a
collection of objects, and these objects are the elements of the set. IS 1s a set, the notation
a € S means that ¢ 1s an element of S. and a ¢ § means that @ 1s not an element of S. If S
and T are sets, then S U T 1s their union and consists of all elements belonging either to S
or T (or to both S and 7). The intersection S M T consists of all elements belonging to both
S and T. The empty set () is the set that contains no elements. For example, the intersec-
tion of the rational numbers and the irrational numbers 1s the empty set.



Some sets can be described by listing their elements in braces. For instance, the set 4
consisting of the natural numbers (or positive integers) less than 6 can be expressed as

A={1,273,4,5}.
The entire set of integers 1s written as
{0, £1, £2, +£3,...}.

Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set

A = {x|xisanintegerand 0 < x < 6}

is the set of positive integers less than 6.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and con-
tains all the real numbers lying between any two of its elements. For example, the set of all
real numbers x such that x > 6 1s an interval, as i1s the set of all x such that —2 = x = 5.



TABLE 1.1 Types of intervals

Notation

Finite: (a, b)

[a. D]

[a, b)

(a, b]

Infinite: (a, o0)

[a, o)

(—OO, b)

(—OO, b]

(=00, 0)

Set description

{x|a
{x|a
{xa

{x|a

{x|x

< x < b}

= b}

R (set of all real
numbers)

Type

Open

Closed

Half-open

Half-open

Open

Closed

Open

Closed

Both open
and closed

Picture

st
S

Q
o

o
o




EXAMPLE 1  Solve the following inequalities and show their solution sets on the real

line.
% 6
(1) 2x — 1 <x+ 3 (b)—§<2x+l (c)t_125
Solution *
0 1 4
S e ;
(a) 25— 1 x + 3 (a)
2x < x+ 4 Add 1 to both sides.
- R : —C_
ol | Subtract x from both sides. _§ 0 1 X
7
The solution set is the open interval (—0, 4) (Figure 1.1a). (b)
(b) *% < 2x + 1
—x < 6x + 3 Multiply both sides by 3.
0<7x+3 Add x to both sides.
-3 < Ix Subtract 3 from both sides. _
. FIGURE 1.1 Solution sets for the
—F <X Divide by 7. inequalities in Example 1.

The solution set is the open interval (—3/7, o©) (Figure 1.1b).



(¢) The inequality 6/(x — 1) = 5 can hold only if x > 1, because otherwise 6/(x — 1)
is undefined or negative. Therefore, (x — 1) is positive and the inequality will be pre-
served if we multiply both sides by (x — 1), and we have

6

= 5
x — 1
6 =5x—35 Multiply both sides by (x — 1).
11 = 5x Add 5 to both sides.
11
3 = X. Orx = ]5] .

The solution set is the half-open interval (1, 11/5] (Figure 1.1c).

| L —
0 1 11
3

(c)

FIGURE 1.1 Solution sets for the
inequalities in Example 1.




Rules for Inequalities
If a, b, and ¢ are real numbers, then:

1.

A
3.
4

h

a<b=>a+c<b+c
a< b=>>a—-—-c<b-c
a<<bandc > 0 = ac < bc

a<bandc < 0 = bc < ac
Special case:a < b = —b < —a

|

I[f a and b are both positive or both negative, thena < b =

l

b

1
<a




Inequalities

3. If 2 < x < 6, which of the following statements about x are nec-
essarily true, and which are not necessarily true?

g 0<x< 4 b. 0<x—-2<4
X 1 1 |

c.1<§'<3 d.‘g(;‘(i’

e 1=8as L |x—48| <2

" = A

g. B — =<2 b 60 —x< —2

NT = necessarily true, NNT = Not necessarily true. Given: 2 < X < 6.

a) NNT. 5 1s a counter example.

b) NT.2<x<6 =22-2<x-2<6-2 =20<x-2<4

c) NT.2<x<6 =22<x/2<6/2 = 1<x<3.

d) NT.2<x<6 = 12>1/x>1/6 = 1/6<1/x<1/2.

e) NT.2<x<6 = 12>1/x>1/6 = 1/6<1/x<1/2= 6(1/6)<6(1/x)<6(1/2) = 1 <6/x <3.

f) NT.2<x<6 = x<6=>(xXx—-4)<2and2<x<6 =2x>2 = —Xx<-2 = —x+4<2 = —-(x—4)<2.
The pair of inequalities (x —4)<2and —(x —4)<2 = |x—4|<2.

g) NT.2<x<6 = -2>—-Xx>-6 =2 -6<—-X<-2.But-2<2.So-6<—-x<-2<2o0r—-6<—-x<2.

h) NT.2<x<6 = —-12)>-1x)<—-1(6) = -6<—x< -2



TABLE 1.1 Types of intervals

Notation

Finite: (a, b)

[a. D]

[a, b)

(a, b]

Infinite: (a, 00)

[a. o0)

(—OO,b)

(—OO, b]

(=00, 00)

Set description

{x|la < x < b}

{x|a = x = b}

{x|x = b}

R (set of all real
numbers)

Type Picture

Open : :
a b

Closed _— >
a b

Ha l f-open — esssa—————
a b

Hal f-open e U —————————————— >
a b

Opeﬂ S 5555 ———
a

Closed O ——
a

O <

pen 2
Closed -_—b—
Both Open A ———

and closed




In Exercises 5— 8 solve the inequalities and show the solution sets on
the real line.

5. - 2x >4 b: 8 —3x =3
7. 5—-3=T7T—3 8. 3(2 —x) > 2(3 + x)
“2x>4 = x< =2 R "
8—3x>5 = -3x>-3 = x<1 —r — X
. 5x—3<T7-3x = 8&<10= x<2 5/ >

0 32—=x)>234+x) = 6—-3x>6+42x

= 0>5x = 0>x e » X




Absolute Value Properties

1. |—a|=]|ad] A number and its additive inverse or negative have
the same absolute value.
2. |ab| = |al|b| The absolute value of a product is the product of
the absolute values.
3 |9| = M The absolute value of a quotient 1s the quotient
" |b| | of the absolute values.
4. |a + b| = |a| + |b| The triangle inequality. The absolute value of the

sum of two numbers is less than or equal to the
sum of their absolute values.




14.

15.

16.

17.

18.

-y

Absolute Value

Solve the equations in Exercises 13-18.

13. |y| = 3 14. |y - 3|=7 15. |2t + 5| = 4

- 2 T _ 1] =

16. [1 —¢| =1 17. 8 = 3s| =3 18. |3 1| 1
=3ory= -3

y—3=T70ry-3=-7 = y=100ory=—4

2t+5=4o0r2t4+5=-4 = 2t=—lor2t=-9 = t= —

ort = —

(3] R

1
2

|l—t=lorl—-t=-=1 = —t=0o0or—-t=-2 = t=0o0rt=2

]
2

25 7

— _ 1 . — _ 25 1 _
—3s = 5 Or 3s = 5 => S= ¢ O0rs=

=2m%=0=¢s=4ms=0

25

6



Solve the inequalities in Exercises 19-24 expressing the solution sets
as intervals or unions of intervals. Also, show each solution set on the

real line.
19. |x| < 2 20. x| = 2 21. [t — 1| =3
22. |t + 2| <1 23. |3y — 7| < 4 24. |2y + 5] < 1
19. —2 < x < 2; solution interval (—2,2) R S F
20. —2 < x < 2: solution interval [—2, 2] —02——————§—§ X
. . d . > [
21. —3<t—-1<3 = -2 <t<4;solution interval [—2, 4] -2 4
22, -l <t4+2< 1] = -3<t<—1;
solution interval (=3, —1) c3 CI
23, —4<3y-T7<4 = 3<3y<1l = 1<y< i
solution interval (1, 1) T s
24, -1 <2y+5<1 = -6<2y< -4 = -3<y<-2;
solution interval (-3, —2) c3 32



Quadratic Inequalities

Solve the inequalities in Exercises 35-37 Express the solution sets as
intervals or unions of intervals and show them on the real line. Use the

result \Va? = |a| as appropriate.

35. x2 <2 = x| < V2 = —V2<x</2;

solution interval (— \/E : \/5) S —— » X

3. 4<x? = 2<|x| = x>2o0r x< -2
solution interval (—oo, —2] U [2, 00)  ——— 5—» r

37. 4<x?<9 = 2<[x|<3 = 2<x<3o0r2< —x<3

= 2<x<3or-3<x<-2;
solution intervals (=3, -2)U (2, 3) —— O Q— > ¥



Rules for Inequalities
If a, b, and ¢ are real numbers, then:

1.

A
3.
4

h

a<b=>a+c<b+c
a< b=>>a—-—-c<b-c
a<<bandc > 0 = ac < bc

a<bandc < 0 = bc < ac
Special case:a < b = —b < —a

|

I[f a and b are both positive or both negative, thena < b =

l

b

1
<a




Inequalities

3. If 2 < x < 6, which of the following statements about x are nec-
essarily true, and which are not necessarily true?

g 0<x< 4 b. 0<x—-2<4
X 1 1 |

c.1<§'<3 d.‘g(;‘(i’

e 1=8as L |x—48| <2

" = A

g. B — =<2 b 60 —x< —2

NT = necessarily true, NNT = Not necessarily true. Given: 2 < X < 6.

a) NNT. 5 1s a counter example.

b) NT.2<x<6 =22-2<x-2<6-2 =20<x-2<4

c) NT.2<x<6 =22<x/2<6/2 = 1<x<3.

d) NT.2<x<6 = 12>1/x>1/6 = 1/6<1/x<1/2.

e) NT.2<x<6 = 12>1/x>1/6 = 1/6<1/x<1/2= 6(1/6)<6(1/x)<6(1/2) = 1 <6/x <3.

f) NT.2<x<6 = x<6=>(xXx—-4)<2and2<x<6 =2x>2 = —Xx<-2 = —x+4<2 = —-(x—4)<2.
The pair of inequalities (x —4)<2and —(x —4)<2 = |x—4|<2.

g) NT.2<x<6 = -2>—-Xx>-6 =2 -6<—-X<-2.But-2<2.So-6<—-x<-2<2o0r—-6<—-x<2.

h) NT.2<x<6 = —-12)>-1x)<—-1(6) = -6<—x< -2
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Infinite: (a, 00)
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In Exercises 5— 8 solve the inequalities and show the solution sets on
the real line.

5. - 2x >4 b: 8 —3x =3
7. 5—-3=T7T—3 8. 3(2 —x) > 2(3 + x)
“2x>4 = x< =2 R "
8—3x>5 = -3x>-3 = x<1 —r — X
. 5x—3<T7-3x = 8&<10= x<2 5/ >
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Absolute Value Properties

1. |—a|=]|ad] A number and its additive inverse or negative have
the same absolute value.
2. |ab| = |al|b| The absolute value of a product is the product of
the absolute values.
3 |9| = M The absolute value of a quotient 1s the quotient
" |b| | of the absolute values.
4. |a + b| = |a| + |b| The triangle inequality. The absolute value of the

sum of two numbers is less than or equal to the
sum of their absolute values.
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Absolute Value

Solve the equations in Exercises 13-18.

13. |y| = 3 14. |y - 3|=7 15. |2t + 5| = 4

- 2 T _ 1] =

16. [1 —¢| =1 17. 8 = 3s| =3 18. |3 1| 1
=3ory= -3

y—3=T70ry-3=-7 = y=100ory=—4

2t+5=4o0r2t4+5=-4 = 2t=—lor2t=-9 = t= —
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Solve the inequalities in Exercises 19-24 expressing the solution sets
as intervals or unions of intervals. Also, show each solution set on the

real line.
19. |x| < 2 20. x| = 2 21. [t — 1| =3
22. |t + 2| <1 23. |3y — 7| < 4 24. |2y + 5] < 1
19. —2 < x < 2; solution interval (—2,2) R S F
20. —2 < x < 2: solution interval [—2, 2] —02——————§—§ X
. . d . > [
21. —3<t—-1<3 = -2 <t<4;solution interval [—2, 4] -2 4
22, -l <t4+2< 1] = -3<t<—1;
solution interval (=3, —1) c3 CI
23, —4<3y-T7<4 = 3<3y<1l = 1<y< i
solution interval (1, 1) T s
24, -1 <2y+5<1 = -6<2y< -4 = -3<y<-2;
solution interval (-3, —2) c3 32



Quadratic Inequalities

Solve the inequalities in Exercises 35-37 Express the solution sets as
intervals or unions of intervals and show them on the real line. Use the

result \Va? = |a| as appropriate.

35. x2 <2 = x| < V2 = —V2<x</2;

solution interval (— \/E : \/5) S —— » X

3. 4<x? = 2<|x| = x>2o0r x< -2
solution interval (—oo, —2] U [2, 00)  ——— 5—» r

37. 4<x?<9 = 2<[x|<3 = 2<x<3o0r2< —x<3

= 2<x<3or-3<x<-2;
solution intervals (=3, -2)U (2, 3) —— O Q— > ¥



Distance Formula for Points in the Plane

Incre ments an d D] stance The distance between P(x), y;) and O(x3, y2) is

In Exercises 14, a particle moves from A4 to B in the coordinate plane. d = V(Ax)? + (&) = V(xs — x)* + (n — ).

Find the increments Ax and Ay in the particle’s coordinates. Also find
the distance from 4 to B.

1. 4(-3,2), B(—1,-2) 2. A(-1,-2), B(-3.2)
3. A(=32.-2), B(-8.1,-2) 4. A(\/2.4), B(0,1.5)

. Ax=—1—-(=3)=2,Ay=-2-2=—4:d=/(Ax)? + (Ay)? = \/4+ 16 =2\/5

2. Ax=-3—-(—1)=-2Ay=2—(-2)=4d= /(22 +4#2=2\/5

3. Ax=-81—-(-32)=-49 Ay=-2—-(-2)=0;:d= \/(—4.9)2 +02=49

4. Ax=0-2=—\/2,Ay=15-4=-25,d= \/(—\/5)2 4 (=2.5)2 = /825



Slopes, Lines, and Intercepts DEFINITION  Slope

) _ _ _ _ _ The constant
Plot the points in Exercises 9—-12 and find the slope (if any) of the line e Ay - w
they determine. Also find the common slope (if any) of the lines per- TN T Ay T o x
pendicular to line 4B. is the slope of the nonvertical line Py P,

9. A(—1,2), B(-2, —1) 10. 4(=2,1), B(2, -2)

_ Ay _ -2-1 _ 3

Ay -1-2 10. = = -3 3
J)om=gx =5 =3 pendicular slope = 2
perpendicular siope = 3

perpendicular slope

fad =
L4

4
y
2 3
AL 2 2+ 2
=3x+5
’ = P W
Slope = 3 .
o T 2 a4

| | > ¥
2/ -1 0 -1
B(-2, -1) -1} -2l B
-3




11. A(2,3).

12. 4(-2,0), B(-2,-2)

B(—1.3)
B Ay _ 3-3 _ 12. m—% %(02) no slope

- M= 7Ry = _1-

perpendicular slope does not exist

y
A
B(-1, 3) A(2, 3)
———fe———
3 y=3
2+ Slope =0

| | > x

perpendicular slope = 0

HNU&.‘




In Exercises 17-20 write an equation for each line described.

17. Passes through (—1, 1) with slope —1

18. Passes through (2, —3) with slope 1/2
19. Passes through (3, 4) and (-2, 5)
20. Passes through (—8, 0) and (—1, 3)

DEFINITION Slope
The constant

rise Ay

Yz — ¥

is the slope of the nonvertical line P, P;.

TN T Ay T X - X

17. P(—L,1)ym=—1 = y—Il=—I(x—(—1)) = y=—x

18. P(2,—3)._m:% = y—(—3):%(x—2) = y=5x—4

19. P(3,4).Q(—2,5) = m= %Y = -4 —

20. P(—=8,0).Q(—1,3) => m=2Y=3=0__3

AX — —1-(-8)



In Exercises 31-32 , find the line’s x- and y-intercepts and use this in-
formation to graph the line.

31. 3x + 4'_\? = 12 32. x + 2}3 = —4
31. x-intercept = 4, y-intercept = 3 32. x-intercept = —4, y-intercept = —2
A Y
1 4
3x+4y=12 3
2

> X




Parabolas The Graph of y = ax’ + bx + ¢, a #0
Graph the parabolas in Exercises 53—60. Label the vertex, axis, and b

intercepts in each case. YT T 2a

53. y =x?—2x — 3 54. y = x% + 4x + 3

53. x=—2=—-2=1

= y=(1)7*-2(1)-3=—-4

= V=(1,—-4). If x=0theny = —3.
Also,y=0 = x*-2x—-3=0

= x—3)(x+1)=0 = x=3or

X = —1. Axis of parabolais x = 1.

- - o e e e e e e e b -

V(1,-4)



Parabolas

Graph the parabolas in Exercises 53—60. Label the vertex, axis, and
intercepts in each case.

The Graphof y=ax’* + bx+¢, a# 0

§83. y=x?—-2x—3 54. y = x* + 4x + 3
= . S
3. X — T 2

= y=(-2+4(-2)+3= -1

= V=(—-2,—1). fx=0theny = 3.
Also,y=0 = x*4+4x+3=0

= x+1)x+3)=0 = x=—1or
x = —3. Axis of parabola is x = —2.

x=—2—a.




Recognizing Functions

In Exercises 1-4, identify each function as a constant function, linear
function, power function, polynomial (state its degree), rational func-
tion, algebraic function, trigonometric function, exponential function,
or logarithmic function. Remember that some functions can fall into
more than one category.

1. a. f(x) =7 — 3x b. g(x) = Vx
2 _
c. hix)= Yz—l d. r(x) = 8§
x“ 4 ]
2. a. F(t) =1t*— ¢ b. G(t) =5

c. Hz)=Vz +1 d. R(z) = V2’

[Constant functions result when the siope m = 0]

f(x) = mx + b, for constants m and b,

f(x) = x“, where a is a constant
f(x) = x" forn =1, 2, 3, 4, 5_|

p(x) = apx™ + ap_ (X" '+ - 4+ ax + aqp

p(x) = ax* + bx + c, are called quadratic functions.

p(x) = ax® + bx* + cx + d of degree 3

_ px)

f(x) =70

Algebraic Functions An algebraic function is a function constructed from polynomials
using algebraic operations (addition, subtraction, multiplication, division, and taking

f(x) = a” If(x) = log, X

1. (a) linear, polynomial of degree 1, algebraic.

(c) rational, algebraic.

2. (a) polynomial of degree 4, algebraic.

(c) algebraic.

(b) power, algebraic.

(d) exponential.

(b) exponential.

(d) power, algebraic.



3. . y= % b. y=x72—2x+ 1
Cc. y=tanmx d. v = log7x
4 1 (1) b. f(z) z
. a y=logs |+ . flz) =
’ Vz+ 1
c. g(x) =2 d. w = 5cos (— - %
3. (a) rational, algebraic.

(c)

(a)
(c)

trigonometric.

logarithmic.
exponential.

[Constant functions result when the slope m = 0|

f(x) = mx + b, for constants m and b,

f(x) = x“, where «a is a constant

f(x) = x", forn = l,m,4,5-.|

p(x) = apx" + @ x" '+ - + ax + ap

p(x) = ax® + bx + c, are called quadratic functions.

p(x) = ax’ + bx* + cx + d of degree 3

f(X) - q(x)

Algebraic Functions An algebraic function is a function constructed from polynomials
using algebraic operations (addition, subtraction, multiplication, division, and taking

f(x) = a* If(x) = log, x

(b) algebraic.
(d) logarithmic.

(b) algebraic.
(d) trigonometric.



Even Functions and 0dd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS Even Function, 0dd Function

A function y = f(x) is an
even function of x
odd function of x

for every x in the function’s domain.

if f(—=x) = f(x),
if f(=x) = —f(x),

(a)

(b)

FIGURE 1.46 In part (a) the graph of

y = x2 (an even function) is symmetric

about the y-axis. The graph of y = x° (an
odd function) in part (b) is symmetric

about the origin.



EXAMPLE 2  Recognizing Even and 0dd Functions

flx) = x2 Even function: (—x)? = x? for all x; symmetry about y-axis.

f(x) = x* + 1 Even function: (—x)* + 1 = x? + 1 for all x; symmetry about
y-axis (Figure 1.47a).

=X Odd function: (—x) = —ux for all x; symmetry about the origin.

=x+ 1 Notodd: f(—x) = —x + |, but —f(x) = —x — . The two are
not equal.
Noteven: (—x) + 1 # x + | forall x # 0 (Figure 1.47b).

n W
L

(a) (b)

FIGURE 1.47 (a) When we add the constant term 1 to the function

y = x?, the resulting function y = x* + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer cgdd.
The symmetry about the origin is lost (Example 2). s



In Exercises 5 and 6, match each equation with its graph. Do not use a
graphing device, and give reasons for your answer.

5. a. y= 3" b. y =x’ & =g

¥
A

5. (a) Graph h because it is an even function and rises less rapidly than does Graph g.
(b) Graph f because it is an odd function.

(c) Graph g because it is an even function and rises more rapidly than does Graph h.



> =

»X

6. (a) Graph f because it 1s linear.
(b) Graph g because it contains (0, 1).

(¢) Graph h because it 1s a nonlinear odd function.



Even and Odd Functions

In Exercises 1924 | say whether the function is even, odd, or neither.
Give reasons for your answer.

DEFINITIONS Even Function, 0dd Function
A function y = f(x) is an

even function of x if f(—x) = f(x),

f(x),

19. f(\) = X 20. f(\) — x_5 odd function of x if f(—x) =
for every x in the function’s domain.

21. f(x) = x% + 1 22. f(x) =x*+x -

23. g(x) = x> + x 24. g(x) = x* + 3x2 — 1

19. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the

function is even.

20. f(x) =x° = % and f(—x) = (—x)7° =1 = — () = —f(x). Thus the function is odd.

21. Since f(x) = x>+ 1 = (—x)* + 1 = —f(x). The function odd .

22. Since [f(x) = x* + x| # [f(—x) = (—x)% — x| and [f(x) = x? + x| # [-f(x) = —(x)* — x] the function is neither even nor
odd.

23. Since g(x) = x* + x, g(—x) = =x* —x = —(x* + x) = —g(x). So the function is odd.

24. g(x) =x'+3x2+1 = (—x)" + 3(—x)? — 1 = g(—x), thus the function is even.



Composites of Functions
5. If f(x) = x + 5and g(x) = x* — 3, find the following.

a. f(g(0)) b. g(f(0))
c. f(g()) d. g(f(x))
e. f(f(—9)) f. g(g(2))
g. f(f(x)) h. g(g(x))

5. (a) f(g(0)) =1(-3)=2
(b) g(f(0)) = g(5) = 22
©) flgx)=f(x*-3)=x2-3+5=x*+2
d) gf(x)=gx+5=x+52—-3=x2+10x+ 22
(e) f(f(=5))=1(0)=35
() g(g2)) =g(l) =-2
(g9) ffx)=fx+35)=x+35+5=x+10
(h) g(g(x)) =g(x* —=3)=(x* -3 -3 =x*—6x*>+6



7. Ifu(x) = 4x — 5, v(x) = x*, and f(x) = 1/x. find formulas for
the following.

a. u(v(f(x))) b. u(f(v(x)))

c. v(u(f(x))) d. v(f(u(x)))

e. f(u(v(x))) f. f(v(u(x)))
7. @ wvEx)=u(v(i))=u (L) =4(1)"-5=4-5
(b) u(f(v(x)) =u(f(x?)) =u(L)=4(%)-5=%-5

(©) v =v(u(})=v(@(2) -5 =(¢-9)’
(d) v(fu(x) = v(fdx — 5) = v (355) = (355)°

() f(v(u(x))) = f(v(4x — 5)) = f(4x — 5)?) = 15;



Let f(x) = x — 3,

.'I._ i |
! . - . T . . s & - - o L
g(x) = Vx, hix) =x7,and j(x) = 2x. Ex
press each of the functions in Exercises 9 and 10 as a composite in-
volving one or more of f. g. /i, and J.

9. a. = Vx —3 b. 1+ =2Vx

c. p=ux* d. v = 4x

e. v=\V(x—3) f. v=(2x —6)
10. a. v = 2x — 3 b. y =2

c. v=ux" d. v=x—-06

e. y=2Vx—3 f. v=Vx’—3
9. (a) y=f(g(x))

(¢) y= glg(x))

(e) y= g(h(f(x)))
10. (a) y = f(j(x))

(¢) vy = h(h(x))

(e) y=jlg(f(x)))

(b) y = j(a(x))
(d) y =)0(x))
() y = h((t(x)))

(b) y = h(g(x)) = g(h(x))
(d) y = f(f(x))
(f) vy = g(f(h(x)))



11. Copy and complete the following table.

g(x) f(x) (f ° g)x)
y — 7 Vx
b, x + 2 3x
C. Vxy — 5 Vit -5
X X
d. vy — 1 =1
1 |
e, | + ¥ R
]
f. T X
11. g(x) f(x) (fo g)(x)
(a) x-—7 \/; X —7
(b) x+2 3x 3(x+2)=3x+6
(c) x? X—35 x2 — 5
D 35 - =y x—o-D = X
(e) x1 1 I+ % X
(f) i % X



The accompanying figure shows the graph of y = —x? shifted to
two new positions. Write equations for the new graphs.

Position (a) V=X Position (b)

(@) y=—(x+7)

(b) y=—(x—4)°

The accompanying figure shows the graph of y = x? shifted to
two new positions. Write equations for the new graphs.

11 I.

1 Position (a)
B v = x?
| | .y
0
B Position (b)
_5}




(=2,2)
Position 3

A

Position 2

Position 1

Match the equations listed in parts (a)—(d) to the graphs in the ac-
companying figure.

a. y=Kx—-17>—-4
c. v=x+2P+2

b. y=(x—2)P%+2
d. y=(x+ 3)2 -2

(-3

|[Position 4

’ _2)

(1,-4)

2 2,2)
L)
L || > X

-4 -3 -2-10 1 2

Ll

(a) Position 4

(b) Position 1

(c) Position 2

(d) Position 3



(=2, 3)

(b)

Y

A

The accompanying figure shows the graph of y = —x? shifted to
four new positions. Write an equation for each new graph.

(1,4)

(2,0)

()

-4,-1)/
N

(d)

(a) y=—(x—1*+4 (b) y=—-(x+2)°*+3 (c)

y=—(x+4)*—1

(d) y=—(x—2)?



Limits by Substitution

In Exercises 21-28, find the limits by substitution. Support your an-

swers with a computer or calculator if available.

21. lim 2x 22. lim 2x
X—>2 x—0
23. 121}13(3Y — 1) 24. xh—rpl (3\'—_])
. L 3x?
25. xl_1>n1] 3x(2x — 1) 26. xh’ml —
27. lim xsinyx 28. lim —=2
x—m/2 x—m 1 —
21. Ilm 2x=2(2)=4 22, 1Iim 2x = 2(0) =
X — 2 X — 0
: -1 _ —1 _ 1
23. llm Bx—1)= (%) —1=0 24. XIE}"I X1 -1 2
X — 3
3x° 3(—1)° 3
26. lim 5 = 250 = 2 =~ 25. lim_ 3x2x— 1) = 3(=H2(=1)— 1) = 9
X — —
cosx __cosm _ -1 _ 1 M ot @ __ T
28. 11_1}1;rr T = T = 1o = 3 27. xll_)m% Xsinx = Fsinj =3




2.2 CALCULATING LIMITS USING THE LIMIT LAWS

L lim_(2x+5)=2-7+5=-14+5=-9 2. lim (10— 3x)=10—3(12) = 10 — 36 = —26
3. leg(—x2+5x—2):—(2)2+5(2)—2:—4+10—2:4

4. lim (x*—2x*+4x+8) = (-2 = 2(-2° +4(-2) +8=-8-8—-8+8=—16

5. lim 8(t—5)(t—7) =8(6—5)(6—7)=—8 6. Slez 3s2s—1D=3(2)[2(3)-1]=2(3-1)
7. lim 33 =333 8. lim it = 5ty = 4 = 2



: VSh+d-2 . VSh+4-2 Sh+d+2 . (Sh+4)—4 .. 5h L 5
. Iim B = lim B . = |lim = lim = lim ——
h— 0 h— 0 VS5h+4+2  h =0 h(\/5h+4+2) h—0 h(\/5h+4+2) h—0 Sh+4+2
Va+2 4
. X-5 _ 1 X—35 R T 1 1 _ 1
Jim 55 = Im sy = M, 55 =555 = 1

: x+3 1 X+3 - 1 1 1 1
m e m = M, e =, M, T = S T T2
: : = : S)(x—2) :
lim X310 gy O = lim_(x—-2)=-5-2=-7
X — —5 X+35 X — —5 X+35 X — 5( ) 0



lim — lim Y= D(V+v+4) lim

— vi4+2v+4 — 44+4+4 __ 12
V — 2 vi—16 V — 9 (Vv=2)v+2)(v:+4) V — 9 (V+2)(v: +4)

@@®) - 32

00|t

lim

=3 _ im V23 i L — 1 1
x—9 X=9 x—9 (Vx=3)(Vx+3) 7 x =9 Vx+3 7 9+3

lim =X = fim 40 = fim XEYVIC) i x (24 /X) =42 +2) = 16

. _x=1 . (X—]](\/J{+3+2) . . (x_l)(,\/m+2 . ( )
x— 1 Vx+3-2  x 1 (Vx+3-2) (Vx+3+2) —Xlgnl x+3)-4 llm VX+3+2
=\4+2=4



. Suppose limy—g f(x) = 1 and limy—pg(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

2f(x) — g(x) Jim (2f(x) = g(x))

x—0

=0 (f(x) + TP lim (f(x) + 7) @
 Jlim 2/(3) — lim g(» .
(=

) 2 lim fx) = lim g(x) o

(1im f(x) + lim 7)%3

x—0 xr—0 |
(1) — (=5) 7 (2 quotient rule
=T 179" 4 (b difference and power rules

(¢) sum and constant multiple rules

5



. Suppose limy—. f(x) = 5 and limy—. g(x) = —2. Find
a. lim f(x)g(x) b. lim 2f(x)g(x)

o | T
. ng—rﬂ" (fx) + 3g(x)) - ’!l_rg f(x) — g(x)

@ Jim, 00 g(x) = | Jim_ 0| | lim 200| = (5)(=2) = ~10

(b) Jlim_ 20 2(x) =2 | lim_ fx)| | Jim_ 20| = 2(5)(=2) = —20

X
() Jim_[f(x) +3g(0] = lim_f(x) +3 lim g(x) =5+ 3(=2) = 1
(d) lim fx) A 1) > _ 3

X ¢ (0-gx) — Jimfx)— Jimgx) — 5-(=2) 7



THEOREM 4 The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval containing ¢,

except possibly at x = c itself. Suppose also that

Using the Sandwich Theorem

1- IfV5 — 2" =< flx) = V5 —x"for—1 =< x = 1,find] ™"/ =1
lll‘l‘lx—>0 f(.l‘).

2- 1f2 — x? = g(x) = 2cosx forall x, find lim,—g g(x).

lim g(x) = lim A(x) = L.
X—*c X—*¢C

1- limﬂ V5 —=2x2 =,/5-2(0) = \/gand limO Vi—x2=/5-(0)2= \/3; by the sandwich theorem,
X — X —

x]E»n(] f(x) = \/g

x — 0

2- |im (2 — xg) =2—-0=2and lim0 2 cos X = 2(1) = 2; by the sandwich theorem, lim0 g(x) =2
X — X —



Centering Intervals About a Point

In Exercises 1-2 sketch the interval (a. b) on the x-axis with the

point xp inside. Then find a value of 6 > 0 such that for all

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about xg, except possibly at xg itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

Y, 0 << |[x — x| <6 = a<x<b.

LA

l.a=1. b=7 xp=

lim f(x) = L,

X—?xg

if, for every number € > 0, there exists a corresponding number 8 > 0 such that
for all x,

0<|x—xo| <& = |f(x) — L| <e.

Stepl: [x—=5|<éd = -6<x—-5<6=> —-6+5<x<b6+5
Step2: 64+5=T7T = 6=2,or=0+5=1= 6=4.
The value of 6 which assures |[x — 5| <6 = | < x < 7 is the smaller value, 6 = 2.

ot y—»x
1 2

7

Stepl: [x—=2|<d = -6<x—-2<éd = —6+2<x<6+2

Step2: —-604+2=1=d6é=1lLord+2=7 = 6=5.

The value of 6 which assures |x — 2| <6 = | < x < 7 is the smaller value, 6 = 1. )



Finding Deltas Graphically

In Exercises 1-2 use the graphs to find a8 = () such that for all x

3 1
fx) = —5% +3 A
IU =-3
L=175
e =0.15

N

7.65
7.5
7.35

w — — —— e —— — —

/=3 N 0
-3.1 -2.9
NOT TO SCALE

\:- X

0<|x—x| <6 = |#lx) — L] < &,
1-
.1!
1 y=2x-4
Q2 == If(x)=2x—4
6=+ x=5
X8 ——— H L =
I e=0.2
[ 1
[ 1
| ,
0 / 5\ ]
4.9 5.
NOT TO SCALE
1- Stepl: [x—=5[<d6 = —6<x—5<d6 = —0+5<x<é6+5
Step 2:  From the graph, —64+5=49 = 6=0.l,or6 +5=5.1 = 6= 0.1: thus 6 = 0.1 in either case.
2- Stepl: [x—(-3)|<éd = -6<x+3<d=> —-6—-3<x<6-3
Step2:  Fromthe graph, -6 —3=-3.1 = 6 =0.l,or6 —3=-29 = 6 =0.1:thusé =0.1.




Finding Deltas Algebraically

Each of Exercises 1-3 ' gives a function f(x) and numbers L. xg and
e == (. In each case, find an open interval about xy on which the in-
equality | f(x) — L| << € holds. Then give a value for 6 = 0 such
that for all x satistying 0 << |x — xg| << 6 the inequality
| f(x) — L| < € holds.

1- f(x) =x + 1. L =35, xg = 4, e = 0.01

2- flx) = 2x — 2, L = —6, xg = —2. e = 0.02

3- flx) = Vi + 1, L =1. vo = 0, e = 0.1

1- Stepl:  |(x+1)—=5/<00l = [x—4/<00l = —001 <x—4<00l = 3.99 < x < 4.0l
Step2: |x—4|<d = —6<x—4<d=> —6+4<x<bé+4 = 6=001.

2- Stepl:  |2x—2)—(—6)| <002 = [2x+4/ <002 = —-0.02<2x+4<0.02 = —4.02<2x < —-3.98
= =20l <x<-199
Step2: [x—=(=2)|<éd = —6<x+2<bd = —0-2<x<6=2= 6=0.0I.

3- Step I: |~,/x+|—1‘<0.] = 01<\x+1-1<01 = 09</x+1<1.1= 08l<x+1<12l

= —0.19 < x <0.2]
Step2: |x—0|<é = —6<x<¥d.Then, =6 = —0.19= 6 =0.19 or 6 = 0.21; thus, 6 = 0.19.



Finding One-Sided Limits Algebraically

Find the limits in Exercises 1-4

' Ix + 2 2 i 1 — 1
1- r—hl—]Eq-\-\—l_l -T_Il:l?\ +2

\ 2x + 5
i () zﬂ)
4- |im 1 1+ﬁ
y— ] 'l—i_l

/ —05+2 _  [3an _ : x—1 _ [1=1 _ /o —
- lim =\ S05+1 = Vi =3 2- xl_',ml+ \/x+2—\/1+2—\/6—0

. dim(2) (35) = (55) (&) =@ () =

X — —2




Using elimo

sin 0
{}

1- sin \/59

lim

=1

Find the limits in Exercises 1-4

2- iy S kt

(k constant)

6—0 /20 —0 !
3 Jip 20 4 fim =2
y—0 4y h—0~ sin 3h
lim S0y — iy sinx — | (where x = \/26)
o 20 X — X
lim S0k — jjy ksinkt — i, ksl gy 00— k. =k
t—0 t—0 9 — 0 9 —0
]lm sin 3y — 1 llm 3 sin 3y — 3 llm sin 3y — 3 llm sin 6 — 3
4y 1 S 4y 0 4957 0 4

(where 8 = 3y)

s |—

(where € = kt)

(where @ = 3h)

6



Calculating Limits as x — £ o¢

In Exercises 1-4 | find the limit of each function (a) as x — o< and
(b) as x — —o0. (You may wish to visualize your answer with a
graphing calculator or computer.)

. 2 AP

3- gl =57 ](l,f’.r) v E TN
1- (a) -3 (&) =3
2 (@) 7 ) =
3- (a) 3 ®) 3
¥ @) 3 b)



Limits of Rational Functions

In Exercises 1-4 find the limit of each rational function (a) as
x— 0 and (b)as x = — 00,

L 2x+3 & 2+ 7
1- J&) = x + 7 2- fix) = x> —xt+x+7
x5+ 1 35 4
3' Y = X 4- —
o) = 55— o) =5
_ 243 .
1- (a) x&mm gii:”, = xli’moo %ﬁ‘r = % (b) % (same process as part (a))

7
2- : e B 2+(5)
(ﬂ) thm xri_x'_’_}_x_*_-;—xli,moo 1_1I+ﬁ+%_2
(b) 2 (same process as part (a))
» X+1 . L+L-1
3- (a) x&mm T3 = xll’moo s =0 (b) O (same process as part (a))
3 7
4- (a) lim 2t — lim Y (b) O (same process as part (a))
X—o00 X¥-2  x—=o0o 1-5 3 P SSas p




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

