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Introduction to Statistics 
 
 
 
 
 

Definitions: 
 

 

 

Statistics: is the branch of scientific inquiry that provides methods for organizing 

and summarizing data, and for using information in the data to draw various 

conclusions. 

Descriptive Statistics: The part of statistics that deals with methods for organization 

and summarization of data. Descriptive methods can be used with list of all 

population members (a census), or when the data consists of a samples. 

Inferential Statistics: When the data is a sample and the objective is to go beyond 

the sample to draw conclusions about the population based on sample information. 

Population: A population of participants or objects consists of all those participants 

or objects that are relevant in a particular study. 

Sample: A sample is any subset of the population of individuals or things under 

study. 

 

Probability function: is a rule, denoted by p(x) that assigns numbers to elements 

of the sample space 

 

Link between statistics and Probability 
 
 

Probability 

Population Sample 

Statistics 
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Three fundamental components of statistics 

Statistical techniques consist of a wide range of goals, techniques and strategies. Three fundamental 

components worth stressing are: 
 

1. Design, meaning the planning and carrying out of a study. 
 

2. Description, which refers to methods for summarizing data. 
 

3. Inference, which refers to making predictions or generalizations about a Population of individuals or 

things based on a sample of observations available to us. 

 

Numerical Summaries of Data 

1.0 Summation notation 

 

In symbols, adding the numbers X1,X2, . . . ,Xn is denoted by 

 

 
where ∑ is an upper case Greek sigma. The subscript i is the index of summation 

and the 1 and n that appear respectively below and above the symbol ∑ designate 

the range of the summation. 
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Example 1: 
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Measures of location: 

The sample mean: 

The first measure of location, called the sample mean, is just the average of the 

values and is generally labeled X¯. The notation X¯ is read as X bar. In summation 

notation, 
 

 

 
Example 1: 

 

You sample ten married couples and determine the number of children they have. 

The results are 0, 4, 3, 2, 2, 3, 2, 1, 0, 8. 

 

The sample mean is: X¯ = (0+4+3+2+2+3+2+1+0+8)/10 = 2.5. 

 

Of course, nobody has 2.5 children. The intention is to provide a number that is 

centrally located among the 10 observations with the goal of conveying what is 

typical. 

 

Example 2 

 

The salaries (in thousands Iraqi D) of the 11 individuals currently working at the 

company are: 

 

300,250,320,280,350,310,300,360,290,2000,5000, 

 

where the two largest salaries correspond to the vice president and president, 

The average is 887, but it gives a distorted sense of what is typical! 

Outliers are values that are unusually large or small. 
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2.0 The median 

Another important measure of location is called the sample median. The 

basic idea is easily described using the example based on the weight of 

trout. The observed weights were 

1.1,2.3,1.7,0.9,3.1. 

 

Putting the values in ascending order yields 

0.9,1.1,1.7,2.3,3.1. 

Notice that the value 1.7 divides the observations in the middle in the 

sense that half of the remaining observations are less than 1.7 and half 

are larger. 
 

If instead we have an even number of observations, there is no 

middle value, 0.8, 1.3, 1.8, 2.6, 2.7, 2.7, 3.1, 4.5 

The sample median in this case is taken to be the average of 2.6 and 2.7, 

namely (2.6 + 2.7)/2 = 2.65. 

 

Problems 
 

4. Find the mean and median of the following sets of numbers. (a) −1, 03, 

0, 2, −5. (b) 2, 2, 3, 10, 100, 1,000. 

 

5. The final exam scores for 15 students are 73, 74, 92, 98, 100, 72, 74, 85, 76, 

94, 
89, 73, 76, 99. Compute the mean and median. 

 

6. The average of 23 numbers is 14.7. What is the sum of these numbers? 

 

7. Consider the ten values 3, 6, 8, 12, 23, 26, 37, 42, 49, 63. The mean is X¯ = 

26.9. 

 
(a) What is the value of the mean if the largest value, 63, is increased to 100? 

(b) What is the mean if 63 is increased to 1,000? (c) What is the mean if 63 is 

increased to 10,000? 
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8. Repeat the previous problem, only compute the median instead. 
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Measures of variation: 

1.0The range 

 

The range is just the difference between the largest and smallest observations. In 

symbols, it is X(n) −X(1). 

 

2.0 The variance and standard deviation 

 

The following data written in ascending order: 

 

7.5,8.0,8.0,8.5,9.0,11.0,19.5,19.5,28.5,31.0,36.0. 

 

The data mean is X¯ = 17, so the deviation scores are 

 

−9.5,−9.0,−9.0,−8.5,−8.0,−6.0,2.5,2.5,11.5,14.0,19.0. 

 

Deviation scores reflect how far each observation is from the mean, but often it is 

best to find a single numerical quantity that summarizes the amount of variation in 

our data 

 

The average difference is always zero, so this approach is unsatisfactory 
The average squared difference from the mean is called the sample variance, 

which is: 
 
 

 

 

The sample standard deviation is the (positive) square root of the variance, Ѕ. 

 

Example 1 
 

The following data are the sample test results 

3,9,10,4,7,8,9,5,7,8. 

The sample mean is X¯ = 7, 
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The sum of the observations in the last column is 
 

∑(Xi −X¯)2 =48. 
 

So, 

Ѕ2  = 48/9 = 5.33. 
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GRAPHICAL SUMMARIES OF DATA: 
 

1.0 Relative frequencies 
 

The notation fx is used to denote the frequency or number of times the value x 

occurs. 

 

Plots of relative frequencies help add perspective on the sample variance, mean 

and median. 

 

n =∑ fx, 

 

Table 1: One hundred results 
 

2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 

7 7 7 7 7 7 7 7 8 8 8 8 
 

 

Figure 1: Relative frequencies for the data in table 1. 
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The sample variance is 

 

 
 

The cumulative relative frequency distribution F(x) refers to the proportion of 

observations less than or equal to a given value. 

 

Problems 

1. Based on a sample of 100 individuals, the values 1, 2, 3, 4, 5 are observed with 

relative frequencies 0.2, 0.3, 0.1, 0.25, 0.15. Compute the mean, variance and 

standard deviation. 

 

2. Fifty individuals are rated on how open minded they are. The ratings have the 

values 1, 2, 3, 4 and the corresponding relative frequencies are 0.2, 0.24, 0.4, 0.16, 

respectively. Compute the mean, variance and standard deviation. 

 

3. For the values 0, 1, 2, 3, 4, 5, 6 the corresponding relative frequencies based on 

a sample of 10,000 observations are 0.015625, 0.093750, 0.234375, 0.312500, 

0.234375, 0.093750, 0.015625, respectively. Determine the mean, median, 

variance, standard deviation and mode. 

 

4. For a local charity, the donations in dollars received during the last month were 

5, 10, 15, 20, 25, 50 having the frequencies 20, 30, 10, 40, 50, 5. Compute the 

mean, variance and standard deviation. 

5. The values 1, 5, 10, 20 have the frequencies 10, 20, 40, 30. Compute the mean, 

variance and standard deviation. 

 

 

 

2.0 Histograms: is an excellent graphical representation of the data. 
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Table 2: 
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class 
 interval  

midpoint frequency Frequency Relative Cumulative 
   frequency 

–0.5–0.0 -0.25 1 1/65 = .0153 0.015385 

>0.0–0.5 0.25 8 8/65 = .123 0.138462 

>0.5–1.0 0.75 20 20/65 = .308 0.446154 

>1.0–1.5 1.25 18 18/65 = .277 0.723077 

>1.5–2.0 1.75 12 12/65 = .185 0.907692 

>2.0–2.5 2.25 4 4/65 = .0625 0.969231 

>2.5–3.0 2.75 1 1/65 = .0153 0.984615 

>3.0–3.5 3.25 1 1/65 = .0153 1 
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Homework #1: 

The frequency table below shows the compressive strength of 

concrete cubes results. 

a) Construct a histogram, frequency table, frequency polygon, and 

cumulative frequency diagram? 

b) Calculate mean value? 

c) Calculate the percentage of the compressive strength results < 39.5 

N/mm2? 

d) Calculate the percentage of the compressive strength results 

between a value of 36.5 and 39.5 N/mm2? 

 

Class interval 34 – <35 35 – <36 36 – <37 37 – <38 38-<39 39 –<40 

Frequency 2 5 10 14 9 2 

 

Homework #2: 

The rainfall measurements data are 16, 22, 17, 18, 21, 14, 15, 23, 16, 19. 

a) Arrange the data in ascending rank order? 
b) Construct a histogram, frequency table, frequency polygon, and 

cumulative frequency diagram? 

c) What is the probability of (X ≥ 13.5), (i.e compute p(X ≥ 13.5))? 

d) compute p(13.5 ≤ X ≥ 18.5)? 

e) compute p(13.5 ≤ X ≥ 15.5)? 
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Probability Theory 

 
 
 

A random variable refers to a measurement or observation that cannot be known 

in advance. 
 

 

 

 

 
Roman letter is used to represent a random variable, the most common letter being X. 

A lower case x is used to represent an observed value corresponding to the random 

variable X. So the notation X =x means that the observed value of X is x. 

The set of all possible outcomes or values of X we might observe is called the sample 

space. 

 
 

 
EXAMPLE 1: 

Consider an experiment in which you select a plastic pipe, and measure its 

thickness. 

 

Sample space as simply the positive real line because a negative value for 

thickness cannot occur 

 

S= R+  = { x│x>0 } 

 

If it is known that all connectors will be between 10 and 11 millimeters thick, the 

sample space could be 
 

S= { x │10 < x < 11 } 

An experiment that can result in different outcomes, even though it is 

repeated in the same manner every time, is called a random experiment. 

The set of all possible outcomes of a random experiment is called the sample space 

of the experiment. The sample space is denoted as S. 
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If the objective of the analysis is to consider only whether a particular part is low, 

medium, or high for thickness, the sample space might be taken to be the set of three 

outcomes: 

 
S = { low, medium, high } 

If the objective of the analysis is to consider only whether or not a particular part 

conforms to the manufacturing specifications, the sample space might be simplified 

to the set of two outcomes, 

 
S = { yes, no } 

 

that indicate whether or not the part conforms. 
 

 

 
 

 

 
 

EXAMPLE 2: 
 

If two connectors are selected and measured, the sample space is depending on the 

objective of the study. 

 

If the objective of the analysis is to consider only whether or not the parts conform 

to the manufacturing specifications, either part may or may not conform. The sample 

space can be represented by the four outcomes: 

A discrete random variable meaning that there are gaps between any value and the 

next possible value. 

A continuous random variable meaning that for any two outcomes, any value 

between these two values is possible. 
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S = { yy, yn, ny, nn } 
 

If we are only interested in the number of conforming parts in the sample, we 

might summarize the sample space as 

 

S = { 0, 1, 2 } 

 
 

In random experiments in which items are selected from a batch, we will indicate 

whether or not a selected item is replaced before the next one is selected. For 

example, if the batch consists of three items {a, b, c} and our experiment is to select 

two items without replacement, the sample space can be represented as 
 

Swithout = { ab, ac, ba, bc, ca, cb } 

Swith = { aa, ab, ac, ba, bb, bc, ca, cb, cc } 

Events: 
 

Often we are interested in a collection of related outcomes from a random 

experiment. 
 

 
Some of the basic set operations are summarized below in terms of events: 

 
 The union of two events is the event that consists of all outcomes that are contained in 

either of the two events. We denote the union as E1UE2. 
 

 The intersection of two events is the event that consists of all outcomes that are 

contained in both of the two events. We denote the intersection as E1∩E2. 
 

 The complement of an event in a sample space is the set of outcomes in the sample space 

that are not in the event. We denote the component of the event E as É. 

An event is a subset of the sample space of a random experiment. 
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EXAMPLE 3: 
 

Consider the sample space S {yy, yn, ny, nn} in Example 2. Suppose that the set of 

all outcomes for which at least one part conforms is denoted as E1. Then, 

 

E1 = { yy, yn, ny } 

 

The event in which both parts do not conform, denoted as E2, contains only the single 

outcome, E2{nn}. Other examples of events are E3 = Ø, the null set, and E4=S, the 

sample space. If E5={yn, ny, nn}, 

 

E1 U E5 = S E1∩ E5 = { yn , ny } É1= { nn } 

 

 

 

 

 
EXAMPLE 4: 

 

Measurements of the time needed to complete a chemical reaction might be 

modeled with the sample space S= R+, the set of positive real numbers. Let 

 

E1= { x │1 ≤ x < 10} and E2= { x │1 < x < 118} 

 

Then, 

E1 U E2 = { x │1 ≤ x < 118} and E1 ∩ E2 = { x │3 < x < 10} 
 

Also, 
 

É1= { x │ x ≥ 10} and É1 ∩ E2 = { x │10 ≥ x < 118} 
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EXAMPLE 5: 
 

Samples of concrete surface are analyzed for abrasion resistance and impact 

strength. The results from 50 samples are summarized as follows: 
 

impact strength 

 

abrasion resistance 
 

 

 

Let A denote the event that a sample has high impact strength, 

Let B denote the event that a sample has high abrasion resistance. 

 

Determine the number of samples in A ∩ B, Á, and A U B 

 

The event A ∩ B consists of the 40 samples for which abrasion resistance and impact 

strength are high. The event Á consists of the 9 samples in which the impact strength 

is low. The event A U B consists of the 45 samples in which the abrasion resistance, 

impact strength, or both are high. 
 

 

 
 

 
Figure 1: Venn diagrams 

 High Low 

High 40 4 

Low 1 5 
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The two events in Fig. 1(b) are mutually exclusive, whereas the two events in Fig. 1(a) are not. 

Additional results involving events are summarized below. The definition of the complement of an 

event implies that 

1 E¿ 2 ¿ E 

The distributive law for set operations implies that 

 

Table 1: Corresponding statements in set theory and probability 

Set theory Probability theory 

 

 
 

Venn diagrams are often used to describe relationships between events and sets. 

Two events, denoted as E1 and E2, such that 

E1∩E2 = Ø 

are said to be mutually exclusive. 
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Probability is used to quantify the likelihood, or chance, that an outcome of a 

random experiment will occur. “The chance of rain today is 30%’’ is a statement 

that quantifies our feeling about the possibility of rain. 

A 0 probability indicates an outcome will not occur. A probability of 1 indicates an 

outcome will occur with certainty. 
 

 

 

 

 

 

 

 

 

 

100 Elements 
 
 
 
 
 
 
 

 

Fig. 2: Probability of the event E is the sum of the probabilities of the outcomes in E. 
 

 

 
 

 

 
EXAMPLE 6: 

 

A random experiment can result in one of the outcomes {a, b, c, d} with probabilities 

0.1, 0.3, 0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c, 

d}, and C the event {d}.Then, 

 

P(A)= 0.1 + 0.3 = 0.4 

P(B)= 0.3 + 0.5 + 0.1 = 0.9 
P(C) = 0.1 

 

Also: P (Á)= 0.6, P(B´)= 0.1, P(C´) = 0.9 

P (A ∩ B)= 0.3 

For a discrete sample space, the probability of an event E, denoted as P(E), 

equals the sum of the probabilities of the outcomes in E. 
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P (A U B)= 1 

P (A ∩ C)= 0 
 

 

 
 

EXAMPLE 7: 

A visual inspection of a defects location on concrete element manufacturing 

process resulted in the following table: 

 
Number of defects Proportion of concrete element 

0 0.4 

1 0.2 

2 0.15 

3 0.1 

4 0.05 

5 or more 0.1 

 
 

a) If one element is selected randomly from this process to inspected, what is 

the probability that it contains no defects? 

 

The event that there is no defect in the inspected concrete elements, denoted as E1, 

can be considered to be comprised of the single outcome, 

 

E1= {0}. 

 

Therefore, P(E1) = 0.4 

 

b) What is the probability that it contains 3 or more defects? 

 

Let the event that it contains 3 or more defects, denoted as E2 

 

P (E2) = 0.1+0.05+0.1= 0.25 

 

EXAMPLE 8: 

Suppose that a batch contains six parts with part numbers {a, b, c, d, e, f}. Suppose 

that two parts are selected without replacement. Let E denote the event that the part 

number of the first part selected is a. Then E can be written as E {ab, ac, ad, ae, af}. 

The sample space can be counted. It has 30 outcomes. If each outcome is equally 

likely, 
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P(E) = 5/30 = 1/6 
 

ADDITION RULES 
 
 

 

 

 
EXAMPLE 8: 

 

The defects such as those described in Example 7 were further classified as either in 

the “center’’ or at the “edge’’ of the concrete elements, and by the degree of damage. 

The following table shows the proportion of defects in each category. What is the 

probability that a defect was either at the edge or that it contains four or more 

defects? 
 

 
 

Location in Concrete Element Surface 
Defects Center Edge Total 

Low 514 68 582 

High 112 246 358 

Total 626 314  

 

 

Let E1 denote the event that a defect contains four or more defects, and let E2 

denote the event that a defect is at the edge. 

 

Defects Classified by Location and Degree 

Number of defects Center Edge Totals 

0 0.30 0.10 0.40 

1 0.15 0.05 0.20 

2 0.10 0.05 0.15 

3 0.06 0.04 0.10 

4 0.04 0.01 0.05 

5 or more 0.07 0.03 0.10 

Totals 0.72 0.28 1.00 

P( A U B ) = P( A ) + P( B ) - P( A ∩ B ) 
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The requested probability is P (E1 U E2). Now, P (E1) = 0.15 and P (E2) = 0.28. Also, 

from the table above, P (E1 ∩ E2) = 0.04 

 

Therefore, P (E1 U E2) = 0.15 + 0.28 – 0.04 = 0.39 

 

What is the probability that concrete surface contains less than two defects (denoted 

as E3) or that it is both at the edge and contains more than four defects (denoted as 

E4)? 

 

The requested probability is P (E3 U E4). Now P (E3) = 0.6, and P (E4) = 0.03. Also, 

E3 and E4 are mutually exclusive. 

 

Therefore, P (E3 ∩ E4) = Ø 

 

and P (E3 U E4) = 0.6 + 0.03 = 0.63 

 

 

 

for the case of three events: 
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EXAMPLE 9: 
 

Let X denote the pH of a sample. Consider the event that X is greater than 6.5 but 

less than or equal to 7.8. This probability is the sum of any collection of mutually 

exclusive events with union equal to the same range for X. One example is: 
 

 

 

 
Another example is 

 
 

 
The best choice depends on the particular probabilities available. 
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CONDITIONAL PROBABILITY 
 
 

 

 
 

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% 

of the parts with surface flaws are (functionally) defective parts. However, only  5% 

of parts without surface flaws are defective parts. The probability of a  defective part 

depends on our knowledge of the presence or absence of a surface flaw. 
 

 

 

 

 

 

Let D denote the event that a part is defective 

and let F denote the event that a part has a surface flaw. 

 

Then, the probability of D given, or assuming, that a part has a surface flaw as 

P(D│F). This notation is read as the conditional probability of D given F, and it is 

interpreted as the probability that a part is defective, given that the part has a surface 

flaw. 
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EXAMPLE 1: 

 

Table 1 below provides an example of 400 parts classified by surface flaws and as 

(functionally) defective. For this table the conditional probabilities match those 

discussed previously in this section. For example, of the parts with surface flaws (40 

parts) the number defective is 10. 

 

Table 1: Parts Classified 

 
Therefore, 

 
 

and of the parts without surface flaws (360 parts) the number defective is 18. 

Therefore, 

 
 

 

 

 

 

 
Figure 1: Tree diagram for parts classified 

 

Therefore, P ( B│A) can be interpreted as the relative frequency of event B among 

the trials that produce an outcome in event A. 
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EXAMPLE 2: 
 

Again consider the 400 parts in Table 1 above (example 1). From this table 
 

 

Note that in this example all four of the following probabilities are different: 
 

Here, P (D) and P (D│F) are probabilities of the same event, but they are 

computed under two different states of knowledge. 

 

Similarly, P (F) and P (F│D), 

 

The tree diagram in Fig. 1 can also be used to display conditional probabilities. 
 
 

 

 

 

 

 

 



Page | 4 

ENGIEERING STATISTICS 

            Lecture 5 

 

 

Permutations 

 

Another useful calculation is the number of ordered sequences of the elements of a 

set. Consider a set of elements, such as S {a, b, c}. A permutation of the elements 

is an ordered sequence of the elements. For example, abc, acb, bac, bca, cab, and 

cba are all of the permutations of the elements of S. 
 
 

 
In some situations, we are interested in the number of arrangements of only some of 

the elements of a set. The following result also follows from the multiplication rule. 
 
 

 

 

 

 
EXAMPLE 3: 

 

A printed circuit board has eight different locations in which a component can be 

placed. If four different components are to be placed on the board, how many 

different designs are possible? 

 

Each design consists of selecting a location from the eight locations for the first 

component, a location from the remaining seven for the second component, a 

location from the remaining six for the third component, and a location from the 

remaining five for the fourth component. Therefore, 
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Combinations 

 

Another counting problem of interest is the number of subsets of r elements that 

can be selected from a set of n elements. Here, order is not important. 
 
 

 

 
EXAMPLE 4: 

 

A printed circuit board has eight different locations in which a component can be 

placed. If five identical components are to be placed on the board, how many 

different designs are possible? Each design is a subset of the eight locations that are 

to contain the components. From the Equation above, the number of possible designs 

is 
 

 

The following example uses the multiplication rule in combination with the above 

equation to answer a more difficult, but common, question. 

 
 

EXAMPLE 5: 
 

A bin of 50 manufactured parts contains three defective parts and 47 non-defective 

parts. A sample of six parts is selected from the 50 parts. Selected parts are not 

replaced. That is, each part can only be selected once and the sample is a subset of 

the 50 parts. How many different samples are there of size six that contain exactly 

two defective parts? 
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A subset containing exactly two defective parts can be formed by first choosing the 

two defective parts from the three defective parts. 
 
 

Then, the second step is to select the remaining four parts from the 47 acceptable 

parts in the bin. The second step can be completed in 
 

Therefore, from the multiplication rule, the number of subsets of size six that 

contain exactly two defective items is 

 

3 * 178,365 = 535,095 
As an additional computation, the total number of different subsets of size six is 

found to be 

Therefore, the probability that a sample contains exactly two defective parts is 
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Distributions 
 

 

 

Discrete Distributions: 
 

 

 

 

 

Continuous Distributions: 
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ENGIEERING STATISTICS 

            Lecture 6 

 

Definition: 
 

 

 
BINOMIAL DISTRIBUTION: 

Definition: 
 

 

 

 
EXAMPLE 1: 

Each sample of water has a 10% chance of containing a particular organic pollutant. 

Assume that the samples are independent with regard to the presence of the pollutant. 

Find the probability that in the next 18 samples, exactly 2 contain the pollutant. Let 

X the number of samples that contain the pollutant in the next 18 
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samples analyzed. Then X is a binomial random variable with p= 0.1 and n= 18. 

Therefore, 
 

 

 

 

 
 

 
Determine the probability that at least four samples contain the pollutant? 

The requested probability is 

 

 

However, it is easier to use the complementary event, 
 
 

 
Determine the probability that 3 ≤ X < 7. Now 
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The mean and variance of a binomial random variable depend only on the 

parameters p and n. 
 

 
 

 
 

EXERCISES: 
 

1. For each scenario described below, state whether or not the binomial distribution is a reasonable 

model for the random variable and why. State any assumptions you make. 

 

(a) A production process produces thousands of temperature transducers. Let X denote the number 

of nonconforming transducers in a sample of size 30 selected at random from the process. 

 

(b) From a batch of 50 temperature transducers, a sample of size 30 is selected without 

replacement. Let X denote the number of nonconforming transducers in the sample. 

 

(c) Four identical electronic components are wired to a controller that can switch from a failed 

component to one of the remaining spares. Let X denote the number of components that have failed 

after a specified period of operation. 

 

(d) Defects occur randomly over the surface of a semiconductor chip. However, only 80% of 

defects can be found by testing. A sample of 40 chips with one defect each is tested. Let X denote 

the number of chips in which the test finds a defect. 

 

2. The random variable X has a binomial distribution with n=10 and p=0.5. Determine the 

following probabilities: 

(a) P(X = 5) (b) P(X ≤ 2) (c) P(X ≥ 9) (d) P (3 ≤ X < 5) 

 

3. Sketch the probability mass function of a binomial distribution with n =10 and p = 0.01 and 

comment on the shape of the distribution. 

(a) What value of X is most likely? (b) What value of X is least likely? 

 

4. Batches that consist of 50 concrete blocks from a production process are checked for 

conformance to building requirements. The mean number of nonconforming concrete blocks in a 

batch is 5. Assume that the number of nonconforming concrete blocks in a batch, denoted as X, is 

a binomial random variable. 

(a) What are n and p? (b) What is P(X ≤ 2)? (c) What is P(X ≥ 49)? 
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5. A manufacturing process has 100 customer orders to fill. Each order requires one 

component part that is purchased from a supplier. However, typically, 2% of the 

components are identified as defective, and the components can be assumed to be 

independent. 

a) If the manufacturer stocks 100 components, what is the probability that the 100 

orders can be filled without reordering components? 

b) If the manufacturer stocks 102 components, what is the probability that the 100 

orders can be filled without reordering components? 

c) If the manufacturer stocks 105 components, what is the probability that the 100 

orders can be filled without reordering components? 

 

(This exercise illustrates that poor quality can affect schedules and costs). 
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POISSON DISTRIBUTION: 
 

 

 
 

EXAMPLE 2: 
 

For the case of the thin copper wire, suppose that the number of flaws follows a 

Poisson distribution with a mean of 2.3 flaws per millimeter. Determine the 

probability of exactly 2 flaws in 1 millimeter of wire. Let X denote the number of 

flaws in 1 millimeter of wire. Then, E(X) = 2.3 flaws and 
 

 

Determine the probability of 10 flaws in 5 millimeters of wire. Let X denote the 

number of flaws in 5 millimeters of wire. Then, X has a Poisson distribution with 

 

E(X) = 5 mm × 2.3 flaws/mm = 11.5 flaws 
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Therefore, 

 
Determine the probability of at least 1 flaw in 2 millimeters of wire. Let X denote 

the number of flaws in 2 millimeters of wire. Then, X has a Poisson distribution with 

E(X) = 2 mm × 2.3 flaws/mm = 4.6 flaws 

Therefore, 
 
 

 
EXERCISES: 
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Density of a loading on a 

long, thin beam 
Probability determined from the area 

under f(x) 

 

 

 

Definition: 

 

For the density function of a loading on a long thin beam, because every point has 

zero width, the loading at any point is zero. Similarly, for a continuous random 

variable X and any value x. 

P(X= x) = 0 
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EXAMPLE: 
 

Let the continuous random variable X denote the diameter of a hole drilled in a sheet 

metal component. The target diameter is 12.5 mm. Most random disturbances to the 
process result in larger diameters. Historical data show that the distribution of X can 

be modeled by a probability density function f (x) = 20 e -20(x-12.5), x ≥ 12.5. 

 

If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion 

of parts is scrapped? The density function and the requested probability are shown 

in Fig. 2. A part is scrapped if X ≥ 12.60. Now, 
 

` 
What proportion of parts is between 12.5 and 12.6 millimeters? Now, 

 

Because the total area under f (x) equals 1, we can also calculate 

 

P (12.5< X <12.62) = 1 – P(X > 12.62) = 1- 0.135= 0.865. 
 

Figure 2: Probability density function 
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EXERCISES: 
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NORMAL DISTRIBUTION: 
 

 
 

Normal probability density functions for selected values of the parameters µ and σ2
 

 

Definition: 

 

 
 

EXAMPLE 4: 
Assume that the current measurements in a strip of wire follow a normal distribution 

with a mean of 10 mA and a variance of 4 (mA)2. What is the probability that a 
measurement exceeds 13 mA? 

 

Let X denote the current in mA. The requested probability can be represented as: 
P(X > 13) 
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This probability is shown as the shaded area under the normal probability density 

function in Fig. 3. 
 

 

 
 

 
Some useful results concerning a normal distribution are summarized below and in 

Fig. 4. For any normal random variable, 
 

 

 

Definition: 

 

3: 

4: 
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Summary of Common Probability Distributions 
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EXAMPLE 5: 

The following calculations are shown pictorially in Fig. 5. 

 

 
 

 
Figure 5: Graphical displays for standard normal distributions. 
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EXAMPLE 6: 
 

Suppose the current measurements in a strip of wire are assumed to follow a normal 

distribution with a mean of 10 mA and a variance of 4 (mA)2. What is the probability 

that a measurement will exceed 13 mA? 

 

Let X denote the current in mA. 

 

The requested probability can be represented as P(X > 13). 

Let Z= (X- 10)/ 2. 

We note that X> 13 corresponds to Z> 1.5. Therefore, from Appendix Table II, 
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EXAMPLE 7: Continuing the previous example, what is the probability that a 

current measurement is between 9 and 11 mA? 

 

 
Determine the value for which the probability that a current measurement is below 

this value is 0.98. The requested value is shown graphically in the figure below. We 

need the value of x such that P(X < x) = 0.98. By standardizing, this probability 

expression can be written as 

 

 
Appendix Table II is used to find the z-value such that P (Z < z) = 0.98. The nearest 

probability from Table II results in 

 

P (Z< 2.05) = 0.97982 
Therefore, (x - 10)/ 2= 2.05, and the standardizing transformation is used in reverse 

to solve for x. The result is 

x = 2(2.05)/10 = 14.1 mA 
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EXAMPLE 8: The diameter of a shaft in an optical storage drive is normally 

distributed with `mean 0.2508 inch and standard deviation 0.0005 inch. The 

specifications on the shaft are 0.2500 ± 0.0015 inch. What proportion of shafts 

conforms to specifications? 

 

Let X denote the shaft diameter in inches. The requested probability is shown in the 

figure below and 
 
 

 
Most of the nonconforming shafts are too large, because the process mean is located 

very near to the upper specification limit. If the process is centered so that the process 

mean is equal to the target value of 0.2500, 
 

By recentering the process, the yield is increased to approximately 99.73%. 
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EXERCISES: 
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SAMPLING THEORY 
 

Link between Population and Sampling: 
 
 
 

 

 
 

1.0 SAMPLING DISTRIBUTIONS 

Statistical inference is concerned with making decisions about a population based 

on the information contained in a random sample from that population. 

 
 

For instance, the mean fill volume of a can (population) is required to be 300 mm. 

 

An engineer takes a random sample of 25 cans and computes the sample 

average fill volume to be 

 

x‾ = 298 mm 

 

The engineer will probably decide that the population mean is µ=300 mm, 

even though the sample mean was 298 mm because he or she knows that the sample 

mean is a reasonable estimate of µ and that a sample mean of 298 mm is very likely 

to occur, even if the true population mean is µ=300 mm. 

 

Test values of x‾ vary both above and below µ=300 mm. 

Probability 

Population Sample 

Statistics 
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The sampling distribution of a statistic depends on: 

 

 The distribution of the population, 

 The size of the sample, and 

 The method of sample selection. 

 

2.0 SAMPLING METHODS: 

 

1. Random sampling 

2. Systematic sampling 
3. Stratified sampling 

4. Multi-stage sampling 

 

3.0 SAMPLING DISTRIBUTIONS OF MEANS 

 

Suppose that a random sample of size n is taken from a normal population with 

mean µ and variance σ2. 

 

 

Now each observation in this sample, say, X1, X2, X3… Xn, is a normally and 

independently distributed random variable with mean µ and variance σ2
 

 
The sample mean: 

 

 

has a normal distribution with mean: 
 

and variance: 
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(For large N) 
 

 

 

 

 
Theorem: 

N – n 
 

 

N – 1 
(For small N) 

 

 
 

 
 

 

EXAMPLE 1: 
 

An electronics company manufactures resistors that have a mean resistance of 100 ohms 

and a standard deviation of 10 ohms. The distribution of resistance is normal. 

Find the probability that a random sample of n= 25 resistors will have an average 

resistance less than 95 ohms. 

 

Note that the sampling distribution of x‾ is normal, with mean µx‾ = 100 ohms and a 

standard deviation of: 
 
 

 

Therefore, the desired probability (shaded area) is shown in the figure 

below: 
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Standardizing the point x‾ =95 in the Figure. We find that: 
 

 

and therefore, 
 

 
3.0 SAMPLING DISTRIBUTIONS OF DIFFERENCES & SUM: 

 
For two independent populations, 

 

Let the first population has mean µ1 and variance σ1
2 and the second population has mean µ2 and 

variance σ2
2. Suppose that both populations are normally distributed. Then, we can say that the 

sampling distribution of (x1‾ - x2‾) is normal with mean: 
 

 

 
And variance 
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1 

1 

If we have two independent populations with means µ1 and µ2 and variances σ 2 and 

σ2
2 and if x1‾ and x2‾ are the sample means of two independent random samples of 

sizes n1 and n2 from these populations, then the sampling distribution is: 
 

 
with condition n1, n2 ≥ 30 

 

 
EXAMPLE 2: 

 

The effective life of a component used in an engine is a random variable with mean 5000 hours 

and standard deviation 40 hours. The distribution of effective life is fairly close to a normal 

distribution. 

The engine manufacturer introduces an improvement into the manufacturing process for 

this component that increases the mean life to 5050 hours and decreases the standard deviation to 

30 hours. Suppose that a random sample of n1= 16 components is selected from the “old” 

process and a random sample of n2=25 components is selected from the “improved” process. 

What is the probability that the difference in the two sample means x2‾ - x1‾ is at least 25 

hours? Assume that the old and improved processes can be regarded as independent populations. 

 

the distribution of x1‾ is normal with mean µ1= 5000 hours and standard deviation 

σ1/√n1 = 40/√16 = 10 hours, 

 
and the distribution of x2‾ is normal with mean µ2= 5050 hours and standard deviation 

 

σ2/√n2 = 30/√25 = 6 hours, 

Now the distribution of x2‾ - x1‾ is normal with mean 

µ2 - µ1 = 5050 – 5000 = 50 hours 

 

and variance 
 

σ2
2/n2

2 + σ1
2/n 2 = 62 + 102 = 136 hours2. 

 

This sampling distribution is shown in the Figure below: 
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The sampling distribution of in Example 2 

 

 
The probability that x2‾ - x1‾ ≥ 25 hours is the shaded portion of the normal 

distribution in this figure. 

 

So, 
 

 
and we find that: 
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EXERCISES: 
 

1. PVC pipe is manufactured with a mean diameter of 1.01 inch and a 

standard deviation of 0.003 inch. Find the probability that a random sample 

of n = 9 sections of pipe will have a sample mean diameter greater than 

1.009 inch and less than 1.012 inch. 

 

2. A synthetic fiber used in manufacturing carpet has tensile strength that is 

normally distributed with mean 75.5 psi and standard deviation 3.5 psi. Find 

the probability that a random sample of n= 6 fiber specimens will have 

sample mean tensile strength that exceeds 75.75 psi. 

 

3. A random sample of size n1= 16 is selected from a normal population 

with a mean of 75 and a standard deviation of 8. A second random sample 

of size n2= 9 is taken from another normal population with mean 70 and 

standard deviation 12. Let x1‾ and x2‾ be the two sample means. Find 

 

a) The probability that x1‾- x2‾ exceeds 4 
a) (b) The probability that 3.5 ≤ x1‾- x2‾ ≤ 5.5 

 

4. The elasticity of a polymer is affected by the concentration of a reactant. 

When low concentration is used, the true mean elasticity is 55, and when 

high concentration is used the mean elasticity is 60. The standard deviation 

of elasticity is 4, regardless of concentration. If two random samples of size 

16 are taken, find the probability that x‾high- x‾low ≥ 2. 
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REGRESSION & CORRELATION 
 

Many problems in engineering and science involve exploring the relationships between 

two or more variables. Regression analysis is a statistical technique that is very useful for these 

types of problems. 

For example, in a chemical process, suppose that the yield of the product is related to the 

process-operating temperature. Regression analysis can be used to build a model to predict yield 

at a given temperature level. This model can also be used for process optimization, such as finding 

the level of temperature that maximizes yield, or for process control purposes. 

 

 

 

 

1.0 SIMPLE LINEAR REGRESSION 

 

The case of simple linear regression considers a single predictor independent variable x 

and a dependent or response variable Y. Suppose that the true relationship between Y and x is a 

straight line and that the observation Y at each level of x is a random variable. 
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The expected value of Y, can be described by the model: 
 

where the intercept β0 and the slope β1 are unknown regression coefficients. 

ε is a random error with mean zero 
 

 

Figure 2: Deviation of data from the estimated regression model 

 

We call this criterion for estimating the regression coefficients the method of least 

squares. We may express the n observations in the sample as 

and the sum of the squares of the deviations of the observations from the true regression line is 
 

The least squares estimators of β0 and β1, must satisfy 

 

Simplifying these two equations yields: 
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The solution to the normal equations results in the least squares estimators β0 and β1: 
 

β₀ =  
∑ y¡ ∑ x¡ ² −  ∑ x¡ ∑ x¡  y¡ 

n ∑ x¡ ² − (∑ x¡ )² 
 

β₁ = 
n ∑ x¡ y¡  −  ∑ x¡ ∑ y¡ 

n ∑ x¡ ² − (∑ x¡ )² 
 
 

Note that each pair of observations satisfies the relationship: 

 

yi  = β0 + β1 xi  + ei i= 1, 2, ………, n 
 

where ei = yi - yˆi is called the residual. The residual describes the error in the fit of the model to 

the ith observation yi. 
 

Let: 
 

 
and 

 

 

EXAMPLE 1: We will fit a simple linear regression model to the oxygen purity data in Table 1. 

The following quantities may be computed: 
 



ENGIEERING STATISTICS 

            Lecture 11 

 

 

β₀ =  
∑ y¡ ∑ x¡ ² −  ∑ x¡ ∑ x¡  y¡ 

n ∑ x¡ ² − (∑ x¡ )² 
 

β₁ = 
n ∑ x¡ y¡  −  ∑ x¡ ∑ y¡ 

n ∑ x¡ ² − (∑ x¡ )² 
 
 
 

 

β₀ = 
1843.21 ∗ 29.2892 − 23.92 ∗ 2214.6566 

20 ∗ 29.2892 − (23.92)² 
 

β₁ = 
20 ∗ 2214.6566 − 23.92 ∗ 1843.21 

20 ∗ 29.2892 − (23.92)² 
 
 

β0  = 74.283 
 

 
As a double check: 

β1 = 14.947 

 
 

y‾ =? β0 + β1 x‾ 
 

So,  
92.160 =? 74.283 + 14.947 * 1.196 if yes then continue 

If not then re-check your calculations 
 

 

The fitted simple linear regression model (with the coefficients reported to three decimal places) 

is: 
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Using the regression model of Example 1, we would predict oxygen purity of yˆ = 

89.23% when the hydrocarbon level is x = 1.00%. 

 

The purity 89.23% may be interpreted as an estimate of the true population mean purity 

when x=1.00%, or as an estimate of a new observation when x = 1.00%. These estimates are, of 

course, subject to error; that is, it is unlikely that a future observation on purity would be exactly 

89.23% when the hydrocarbon level is 1.00%. In subsequent sections we will see how to use 

confidence intervals and prediction intervals to describe the error in estimation from a regression 

model. 
 

 

 

 
 

   3  
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2.0 Correlation 

A measure of the linear relationship between two numerical variables is provided 

by the correlation coefficient. A correlation coefficient takes a value between -1 

(perfect negative correlation) to +1 (perfect positive correlation) with zero 

representing no correlation. 

 
 

H.W No. 1: 

The accompanying data was taken from published paper. The independent variable 

is SO2 deposition rate (mg/m2/day) and the dependent variable is steel weight loss 

(gm/m2). 

x: 14, 18, 40, 43, 45, 112 
 

y: 280, 350, 470, 500, 560, 1200 
 

a) Construct a scatter plot. Dose the simple linear regression model appear to be 

reasonable in this situation? 

b) Calculate the equation of the estimated regression line? 

c) Estimate the standard deviation of observation about the true regression line. 

 
 

H.W No. 2: 

The accompanying data resulted from a study carried out to examine the relationship 

between a measure of the corrosion of reinforcement (y) and the concentration of the 

corrosion inhibitor solution in concrete pores (x, in ppm): 

x: 2.5, 5.03, 7.6, 11.6, 13, 19.6, 26.2, 33, 40, 50, 55 
 

y: 7.68, 6.95, 6.3, 5.75, 5.01, 1.43, 0.93, 0.72, 0.68, 0.65, 0.56 
 

a. Construct a scatter plot of the data. Dose the simple linear regression 

appear to be logical? 

b. Calculate the equation of the estimated regression line, use it to predict the 

value of the corrosion rate that would be observed for a concentration of 33 

ppm, and calculate corresponding residual. 

c. Estimate the standard deviation of observation about the true regression line. 

 



Surface flaw 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

Probability mass function 

    In general, if the random variable X follows the binomial distribution with 

parameters n ∈ ℕ and p ∈ [0,1], we write X ~ B(n, p). The probability of getting 

exactly k successes in n independent Bernoulli trials is given by the probability mass 

function: 
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 The formula can be understood as follows: k successes occur with 

probability pk and n − k failures occur with probability (1 − p)n − k. However, 

the k successes can occur anywhere among the n trials, and there are ( 𝑛
𝑘

 )  different 

ways of distributing k successes in a sequence of n trials. 

 

 

 

 

 

 

 



 

    The binomial distribution is implemented in the Wolfram Language as Binomial 

Distribution [n, p]. 

The probability of obtaining more successes than the  observed in a binomial 

distribution is 
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