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Partial List of Symbols
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Lecture 1

p1
Po

alpha: Probability of a Type I error
beta: Probability of a Type II error
Slope of a regression line

Intercept of a regression line

delta: A measure of effect size

epsilon: The residual or error term

in ANOVA and regression

theta: The population median or the
odds ratio

mu: The population mean

The population trimmed mean

“*M[>><‘e~

nu: Degrees of freedom
omega: The odds ratio

rho: The population correlation
coefficient

sigma: The population standard
deviation

phi: A measure of association
chi: x%isa type of distribution
delta: A measure of effect size
Summation

tau: Kendall’s tau
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Introduction to Statistics

Definitions:

Statistics: is the branch of scientific inquiry that provides methods for organizing
and summarizing data, and for using information in the data to draw various
conclusions.

Descriptive Statistics: The part of statistics that deals with methods for organization
and summarization of data. Descriptive methods can be used with list of all
population members (a census), or when the data consists of a samples.

Inferential Statistics: When the data is a sample and the objective is to go beyond
the sample to draw conclusions about the population based on sample information.

Population: A population of participants or objects consists of all those participants
or objects that are relevant in a particular study.

Sample: A sample is any subset of the population of individuals or things under
study.

Probability function: is a rule, denoted by p(x) that assigns numbers to elements
of the sample space

Link between statistics and Probability

Probability ———»
<4——  Statistics
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Three fundamental components of statistics

Statistical techniques consist of a wide range of goals, techniques and strategies. Three fundamental
components worth stressing are:

1. Design, meaning the planning and carrying out of a study.
2. Description, which refers to methods for summarizing data.

3. Inference, which refers to making predictions or generalizations about a Population of individuals or
things based on a sample of observations available to us.

Numerical Summaries of Data
1.0 Summation notation

In symbols, adding the numbers X;,X», . . . , X, is denoted by

Y Xi=Xi+ X+ + X,
=1

where Y is an upper case Greek sigma. The subscript i is the index of summation

and the 1 and n that appear respectively below and above the symbol ) designate
the range of the summation.
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Example 1:
1.2,2.2.6.4,3.8,0.9.
Then
4
ZX,-=2.2+6.4+3.8= 12.4
1=2
and
ZX,: 1.2422+6.4+3.840.9=14.5.
Y XP=1224222+647+3.87+0.92=62.49
and

2
(ZXE) =(12+422+464+3.8+0.9)=145%=210.25.

Problems
1. Given that
Xi=1 X=3 X3=0
Xy=—2 Xs=4 Xy=-1
X;=5 Xg=2 X9=10
Find
(2) XX, (b) Y05 X0, (0) o, X2, (d) (2X0)2, () 23, () (% = 7)
(8)3 301 Xi = X Xin () 210X, () X7, iXi, () 326
2. Express the following in summation notation. (a) X1 + % + % + 1%,
(b) Ut + Us + U3 + U/, () (V1 + Y2 + V3)?

3. Show by numerical example that ZXE is not necessarily equal to (Z)ﬂ)z
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Measures of location:

The sample mean:

The first measure of location, called the sample mean, is just the average of the
values and is generally labeled X . The notation X is read as X bar. In summation
notation,

-1
X=;Z)Q.

Example 1:

You sample ten married couples and determine the number of children they have.
Theresultsare 0,4, 3,2,2,3,2,1,0, 8.

The sample mean is: X = (0+4+3+2+2+3+2+1+0+8)/10 = 2.5.

Of course, nobody has 2.5 children. The intention is to provide a number that is
centrally located among the 10 observations with the goal of conveying what is
typical.

Example 2

The salaries (in thousands Iraqi D) of the 11 individuals currently working at the
company are:

300,250,320,280,350,310,300,360,290,2000,5000,
where the two largest salaries correspond to the vice president and president,
The average is 887, but it gives a distorted sense of what is typical!

Quitliers are values that are unusually large or small.
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2.0 The median

Another important measure of location is called the sample median. The
basic idea is easily described using the example based on the weight of
trout. The observed weights were

1.1,2.3,1.7,0.9,3.1.

Putting the values in ascending order yields

09,11,1.7,2.3,3.1,

Notice that the value 1.7 divides the observations in the middle in the
sense that half of the remaining observations are less than 1.7 and half
are larger.

If instead we have an even number of observations, there is no

middle value, 0.8, 1.3,1.8, 2.6, 2.7,2.7,3.1, 4.5

The sample median in this case is taken to be the average of 2.6 and 2.7,
namely (2.6 + 2.7)/2 = 2.65.

Problems

4. Find the mean and median of the following sets of numbers. (a) —1, 03,
0,2,-5.(b)2,2,3,10, 100, 1,000.

5. The final exam scores for 15 students are 73, 74, 92, 98, 100, 72, 74, 85, 76,

94,
89, 73, 76, 99. Compute the mean and median.

6. The average of 23 numbers is 14.7. What is the sum of these numbers?

7. Consider the ten values 3, 6, 8, 12, 23, 26, 37, 42, 49, 63. The mean is X =
26.9.

(@) What is the value of the mean if the largest value, 63, is increased to 100?
(b) What is the mean if 63 is increased to 1,000? (c) What is the mean if 63 is
increased to 10,0007
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8. Repeat the previous problem, only compute the median instead.
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Measures of variation:

1.0The range

The range is just the difference between the largest and smallest observations. In
symbols, it is X(n) —X(1).

2.0 The variance and standard deviation
The following data written in ascending order:
7.5,8.0,8.0,8.5,9.0,11.0,19.5,19.5,28.5,31.0,36.0.

The data mean is X = 17, so the deviation scores are
—9.5,-9.0,-9.0,—-8.5,-8.0,—6.0,2.5,2.5,11.5,14.0,19.0.

Deviation scores reflect how far each observation is from the mean, but often it is

best to find a single numerical quantity that summarizes the amount of variation in

our data

The average difference is always zero, so this approach is unsatisfactory

The average squared difference from the mean is called the sample variance,
which is:

¢ = ! Z()(}—X)z.

n—1

The sample standard deviation is the (positive) square root of the variance, S.
Example 1

The following data are the sample test results

3,9,10,4,7,8,9,5,7,8.

The sample mean is X =7,
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i X, X-X @ (X-X?
1 3 —4 16
2 9 2 4
3 10 3 9
4 4 -3 9
5 7 0 0
6 8 1 1
7 9 2 4
8 5 -2 4
9 7 0

10 8 1 1

o~
o

> 0

The sum of the observations in the last column is

So,

le.

17.

18.

19.

T(Xi —X )2 =48.

S? = 48/9 = 5.33.

Problems

. The height of 10 plants is measured in inches and found to be 12, 6, 15, 3, 12, 6,

21, 15, 18 and 12. Verify that 3"(X; — X) = 0.

For the data in the previous problem, compute the range, variance and standard
deviation.

Use the rules of summation notation to show that it is always the case that

Z(X,‘—X)-——O.

Seven different thermometers were used to measure the temperature of a
substance. The readings in degrees Celsius are —4.10, —4.13, —5.09, —4.08,
—4.10, —4.09 and —4.12. Find the variance and standard deviation.

A weightlifter’s maximum bench press (in pounds) in each of six successive weeks

was 280, 295, 275, 305, 300, 290. Find the standard deviation.
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GRAPHICAL SUMMARIES OF DATA:

1.0 Relative frequencies

The notation fy is used to denote the frequency or number of times the value x
occurs.

Plots of relative frequencies help add perspective on the sample variance, mean
and median.

n=y f;,

Table 1: One hundred results

22222333333333333333333444444444444444444444
4445555555555555555555555555666666666666666 7
(77777778888

Relative frequency
0.05 0.10 0.15 0.20 025
|

0.0

Figure 1: Relative frequencies for the data in table 1.
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Y L=fit Attt it R+ fo
=04+5+184+24+25+154+9+4+40+ 0+ 0=100.

The sample mean is
P
X = ;Z’?fx = Zx;-

The sample variance is

2= ” Zﬁ(x—)?)z

n—1

The cumulative relative frequency distribution F(x) refers to the proportionof
observations less than or equal to a given value.

Problems

1. Based on a sample of 100 individuals, the values 1, 2, 3, 4, 5 are observed with
relative frequencies 0.2, 0.3, 0.1, 0.25, 0.15. Compute the mean, variance and
standard deviation.

2. Fifty individuals are rated on how open minded they are. The ratings have the
values 1, 2, 3, 4 and the corresponding relative frequencies are 0.2, 0.24, 0.4,0.16,
respectively. Compute the mean, variance and standard deviation.

3. For the values 0, 1, 2, 3, 4, 5, 6 the corresponding relative frequencies based on
a sample of 10,000 observations are 0.015625, 0.093750, 0.234375, 0.312500,
0.234375, 0.093750, 0.015625, respectively. Determine the mean, median,
variance, standard deviation and mode.

4. For a local charity, the donations in dollars received during the last month were
5, 10, 15, 20, 25, 50 having the frequencies 20, 30, 10, 40, 50, 5. Compute the
mean, variance and standard deviation.

5. The values 1, 5, 10, 20 have the frequencies 10, 20, 40, 30. Compute the mean,
variance and standard deviation.

2.0 Histograms: is an excellent graphical representation of the data.
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Table 2:

0.00 0.12 0.16 0.19 0.33 0.36 0.38 0.46 0.47 0.60 0.61 0.61 0.66 0.67 0.68
0.69 0.75 0.77 0.81 0.81 0.82 0.87 0.87 0.87 0.91 0.96 0.97 0.98 0.98 1.02
1.06 1.08 1.08 1.11 1.12 1.12 1.13 1.20 1.20 1.32 1.33 1.35 1.38 1.38 1.41
1.44 1.46 1.51 1.58 1.62 1.66 1.68 1.68 1.70 1.78 1.82 1.89 1.93 1.94 2.05
2.09 2.16 2.25 2.76 3.05

class midpoint | frequency | Frequency Relative | Cumulative
interval frequency
-0.5-0.0 -0.25 1 1/65 =.0153 0.015385
>0.0-0.5 0.25 8 8/65 =.123 0.138462
>0.5-1.0 0.75 20 20/65 = .308 0.446154
>1.0-1.5 1.25 18 18/65 = .277 0.723077
>1.5-2.0 1.75 12 12/65 = .185 0.907692
>2.0-2.5 2.25 4 4/65 = .0625 0.969231
>2.5-3.0 2.75 1 1/65 = .0153 0.984615
>3.0-3.5 3.25 1 1/65 = .0153 1
- E jid
0l - - . ‘ r . - Midpoint
Classes
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Homework #1:
The frequency table below shows the compressive strength of
concrete cubes results.
a) Construct a histogram, frequency table, frequency polygon, and
cumulative frequency diagram?
b) Calculate mean value?
c) Calculate the percentage of the compressive strength results < 39.5
N/mm??
d) Calculate the percentage of the compressive strength results
between avalue of 36.5 and 39.5 N/mm??

Class interval | 34 — <35 35-<386 |36—<37 |37—-<38 | 38-<39 |39 <40

Frequency 2 5 10 14 9 2

Homework #2:
The rainfall measurements data are 16, 22, 17, 18, 21, 14, 15, 23, 16, 19.
a) Arrange the data in ascending rank order?
b) Construct a histogram, frequency table, frequency polygon, and
cumulative frequency diagram?
c) What is the probability of (X > 13.5), (i.e compute p(X > 13.5))?
d) compute p(13.5 <X >18.5)?
e) compute p(13.5 <X >15.5)?
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Probability Theory

A random variable refers to a measurement or observation that cannot be known
in advance.

An experiment that can result in different outcomes, even though it is
repeated in the same manner every time, is called a random experiment.

Roman letter is used to represent a random variable, the most common letter being X.

A lower case X is used to represent an observed value corresponding to the random
variable X. So the notation X =x means that the observed value of X is x.

The set of all possible outcomes or values of X we might observe is called the sample
space.

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.

EXAMPLE 1:

Consider an experiment in which you select a plastic pipe, and measure its
thickness.

Sample space as simply the positive real line because a negative value for
thickness cannot occur

S=R" ={x|x>0}

If it is known that all connectors will be between 10 and 11 millimeters thick, the
sample space could be

S={x|10<x<11}
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If the objective of the analysis is to consider only whether a particular part is low,
medium, or high for thickness, the sample space might be taken to be the set of three
outcomes:

S ={low, medium, high }

If the objective of the analysis is to consider only whether or not a particular part
conforms to the manufacturing specifications, the sample space might be simplified
to the set of two outcomes,

S={yes,no}

that indicate whether or not the part conforms.

A discrete random variable meaning that there are gaps between any value and the
next possible value.

A continuous random variable meaning that for any two outcomes, any value
between these two values is possible.

Examples of
Random Examples of continuous mndom vanables:
Variables dectncal current, length, pressure, tempemture, ime, voltage, weight
Examples of diserete mndom vanables:
number of seratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits recenved in error.
EXAMPLE 2:

If two connectors are selected and measured, the sample space is depending on the
objective of the study.

If the objective of the analysis is to consider only whether or not the parts conform
to the manufacturing specifications, either part may or may not conform. The sample
space can be represented by the four outcomes:
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S={yy,yn,ny,nn}

If we are only interested in the number of conforming parts in the sample, we
might summarize the sample space as

S={0,1,2}
In random experiments in which items are selected from a batch, we will indicate
whether or not a selected item is replaced before the next one is selected. For

example, if the batch consists of three items {a, b, c} and our experiment is to select
two items without replacement, the sample space can be represented as

Swithout = { @b, ac, ba, bc, ca, cb }

Swith = { aa, ab, ac, ba, bb, bc, ca, cb, cc }

Events:

Often we are interested in a collection of related outcomes from a random
experiment.

An event is a subset of the sample space of a random experiment.

Some of the basic set operations are summarized below in terms of events:

e The union of two events is the event that consists of all outcomes that are contained in
either of the two events. We denote the union as E1UE-.

e The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as E1NEo,.

e The complement of an event in a sample space is the set of outcomes in the sample space
that are not in the event. We denote the component of the event E as E.
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EXAMPLE 3:

Consider the sample space S {yy, yn, ny, nn} in Example 2. Suppose that the set of
all outcomes for which at least one part conforms is denoted as E;. Then,

Ei={yy,yn,ny}
The event in which both parts do not conform, denoted as E;, contains only the single
outcome, Ex{nn}. Other examples of events are E; = @, the null set, and E;=S, the
sample space. If Es={yn, ny, nn},

EitUEs=S E:NEs={yn,ny} Elz{nn}

EXAMPLE 4:

Measurements of the time needed to complete a chemical reaction might be
modeled with the sample space S= R™, the set of positive real numbers. Let

Ei={x [1<x<10} and E={x |1<x<118}

Then,
EitUE={x [1<x<118}  and EiNE={x [3<x<10}

Also,

Ei={x | x>10} and EiNE={x|10>x<118}
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EXAMPLE 5:

Samples of concrete surface are analyzed for abrasion resistance and impact
strength. The results from 50 samples are summarized as follows:

impact strength
High Low
abrasion resistance | High 40 4
Low 1 )

Let A denote the event that a sample has high impact strength,
Let B denote the event that a sample has high abrasion resistance.

Determine the number of samplesin A N B, A, and AU B
The event A N B consists of the 40 samples for which abrasion resistance and impact
strength are high. The event A consists of the 9 samples in which the impact strength

is low. The event A U B consists of the 45 samples in which the abrasion resistance,
impact strength, or both are high.

(a) (h) (c)

Sample space Swith events A and B
AuBnC (AnC)

A B A B

(d) (e)

Figure 1. Venn diagrams
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Venn diagrams are often used to describe relationships between events and sets.

Two events, denoted as E; and E,, such that

ElﬂEz =@

are said to be mutually exclusive.

The two events in Fig. 1(b) are mutually exclusive, whereas the two events in Fig. 1(a) are not.
Additional results involving events are summarized below. The definition of the complement of an

event implies that
1E;2¢E

The distributive law for set operations implies that

Table 1: Corresponding statements in set theory and probability

Set theory Probability theory

Set theory Probability theory

Space, S Sample space, sure event

Empty set, () Impossible event

Elements a, b, . .. Sample points @, b, ... (or simple events)

Sets 4, B, ... Events 4, B, ...

A Event A occurs

A Event 4 does not occur

AUB At least one of 4 and B occurs

AB Both A4 and B occur

ACBH A is a subevent of B (i.e. the occurrence of A necessarily implies
the occurrence of B)

AB=10 A and B are mutually exclusive (i.e. they cannot occur

simultaneously)
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Probability is used to quantify the likelihood, or chance, that an outcome of a
random experiment will occur. “The chance of rain today is 30%’’ is a statement
that quantifies our feeling about the possibility of rain.

A 0 probability indicates an outcome will not occur. A probability of 1 indicates an
outcome will occur with certainty.

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
-
[ ]

— 100 Elements

/7~

P(E) =30(0.01) =0.30

Fig. 2: Probability of the event E is the sum of the probabilities of the outcomes in E.

For a discrete sample space, the probability of an event E, denoted as P(E),
equals the sum of the probabilities of the outcomes in E.

EXAMPLE 6:

A random experiment can result in one of the outcomes {a, b, ¢, d} with probabilities
0.1, 0.3, 0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c,
d}, and C the event {d}.Then,

P(A)=0.1+0.3=0.4
P(B)=0.3+05+0.1=0.9
P(C) =0.1

Also: P (A)= 0.6, P(B')= 0.1, P(C") = 0.9
P(ANB)=0.3
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P(AUB)=1
P(ANC)=0

EXAMPLE 7:
A visual inspection of a defects location on concrete element manufacturing
process resulted in the following table:

Number of defects | Proportion of concrete element
0 0.4
1 0.2
2 0.15
3 0.1
4 0.05
5 or more 0.1

a) If one element is selected randomly from this process to inspected, what is
the probability that it contains no defects?

The event that there is no defect in the inspected concrete elements, denoted as E;,
can be considered to be comprised of the single outcome,

E.= {0}.
Therefore, P(E;) =04
b) What is the probability that it contains 3 or more defects?
Let the event that it contains 3 or more defects, denoted as E;
P (E,) = 0.1+0.05+0.1= 0.25

EXAMPLE 8:

Suppose that a batch contains six parts with part numbers {a, b, c, d, e, f}. Suppose
that two parts are selected without replacement. Let E denote the event that the part
number of the first part selected is a. Then E can be written as E {ab, ac, ad, ae, af}.
The sample space can be counted. It has 30 outcomes. If each outcome is equally
likely,
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P(E) = 5/30 = 1/6

ADDITION RULES

P(AUB)=P(A)+P(B)-P(ANB)

EXAMPLE 8:

The defects such as those described in Example 7 were further classified as either in
the “center’’ or at the “edge’’ of the concrete elements, and by the degree of damage.
The following table shows the proportion of defects in each category. What is the
probability that a defect was either at the edge or that it contains four or more
defects?

Defects Center Edge Total
Low 514 68 582
High 112 246 358
Total 626 314

Let E; denote the event that a defect contains four or more defects, and let E,
denote the event that a defect is at the edge.

Defects Classified by Location and Degree

Number of defects Center Edge Totals
0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10
Totals 0.72 0.28 1.00
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The requested probability is P (E; U E3). Now, P (E;) =0.15and P (E;) = 0.28. Also,
from the table above, P (E; N E;) =0.04

Therefore, P(E;UEy)=0.15+0.28-0.04 =0.39
What is the probability that concrete surface contains less than two defects (denoted
as E3) or that it is both at the edge and contains more than four defects (denoted as

E.)?

The requested probability is P (Es U E4). Now P (E3) = 0.6, and P (E4) = 0.03. Also,
Es and E4 are mutually exclusive.

Therefore, P(EsNEs)=0

and P (Es UEs) = 0.6 + 0.03 =0.63

for the case of three events:

P(AUBUC) = P(4) + P(B) + P(C) — PF(ANB)
—PANC)—PBNCO +PANBNC)

A collection of events, £, E,, ..., Egis said to be mutually exelusive it for all pairs,
ENE =
For a collection of mutually exclusive events,

P(E,UE,\J ... UE) = PE|) + P(Ej) + ... PE})
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EXAMPLE 9:

Let X denote the pH of a sample. Consider the event that X is greater than 6.5 but
less than or equal to 7.8. This probability is the sum of any collection of mutually
exclusive events with union equal to the same range for X. One example is:

oS < ¥=T8=FoS<XA=T0)+PI0<X=75)+ P75 <X=78)

Another example is

A6S5 < X=178)=H635 <X=66)+P66<X=71)
+ATI<X=74)+ T4 <X =75

The best choice depends on the particular probabilities available.

Page | 5



ENGIEERING STATISTICS
Lecture 4

48 1f Pl4) =03, P(E) =02, snd P4 B} =01,
determing the following prohabiliies:

s PL4') {b) P4 L B)

) FlA'MB)  {d) FlAMEY

(&) Pl[AUBY] (f) P4’ LE)

2.530. I 4, 8, and C &re mutally exclusie svenls with
PlA) = 02, P[B) = 03, snd P[C) = 04, determine the fal-
lowing probabihties:

{8 FAUBU Y (b) PAMEN O

{€) PlAMB) {d) P[4 UB)NC]

(=) PlA'TE M)

251, If 4, B,and Care mutusl by exclusie svents, & il poss
sible far FLA) = 03, P{B) = 04, and P(C) = 0.57 Why or
why mat?

2.32, Disks of polycarbonste plastic from a supplier are an-
ahyzad for scraich and shock resistencs. The rasults From 100
dhisks e summsrized &5 follows:

shock resistance

hmgh law
scraich high T 4
e larw 14 5

{a) IFfadiskiss=lectad a1 random, whet i the probability that
15 scralch resistance B high and ns shock resstmos 13
high?

(b} If & disk i3 s=lectsd &1 random, what & the probability
that 113 scratch resistancs B hgh or 16 shock resslancs
i high?

(&) Consider the event that & disk has high scratch resistancs
and the event that a chsk has high shock resstncs. Ars
these twa events mudual by exclusme?

2.53. Theznshsisof shals for & compressar 155 ummarized

by conformancs i specifiations.

riundness conforms

v na
surface finsh Ve 345 5
wnforms na 12 ¥

&) IF & shafiis s=lected 31 randam, what i the probability tha
e shafi conforms 1o surfacs finish requinements?

b} What is the probability thet the sslactad shafl conforms
1o surface finsh requirsmenis ar 1o roundness requirs.
menis?

) What is the probability that the sslecsd shafi sither cons
frrms 1o surfacs finish raquirsmens or doss not conform
tr roumnidness ragquiremenis?

) What is the probability that the sslecied shaft confiorms 1o
bath surfacs finsh &nd roundness ragquiraments ?

2-34, Cohokingail is producsd in two main vareti=s: mand-

and pobyunsstursted . Tws commean souncess of coaking oil ars

worn and canala. The fallowing table shows the number af

hottles af thess ails 21 & supermarkst:

ty pe o f oil

cnala oo

=
[

wp=af mana

-
[l

Insx uratian pakby a3

&) IFa bottle of wil is selected st random, what & the proba.
Whty that i belongs ta the pohyunssturated categany?

(b} What 15 the probabihty that the chasen bottle B manouns
saturated canala wil?

2:55. A manufecturer of front lights for suomobiles es1s

Emps undér 2 mgh humdity, high temperatuns @manonment

wing inbensily and useful lifs 25 the responsss of interest. The

fal lkrwing 1ahle shows the parformancs af 130 lamps:

useful life
siEfacory  unsstisfaciony
ni=nsity st facony 117 3
nsste ooy ] 2

@) Find the probabihty that 2 randomlby seleciad lamp wall
yizkl umsatisfactory results under amy cribenia,

{h) The customers for thess lamps demsend 95% sasfaciory
rsults. Can the lamp menu facturer mest this demand ?

236, The shafis in Exsncise 253 are further classifisd in terms
af the maching ool that was wsed for manufacturing the shafl.

Taal 1
roundness conforms
e na
surfzce finsh =y 20 1
aon farms na 4 2
Taal 2
roundness conforms
e na
surface finish e 145 4
aon farms na ¥ &

&) If & shafiis sekected 31 randam, what i the probability that
hez shaft conforms 1o surfece finsh requirement ar 1o
rundness requirements ar s from Toal 17

b} Ifashafi s seleciesd 51 randam, what is the probability that
the shafl confiorms o surfece fnsh requirsmens or does
nel canfiarm o roundnes requirsments or is from Toal 27

&) IF & shafiis selected 31 randam, what i the probability that
hi= shafl conforms to both surface finish and roundness
rquiraments ar the shafl is fromToal 27

@) If 2 shafi s selecisd 51 randam, what i the probability that
the shaft conforms 1o surfzoe finsh raquiresments ar the
shaft is from Toal 27

Page | 6
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CONDITIONAL PROBABILITY

The conditional probability of an event B given an event 4, denoted as P(B|4), 15
PB|A) = P(AN B)/P(A)

for P(4) > 0.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25%
of the parts with surface flaws are (functionally) defective parts. However, only 5%
of parts without surface flaws are defective parts. The probability of a defective part
depends on our knowledge of the presence or absence of a surface flaw.

Lm

o Fl=0.2

B rlaFardim
= % DETECTIve

i
defactive P E= 0.05
el Wi Frad A= .UJ

Let D denote the event that a part is defective
and let F denote the event that a part has a surface flaw.

Then, the probability of D given, or assuming, that a part has a surface flaw as

P(D | F). This notation is read as the conditional probability of D given F, and it is
interpreted as the probability that a part is defective, given that the part has a surface

flaw.

Page | 1
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EXAMPLE 1:

Table 1 below provides an example of 400 parts classified by surface flaws and as
(functionally) defective. For this table the conditional probabilities match those
discussed previously in this section. For example, of the parts with surface flaws (40
parts) the number defective is 10.

Table 1: Parts Classified

Surface Flaws
Yes (event F) Mo Total
Defactive Yes (event 1) 10 18 3B
Mo 30 342 362
Total 40 360 A0

Therefore,

P(D|F) = 10/40 = 0.25

and of the parts without surface flaws (360 parts) the number defective is 18.
Therefore,

PID|F"}) = 18/360 = 0.05

Figure 1: Tree diagram for parts classified

Therefore, P ( B | A) can be interpreted as the relative frequency of event B among
the trials that produce an outcome in event A.

Page | 2
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EXAMPLE 2:

Again consider the 400 parts in Table 1 above (example 1). From this table

10 /40 100
PhlAm=PADNORA/PF=——=—
T U400/ 400 40
Note that in this example all four of the following probabilities are different:
P(F) = 40/400 P(F\D) = 10428
P(D) = 28/400 P(D|F}) = 10/40
Here, P (D) and P (D | F) are probabilities of the same event, but they are
computed under two different states of knowledge.

Similarly, P (F) and P (F | D),

The tree diagram in Fig. 1 can also be used to display conditional probabilities.

P(DF) = 10/40 and P(DY|F) = 30/40

Multiplication
Rule (for If an operation can be descnibed as a sequence of k steps, and
counting - S S -

techniques) if the number of ways of completing step 1 15 ry, and

if the number of ways of completing step 2 15 1, for each way of completing

step 1, and

if the number of ways of completing step 3 15 n; for each way of completing

step 2, and so forth,

the total number of ways of completing the operation 1s

ny Kong Xt X

Page | 3
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Permutations

Another useful calculation is the number of ordered sequences of the elements of a
set. Consider a set of elements, such as S {a, b, c}. A permutation of the elements
Is an ordered sequence of the elements. For example, abc, acb, bac, bca, cab, and
cba are all of the permutations of the elements of S.

The number of permutations of n different elements 15 r! where

Rl=nXn—-1)Xn—-2) X X2X1

In some situations, we are interested in the number of arrangements of only some of
the elements of a set. The following result also follows from the multiplication rule.

The number of permutations of a subset of r elements selected from a set of n differ-
ent elements 15

Pl=nXn—-1)Xnr—-2)XXn—-r+1)=

EXAMPLE 3:

A printed circuit board has eight different locations in which a component can be
placed. If four different components are to be placed on the board, how many
different designs are possible?

Each design consists of selecting a location from the eight locations for the first
component, a location from the remaining seven for the second component, a
location from the remaining six for the third component, and a location from the
remaining five for the fourth component. Therefore,

Page | 4



ENGIEERING STATISTICS
Lecture 5

W

B!
PI=8XTX6X35= rTi 1680 different designs are possible.

Combinations

Another counting problem of interest is the number of subsets of r elements that
can be selected from a set of n elements. Here, order is not important.

The number of subsets of size » that can be selected from a set of »n elements is

denoted as (}) or C7 and
(?f) n!
r Hn —r)!

EXAMPLE 4:

A printed circuit board has eight different locations in which a component can be
placed. If five identical components are to be placed on the board, how many
different designs are possible? Each design is a subset of the eight locations that are
to contain the components. From the Equation above, the number of possible designs
is

8!
5! 3!
The following example uses the multiplication rule in combination with the above
equation to answer a more difficult, but common, question.

=56

EXAMPLE 5:

A bin of 50 manufactured parts contains three defective parts and 47 non-defective
parts. A sample of six parts is selected from the 50 parts. Selected parts are not
replaced. That is, each part can only be selected once and the sample is a subset of
the 50 parts. How many different samples are there of size six that contain exactly
two defective parts?

Page | 5
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A subset containing exactly two defective parts can be formed by first choosing the
two defective parts from the three defective parts.

-
I

3\ 3
(2;] = 3 different ways

Then, the second step is to select the remaining four parts from the 47 acceptable
parts in the bin. The second step can be completed in

(47 47!

(4;) = a3 = 178365 different ways

Therefore, from the multiplication rule, the number of subsets of size six that
contain exactly two defective items is

3 * 178,365 = 535,095
As an additional computation, the total number of different subsets of size six is
found to be

50 50!
6/ 6!44!
Therefore, the probability that a sample contains exactly two defective parts is

= 15,890,700

535,095

15.890.700 _ J:0°4

Page | 6
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§2-1. An order for a personal digital assistant can specify
any one of five memory sizes, any one of three types of dis-
plays, any one of four sizes of a hard disk, and can either in-
clude or not include a pen tablet. How many different systems
can be ordered?

§2-2. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?
82-3. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?

S2-4. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?

§2.5. A manufacturing operations consists of 10 opera-
tions. However, five machining operations must be com-
pleted before any of the remaining five assembly operations

can begin. Within each set of five, operations can be com-

pleted in any order. How many different production se-

quences are possible?

S2-6. In a sheet metal operation, three notches and four

bends are required. If the operations can be done in any order,

how many different ways of completing the manufacturing are

possible?

§2-7. A lot of 140 semiconductor chips is inspected by

choosing a sample of five chips. Assume 10 of the chips do not

conform to customer requirements.

(a) How many different samples are possible?

(b) How many samples of five contain exactly one noncon-
forming chip?

(c) How many samples of five contain at least one noncon-
forming chip?

S2-8. In the layout of a printed circuit board for an elec-

tronic product, there are 12 different locations that can accom-

modate chips.

(a) If five different types of chips are to be placed on the
board, how many different layouts are possible?

Page | 7
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(b) If the five chips that are placed on the board are of the
same type, how many different layouts are possible?

S52-9. In the laboratory analysis of samples from a chemical

process, five samples from the process are analyzed daily. In

addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.

(a) How many different sequences of process and control
samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considerad identical.

(b) How many different sequences of process and control sam-
ples are possible if we consider the five process samples to
be different and the two control samples to be identical.

(¢} For the same situation as part (b), how many sequences
are possible if the fisst test of each day must be a control
sample?

52-10. Inthe design of an electromechanical product, seven

different components are to be stacked into a cylindrical cas-

ing that holds 12 components in a manner that minimizes the
impact of shocks. One end of the casing is designated as the
bottom and the other end is the top.

{a) How many different designs are possible?

(b) If the seven components are all identical, how many dif-
ferent designs are possible?

(c) If the seven components consist of three of one type of
component and four of another type, how many different
designs are possible? (more difficult)

S2-11. The design of a communication system considered

the following questions:

{a) How many three-digit phone prefixes that are used to rep-
resent a particular geographic area (such as an area code)
can be created from the digits 0 through 97

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain ¢ or 1 as
the middle digit?

(c) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?

2-12. A byte is a sequence of eight bits and each bit is 2i-
therOor 1.
(a) How many different bytes are possible?
(b) If the first bit of a byte is a parity check, that is, the first
byte is determined from the other seven bits, how many
differant bytes are possible?

S2-13. Inachemical plant, 24 holding tanks are used for fi-
nal product storage. Four tanks are selected at random and
without replacement. Suppose that six of the tanks contain
material in which the viscosity exceeds the customer require-
ments.

(a) What is the probability that exactly one tank in the sample
contains high viscosity material?

(b) What is the probability that at least one tank in the sample
contains high viscosity material?

(c) In addition to the six tanks with high viscosity levels, four
different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high viscosity material and exactly one tank in
the sample contains material with high impurities?

S2-14. Plastic parts produced by an injection-molding oper-
ation are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses 3 parts from among the 12 at random. Two cavities
are affected by a temperature malfunction that results in parts
that do not conform to specifications.

(a) What is the probability that the inspector finds exactly one
nonconforming part?

(b) What is the probability that the inspector finds at least one
nonconforming part?

S2-15. A bin of 50 parts contains five that are defective. A

sample of two is selected at random, without replacement.

(a) Determine the probability that both parts in the sample are
defective by computing a conditional probability.

(b) Determine the answer to part (a) by using the subset ap-
proach that was describad in this section.
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Distributions
Discrete Distributions:
___________ L.
Binomial Poisson Distribution
Distribution
Continuous Distributions:

Normal Distribution Uniform Distribution Cauchv Distribution
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Definition:

For a discrete random vanable X with possible values x,, x5, ..., x,, 2 probability
mass function 1s a function such that

(1) flx)=0
@ 3 flx) =1
I=]
(3) flx) =PX=x)

BINOMIAL DISTRIBUTION:

Definition:

A random experiment consists of n Bernoulli trials such that

(1) The trials are independent

(2) Each trial results in only two possible outcomes, labeled as “success™ and
“failure™

(3) The probability of a success in each trial, denoted as p, remains constant

The random variable X that equals the number of trials that result in a success

has a binomial random variable with parameters 0 < p < landn = 1, 2,.... The
probability mass function of X is

ﬁx}=(:)p’f(1 —p)" x=0,1,...,n

EXAMPLE 1:

Each sample of water has a 10% chance of containing a particular organic pollutant.
Assume that the samples are independent with regard to the presence of the pollutant.
Find the probability that in the next 18 samples, exactly 2 contain the pollutant. Let
X the number of samples that contain the pollutant in the next 18
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samples analyzed. Then X is a binomial random variable with p= 0.1 and n= 18.
Therefore,

| 18Y .
PX=2)= ( . ) (0.1)%0.9)'

F =

18" i . _
f\'ow(? ) = 181/[2! 16!] = 18(17)/2 = 153. Therefore,

PX = 2) = 153(0.1)%(0.9)"° = 0.284

Determine the probability that at least four samples contain the pollutant?

The requested probability is

I8 A
| 18N,
PX=4)= > ( r)u;[}.]jﬂ;[}ﬂj'ﬁ"‘

However, it is easier to use the complementary event,

. _ 218y -
PX=4)=1-PX<4)=1->> ( r)u;li}.]jrfu;li}.gj'ﬁ"r

x={

=1 —[0.150 + 0.300 + 0.284 + 0.168 = 0.098

Determine the probability that 3 <X < 7. Now

ﬁ £
. 18 o
P3=X<T) = E( ) ).;t}.]j-f.;t}.@rj-*‘-‘

=3

= (.168 + 0.070 + 0.022 + 0.005
= (.265
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The mean and variance of a binomial random variable depend only on the
parameters p and n.

If X is a binomial random variable with parameters p and n,

p=EX)=np and o = V(X) = np(l —p)

EXERCISES:

1. For each scenario described below, state whether or not the binomial distribution is a reasonable
model for the random variable and why. State any assumptions you make.

(@ A production process produces thousands of temperature transducers. Let X denote the number
of nonconforming transducers in a sample of size 30 selected at random from the process.

(b) From a batch of 50 temperature transducers, a sample of size 30 is selected without
replacement. Let X denote the number of nonconforming transducers in the sample.

(c) Four identical electronic components are wired to a controller that can switch from a failed
component to one of the remaining spares. Let X denote the number of components that have failed
after a specified period of operation.

(d) Defects occur randomly over the surface of a semiconductor chip. However, only 80% of
defects can be found by testing. A sample of 40 chips with one defect each is tested. Let X denote
the number of chips in which the test finds a defect.

2. The random variable X has a binomial distribution with n=10 and p=0.5. Determine the
following probabilities:
@P(X=5 (b)P(X<2) (c)P(X>9) (d)P(B3<X<5)

3. Sketch the probability mass function of a binomial distribution with n =10 and p = 0.01 and
comment on the shape of the distribution.
(a) What value of X is most likely? (b) What value of X is least likely?

4. Batches that consist of 50 concrete blocks from a production process are checked for
conformance to building requirements. The mean number of nonconforming concrete blocks in a
batch is 5. Assume that the number of nonconforming concrete blocks in a batch, denoted as X, is
a binomial random variable.

(a) What are n and p? (b) What is P(X < 2)? (c) What is P(X > 49)?
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5. A manufacturing process has 100 customer orders to fill. Each order requires one
component part that is purchased from a supplier. However, typically, 2% of the
components are identified as defective, and the components can be assumed to be
independent.
a) If the manufacturer stocks 100 components, what is the probability that the 100
orders can be filled without reordering components?
b) If the manufacturer stocks 102 components, what is the probability that the 100
orders can be filled without reordering components?
c) If the manufacturer stocks 105 components, what is the probability that the 100
orders can be filled without reordering components?

(This exercise illustrates that poor quality can affect schedules and costs).

Page | 6
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POISSON DISTRIBUTION:

The random vanable X that equals the number of counts m the interval 15 a Poisson
random variable with parameter () << A, and the probability mass finction of X 1s

E - ihl.-:

x!

x=0,12,...

flx) =

If X 15 a Poisson random vanable with parameter A, then

L=EX)=A and o= FX)=A

EXAMPLE 2:

For the case of the thin copper wire, suppose that the number of flaws follows a
Poisson distribution with a mean of 2.3 flaws per millimeter. Determine the
probability of exactly 2 flaws in 1 millimeter of wire. Let X denote the number of
flaws in 1 millimeter of wire. Then, E(X) = 2.3 flaws and

S ]
P LY 4
!

= [.265

£

-
'

PX=2)="—

Determine the probability of 10 flaws in 5 millimeters of wire. Let X denote the
number of flaws in 5 millimeters of wire. Then, X has a Poisson distribution with

E(X) =5 mm x 2.3 flaws/mm = 11.5 flaws
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Therefore,
_q1.5 115" ﬂ
Px=10)=¢"9 —— =10113
10!

Determine the probability of at least 1 flaw in 2 millimeters of wire. Let X denote
the number of flaws in 2 millimeters of wire. Then, X has a Poisson distribution with
E(X) =2 mm x 2.3 flaws/mm = 4.6 flaws

Therefore,

PlX=1)=1—-PX=0)=1-¢* = 09899

EXERCISES:

3-97. Suppose Xhas a Poisson distribution with 2 mean of
4, Determine the following probabilities:

(8) PiX=10) (b) PlXs2)

() PlX=4) (d) P(X=8)

3-98. Suppose X has a Poisson distribution with 2 mean of
0.4, Determine the following probabilities:

(a) PiX=0) (b) PlXs2)
{¢) PX=4) (d) P(X=28)
3-99. Suppose that the number of customers that enter

a bank in an hour is 2 Poisson random variable, and sup-

pose that P(X = 0) = 0.05. Determine the mean and

variance of X

3-100. The number of telephone calls that arrive at a phone

exchange is often modeled as & Poisson random variable.

Assume that on the average there are 10 calls per hour.

{2) What is the probability that there are exactly 5 calls in one
hour?

(b) What is the probability that there are 3 or less calls in one
hour?

(c) What is the probability that there are exactly 15 calls in
two hours?

{d) What is the probability that there are exactly 5 calls in
30 minutes?

3-101. The number of flaws in bolts of cloth in textile man-

ufacturing is assumed to be Poisson distributed with 2 mean of

0.1 flaw per square meter.

{2) What is the probability that there are two flaws in | square
meter of cloth?

{b) What is the probability that there is one flaw in 10 square
meters of cloth?

{c) What is the probability that there are no flaws in 20 square
meters of cloth?

(d) What is the probability that there are at least two flaws in
10 square meters of cloth?

3-102. When a computer disk manufacturer tests a disk, it

writes to the disk and then tests it using a certifier. The certi-

fier counts the number of missing pulses or errors. The num-
ber of errors on a test area on a disk has & Poisson distribution

withA = 0.2

{2) What is the expected number of errors per test area?

(b) What percentage of test areas have two or fewer errors?

3-103. The number of cracks in a section of interstate high-

way that are significant enough to require repair is assumed

to follow a Poisson distribution with a mean of two cracks
per mile.

(2) What is the probability that there are no cracks that require
repair in 5 miles of highway?

{b) What is the probability that at least one crack requires
repair in 1/2 mile of highway?

(¢) Ifthe number of cracks is related to the vehicle load on
the highway and some sections of the highway have a
heavy load of vehicles whereas other sections carry
a light foad, how do you feel about the assumption of a
Poisson distribution for the number of cracks that
require repair?

3-104. The number of failures for a cytogenics machine

from contamination in biological samples is a Poisson random

variable with 2 mean of 0.01 per 100 samples.

{2) If the lab usually processes 500 samples per day, what is
the expected number of failures per day?
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PlaeX<a bl

Lpaclimg

Density of a loading on a Probability determined from the area
long, thin beam under f(x)

Definition:

For a continuous random vanable X, a probability density function is a function

anch that

(1) fix)=0

(2) fix)dx =1

—r

L

(3) Pla=X=b)= | fix)dx = areaunder f{x) fromatob

a

for any g and b

For the density function of a loading on a long thin beam, because every point has
zero width, the loading at any point is zero. Similarly, for a continuous random

variable X and any value x.
P(X=x)=0

If X is a continuous random variable, for any x; and xa,

Pri=X=x)=Px<X=x=Px=X<x)=Px<X<x)
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EXAMPL E:

Let the continuous random variable X denote the diameter of a hole drilled in a sheet
metal component. The target diameter is 12.5 mm. Most random disturbances to the
process result in larger diameters. Historical data show that the distribution of X can
be modeled by a probability density function f (x) = 20 e 20125 x >12 5,

If a part with a diameter larger than 12.60 millimeters is scrapped, what proportion
of parts is scrapped? The density function and the requested probability are shown
in Fig. 2. A part is scrapped if X >12.60. Now,

x =

PX > 12.60) = | fix)dx= | 20e720 7123 gy = — 20712311 = (135

12.6
116 126

What proportion of parts is between 12.5 and 12.6 millimeters? Now,
LE;D
P(125 < X< 12.6) = | flx)dx = —e 20— 123) = 0.865

Because the total area under f (x) equals 1, we can also calculate

P (12.5< X <12.62) =1 — P(X > 12.62) = 1- 0.135= 0.865.

fix)

125 126 x
Figure 2: Probability density function



ENGIEERING STATISTICS
Lecture 7

EXERCISES:

4-1. Suppose that f{x) = ™ for 0 < x. Determine the fol-
lowing probabilities:

@) PIl<X) (b) Pll <X=<23)

©) PLXY=3) (d) PlX<4)

e) P3=X)

4-1. Suppose that f{x) = ¢ ™ for 0 < x.

{a) Determine x such that P{x << X) = 0.10.

(b) Determine x such that PLX = x) = 0.10.

4-3. Suppose that f{x) = x/8 for 3 < x < 5. Determine the
following probabilities:

(a) PIX < 4)

c) P4<X <35

(&) PIX < 350rX>45)
4-4. Suppose that fix) = ¢"* ¥ for 4 < x. Determinz the
following probabilities:

(a) PI1<X) (b) A2=X<5)

(b) PLX > 3.5)
(d) PLX < 4.5)

(c) P5<X) (d PB<X<12)

(e) Determine x such that P(X < x) = 0.90.

4.5, Suppose that f(x) = 1.5x% for —1 < x < 1. Determine

the following probabilities:

(a) P(0 <X)

(c) P(=0.5 = X = 0.5)

(e) PIX<OorX> —0.5)

(f) Determine x such that P(x < X) = 0.05.

4-6. The probability density function of the time to failure

of an electronic component in a copier (in hours) is f{x) =

o= x/1000

1000

(a) A component lasts more than 3000 hours before failure.

(b) A component fails in the interval from 1000 to 2000 hours.

(c) A component fails before 1000 hours.

(d) Determine the number of hours at which 10% of all com-
ponents have failed.

4.7. The probability density function of the net weight in

pounds of a packaged chemical herbicide is f{x) = 2.0 for

49.75 < x < 50.25 pounds.

(a) Determine the probability that a package weighs more
than 50 pounds.

(b) P(0.5 < X)
(d) PIX < =2)

for x > 0. Determine the probability that

(b) How much chemical is contained in 90% of all packages?

4-8. The probability density function of the length of a

hinge for fastening a door is f(x) = 1.25 for 74.6 < x < 75.4

millimeters. Determine the following:

(a) P(X < 74.8)

(b) P(X<748 or X>1752)

(c) If the specifications for this process are from 74.7
to 75.3 millimeters, what proportion of hinges meets
specifications?

4-9. The probability density function of the length of a

metal rod is f{x) = 2 for 2.3 < x < 2.8 meters.

(a) If the specifications for this process are from 2.25 to0 2.75
meters, what proportion of the bars fail to meet the speci-
fications?

(b) Assume that the probability density function is f{x) = 2
for an interval of length 0.5 meters. Over what value
should the density be centered to achieve the greatest pro-
portion of bars within specifications?

4-10. If Xis a continuous random variable, argue that P(x; =

X=R)=Px<X=x)=Px=X<x,) =Plx <X<x,).

Page | 5
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NORMAL DISTRIBUTION:
{3 2 = "
fix) g2=1 62 = 1
g =4
w=5 =15 x

Normal probability density functions for selected values of the parameters p and 62

Definition:

A random variable X with probability density function

—\:I—].LLI"
——

. 1 |
flx) = g 2 —m < x <@
1) = s

is a normal random variable with parameters p, where —% < p < %, and ¢ > 0.
Also,

EX)=p and V(X)=o"

. v.' 2y ¢ . . . .
and the notation N(p., o) is used to denote the distribution. The mean and variance
2 . . - .
of X are shown to equal p. and o~, respectively, at the end of this Section 5-6.

EXAMPLE 4:

Assume that the current measurements in a strip of wire follow a normal distribution
with a mean of 10 mA and a variance of 4 (mA)2. What is the probability that a
measurement exceeds 13 mA?

Let X denote the current in mA. The requested probability can be represented as:
P(X > 13)
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This probability is shown as the shaded area under the normal probability density
function in Fig. 3.

Fie)

10 13 X
Figure -B1 Probability that X > 13 for a normal ran-
dom variable with p = 10 and o* = 4,

Some useful results concerning a normal distribution are summarized below and in
Fig. 4. For any normal random variable,

Pp—o<X<p+o)=06827
Ap —2o<X<p+ 2o)=09545
Ap —3oc<X<p+ 3g)=09973

i)

p=dor Q- 2o p—er B pEer p+de p+ 3 ox

| e
= 5%
= 7% -|

Figure 4412 Probabilities associated with a normal
distribution.

Definition:
A normal mndom vanable with

p==0 and ot =1

is called a standard normal random variable and 15 denoted as £,
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Summary of Common Probability Distributions

Probability
Name Distribution Mean Variance
Discrete
o 1 (b + a) (b—ag=+ 17 -1
— -
Uniform = b > 3
. nm\ . ,
Binomial (Y)p (1= py 7, Hp np(l — p)
x=01...,n,0=p=1
Geometric (1= p)'p, 1/p (1= p)/p?
x=L2 ....0=p=1
x—1
Negative binomial (Y I) (1 =pF~p rp H1 = p)/p
r—
x=rr+Lr+2 ..., 0=p=1
()G
. xS\mn—x ) N —=n
Hypergeometric BT e— np, np(l — p) -
(” ) where p = %
r=max(0,n — N+ K),1... ‘
min(K,n), K=N,n=N
_'JL.JLI
Poisson S x=012...,0<A A A
x!
Continuous
. 1 (b + a) (b — af
Uniform LA=x=h
b —a 2 12
! 1 A
Normal —_F : mn a
o2
—w < w —wgp<x0<o
Exponential e 0=y 0<A 1/A 1/A%
.Jl.rf_LE'_AI
Erlang m, O=<xr=12... A A
. )Lf—le—.&r N
Gamma T}‘}’ O=<x0<r <) A riA
_ Brx V™' _ s 1 2
Weibull S\z) e ar(1+— Tl 1+ —
a8 ’ B B
1 2
0="x 0=<PR,0=8 _5.2[r(|+_)J
B
| —lll'llrl'} - HZ) 2 FI
Lognormal ex - - g R ol
2 *‘v‘q P( 02 \ )
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Dz

Table IT Cumulative Standard Normal Distriburion

z

—0.09

—0.08

—0.07

—0.06

—0.05

—0.04

—0.03

—0.02

—0.01

—0.00

-39
—38
-3.7
—36
—33
-34
—33
-3z
-31
-3.0
=29
—2.8
=27
—2.6
—2.5
-24
-23
—22
-2.1
=20
-1.9
- 1.8
-1.7
- L6
-5
-1.4
-3
-1.2
-1l
-1.0
-0.9
—0.8
-0.7
—0.6
—0.5
—0.4
—0.3
-0.2
—0.1

0.0

0.000033
0000050
0.000075
0.000112
0.000165
0.000242
0.000350
0.000501
0.000711
0.001001
0.001395
0.001926
0.002635
0.003573
0.004799
0.006387
0.008424
0.011011
0.014262
0.018309
0.023205
0.029379
0.036727
0.045514
0.055917
0.068112
0.082264
0.098525
0.117023
0.137857
0.161087
0.186733
0.214764
0.245007
0.277595
0.312067
0.3458268
0.383908
0.424655
0.464144

0.000034
0.000052
0.000078
0.000117
0.000172
0.000251
0.000362
0.000519
0.000736
0.001035
0.001441
0.001988
0.002718
0.003681
0.004940
0.006569
0.008656
0.011304
0.014629
0.018763
0.023852
0.030054
0.037538
0.046479
0.057053
0.069437
0.083793
0.100273
0.119000
0.140071
0.163543
0.189430
0.217695
0.248252
0.280957
0.313614
0.351973
0.389730
0.428576
0.468119

0.000036
0.000054
0.000082
0.000121
0.000179
0.000260
0.000376
0.000538
0.000762
0.001070
0.001489
0.002052
0.002803
0.003793
0.005085
0.006756
0.008894
0.011604
0.015003
0.019226
0.024419
0.030742
0.038364
0.047460
0.058208
0.070781
0.085343
0.102042
0.121001
0.142310
0.166023
0.192150
0.220650
0.251429
0.284339
0.319178
0.355691
0.3933580
0.432505
0.472097

0.000037
0.000057
0.000085
0.000126
0.000185
0.000270
0.000390
0.000557
0.000789
0.001107
0.001538
0.002118
0.002890
0.003907
0.005234
0.006947
0.009137
0.011911
0.015386
0.019699
0.024998
0.031443
0.039204
0.048457
0.059380
0.072145
0.086915
0.103835
0.123024
0.144572
0.168528
0.194894
0.223627
0.254627
0.287740
0.322758
0.359424
0.397432
0.436441
0.476078

0.000039
0.000039
0.000088
0.000131
0.000193
0.000280
0.000404
0.000577
0.000816
0.001144
0.001589
0.002186
0.002980
0.004025
0.005386
0.007143
0.009387
0.012224
0.015778
0.020182
0.025588
0.032157
0.040059
0.049471
0.060571
0.073529
0.088508
0.105630
0.125072
0.146859
0171056
0.197662
0.226627
0.257846
0.291160
0.326355
0.363169
0.401294
0.440382
0.480061

0.000041
0.000062
0.000092
0.000136
0.000200
0.000291
0.000419
0.000598
0.000845
0.001183
0.001641
0.002256
0.003072
0.004145
0.005543
0.007344
0.009642
0.012545
0.016177
0.020675
0.026190
0.032884
0.040929
0.050503
0.061780
0.074934
0.090123
0.107488
0.127143
0.149170
0.173600
0.200454
0.229650
0.261086
0.294599
0.329969
0.366028
0.405165
0.444330
0.484047

0.000042
0.000064
0.000096
0.000142
0.000208
0.000302
0.000434
0.000619
0.000874
0.001223
0.001695
0.002327
0.003167
0.004269
0.005703
0.007549
0.009903
0.012874
0.016386
0.021178
0.026803
0.033625
0.041815
0.051551
0.063008
0.076359
0.091759
0.109349
0.129238
01513505
0176185
0.203269
0.232695
0.264347
0.298056
0.3333598
0.370700
0.409046
0.448283
0.488033

0.000044
0.000067
0.000100
0.000147
0.000216
0.000313
0.000450
0.000641
0.000904
0.001264
0.001750
0.002401
0.003264
0.004396
0.005868
0.007760
0.010170
0.013209
0.017003
0.021692
0.027429
0.034379
0.042716
0.052616
0.064256
0.077804
0.003418
0.111233
0.131337
0.153864
0.178786
0.206108
0.235762
0.267629
0.301532
0.337243
0.374484
0.412936
0.452242
0.492022

0.000046
0.000069
0.000104
0.000153
0.000224
0.000325
0.000467
0.000664
0.000935
0.001306
0.001807
0.002477
0.003364
0.004527
0.006037
0.007976
0.010444
0.013553
0.017429
0.022216
0.028067
0.035148
0.043633
0.053699
0.065522
0.079270
0.095098
0.113140
0.133500
0.156248
0.181411
0.208970
0.238852
0.270931
0303026
0.340003
0.378281
0.416834
0.456205
0.496011

0.000048
0.000072
0.000108
0.000159
0.000233
0.000337
0.000483
0.000687
0.000968
0.001350
0.001866
0.002555
0.003467
0.004661
0.006210
0.008198
0.010724
0.013903
0.017864
0.022750
0.028717
0.033930
0.044565
0.054799
0.066807
0.080757
0.096801
0.113070
0.133666
0.158655
0.184060
0.211855
0.241964
0.274253
0.308538
0.344578
0.382089
0.420740
0.460172
0.500000
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Cumulative Standard Normal Distribution (continued)

Z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
3.0
3.1
32
33
34
33
3.6
3.7
3.8
3.9

0.500000
0.539828
0.579260
0.617911
0.655422
0.691462
0.725747
0.758036
0.788145
0.815940
0.841345
0.864334
0.884930
0.903199

0.919243
0.933193
0.945201
0.955435
0.964070
0.971283
0.977250
0.982136
0.986097
0.989276
0.991802
0.993790
0.995339
0.996533
0.997445
0.998134
0.998650
0.999032
0.999313
0.999517
0.999663
0.999767
0.999841
0.999892
0.999928
0.999952

0.503989
0.543795
0.583166
0.621719
0.659097
0.694974
0.729069
0.761148
0.791030
0.818589
0.843752
0.866500
0.886860
0.904902

0.920730
0.934478
0.946301
0.956367
0.964852
0.971933
0.977784
0.982571
0.986447
0.989556
0.992024
0.993963
0.995473
0.996636
0.997523
0.998193
0.998694
0.999065
0.999336
0.999533
0.999675
0.999776
0.999847
0.999896
0.999931
0.999954

0.507978
0.547758
0.587064
0.625516
0.662757
0.698468
0.732371
0.764238
0.793892
0.821214
0.8461306
0.868643
0.888767
0.906582

0.922196
0.935744
0.947384
0.957284
0.965621
0.972571
0.978308
0.982997
0.986791
0.989830
0.992240
0.994132
0.995604
0.996736
0.997599
0.998250
0.998736
0.999096
0.999359
0.999550
0.999687
0.999784
0.999853
0.999900
0.999933
0.999956

0.511967
0.551717
0.390954
0.629300
0.666402
0.701944
0.735653
0.767305
0.796731
0.823815
0.848495
0.870762
0.890651
0.908241

0.923641

0.936992
0.948449
0.958185
0.966375
0.973197
0.978822
0.983414
0.987126
0.990097
0.992451

0.994297
0.995731

0.996833
0.997673
0.998305
0.998777
0.999126
0.999381
0.999566
0.999698
0.999792
0.999858
0.999904
0.999936
0.999958

0.515953
0.555760
0.594835
0.633072
0.670031
0.705401
0.738914
0.770350
0.799546
0.826391
0.850830
0.872857
0.892512
0.909877

0.925066
0.938220
0.949497
0.959071
0.967116
0.973810
0.979325
0.983823
0.987455
0.990358
0.992656
0.994457
0.995855
0.996928
0.997744
0.998359
0.998817
0.999155
0.999402
0.999581
0.999709
0.999800
0.999864
0.999908
0.999938
0.999959

0.519939
0.559618
0.598706
0.636831
0.673645
0.708840
0.742154
0.773373
0.802338
0.828944
0.853141
0.874928
0.894350
0.911492

0.926471
0.939429
0.950529
0.959941
0.967843
0.974412
0.979818
0.984222
0.987776
0.990613
0.992857
0.994614
0.995975
0.997020
0.997814
0.998411
0.998856
0.999184
0.999423
0.999596
0.999720
0.999807
0.999869
0.999912
0.999941
0.999961

0.532922
0.563559
0.602568
0.640576
0.677242
0.712260
0.745373
0.776373
0.805106
0.831472
0.855428
0.876976
0.896165
0.913085

0.927855
0.940620
0.951543
0.960796
0.968557
0.975002
0.980301
0.984614
0.988089
0.990863
0.993053
0.994766
0.996093
0.997110
0.997882
0.998462
0.998893
0.999211
0.999443
0.999610
0.999730
0.999815
0.999874
0.999915
0.999943
0.999963

0.527903
0.567495
0.606420
0.644309
0.680822
0.715661
0.748571
0.779350
0.807850
0.833977
0.857690
0.878999
0.897958
0.914657

0.929219
0.941792
0.952540
0.9616306
0.969258
0.975581
0.980774
0.984997
0.988396
0.991106
0.993244
0.994915
0.996207
0.997197
0.997948
0.998511
0.998930
0.999238
0.999462
0.999624
0.999740
0.999821
0.999879
0.999918
0.999946
0.999964

0.531881
0.571424
0.610261
0.648027
0.684386
0.719043
0.751748
0.782305
0.810570
0.836457
0.859929
0.881000
0.899727
0.916207

0.930563

0.942947

0.953521

0.962462
0.969946
0.976148
0.981237
0.985371

0.988696
0.991344
0.993431

0.995060
0.996319
0.997282
0.998012
0.998559
0.998965
0.999264
0.999481
0.999638
0.999749
0.999828
0.999883
0.999922
0.999948
0.999966

0.535856
0.575345
0.6140092
0.651732
0.687933
0.722405
0.754903
0.785236
0.813267
0.838913
0.862143
0.882977
0.901475
0.917736

0.931888
0.944083
0.954486
0.963273
0.970621
0.976705
0.981691
0.985738
0.988989
0.991576
0.993613
0.995201
0.996427
0.997365
0.998074
0.998605
0.998999
0.999289
0.999499
0.999650
0.999758
0.999835
0.999888
0.999925
0.999950
0.999967
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Table Il Percentage Points x2 , of the Chi-Squared Distribution

o
v .995 .990 i 950 .900 .500 .100 .050 025 010 .005
1 .00+ .00+ .00+ .00+ 02 45 2.71 3.54 5.02 6.63 7.88
2 .01 .02 .05 .10 21 1.39 4.61 5.99 7.38 0.21 10.60
3 .07 11 22 35 58 2.37 6.25 7.81 9.33 11.34 12.34
4 21 30 A48 ! 1.06 336 7.78 9.49 11.14 13.28 14.86
5 41 S5 .83 1.15 l.61 4.35 9.24 11.07 12.83 15.09 16.75
6 .68 87 1.24 1.64 2.20 535 10.65 12.59 14.45 16.81 18.55
7 .99 1.24 1.69 2.17 2.83 6.335 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 349 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 558 1034 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 523 630 1134 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 1234 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 1334 21.06  23.68 26.12 20.14 31.32
15 4.60 523 6.27 7.26 835 1434 2231 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 931 1534 2354 26.30 28.85 32.00 34.27
17 590 6.41 7.56 8.67 10.09  16.34 2477 27.59 30.19 3341 35.72
18 6.26 7.01 8.23 0.39 10.87  17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 1834 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 1244 19.34 2841 3141 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 1324 2034 29.62 32.67 3548 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04  21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 1485 22.34 32.01 35.17 38.08 4l.64  44.18
24 9.89 10.86 12.40 13.85 15.66  23.34 33.20 3642 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 1647 2434 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.54 15.38 1729 2534 35.56 38.89 41.92 45.64  48.29
27 11.81 12.88 14.57 16.15 18.11  26.34 3674 40.11 43.19 46.96  49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77  28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 2060 29.34 4026 43.97 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 20.05 3934 51.81 55.76 59.34 63.69 66.77
50 27.99 20.71 32.36 34.76 37.69  49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46  59.33 74.40 79.08 §3.30 88.38 91.95
70 43.28 45.44 48.76 51.74 5533 69.33 85.53 90.53 95.02 10042 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 11233 [le.32
o0 59.20 61.75 65.65 69.13 7329  89.33  107.57 113.14 11814 12412 128.30
100 67.33 70.06 74.22 77.93 §2.36 9933 118350 12434 12956 13581  140.17

= degrees of freedom.



Table IV Percentage Points t, , of the t-Distribution
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th. v

o
v 40 25 .10 05 025 .01 005 .0025 001 0005
1 323 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 289 Ble 1.886 2.920 4.303 6.965 9.925 14.089 23326 31.598
3 277 765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 271 741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 27 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 Tl 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 262 706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 261 703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 .260 700 1.372 1.812 2228 2.764 3.169 3.581 4.144 4.587
11 .260 697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 259 695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4318
13 259 694 1.350 1.771 2.160 2.650 3.012 3372 3.852 4221
14 258 692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 258 .691 1.341 1.753 2.131 2.602 2.947 3.2806 3.733 4.073
16 258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 257 688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 257 687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 256 683 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 256 685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 256 .684 1.316 1.708 2.060 2485 2787 3.078 3.450 3.725
26 256 .684 1.315 1.706 2.056 2479 2.779 3.067 3.435 3.707
27 256 .684 1.314 1.703 2.052 2473 2,771 3.057 3421 3.690
28 256 683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 256 .683 1.311 1.699 2.045 2462 2.756 3.038 3.396 3.659
30 256 683 1.310 1.697 2.042 2457 2.750 3.030 3.385 3.646
40 255 681 1.303 1.684 2.021 2423 2.704 2.971 3.307 3.551
60 254 .679 1.296 1.671 2.000 2.390 2.660 2915 3.232 3.460
120 254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3373
e 253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

v = degrees of freedom.

Page | 7
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EXAMPLE 5:
The following calculations are shown pictorially in Fig. 5.
(1) PlZ=126)=1—- PAZ=126)=1— 089616 = 0.10384
(2) P(Z< —0.86) = 0.19490.
(3) P[Z> —137)= PAZ < 137) = 091465
(4) P(—125< Z < 0.37). This probability can be found from the difference of two
areas, P(Z < 037) — P[Z < —125). Now,

PZ=037) = 064431 and FAZ < —125) = 010565
Therefore,

P(—125 < Z < 037)= 064431 — 0.10565 = 053866

in

-i.6 -39%8

[

a == 165

|
L
g
o

-z a xm2 BH

NN
N

-1L25 0 aar -125

=]

Figure 5: Graphical displays for standard normal distributions.
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If X is a normal random variable with E(X) = w and F{X) = ¢”, the random variable

15 & normal random vanable with E(£) = 0 and F{£) = 1. That 1s, £ 15 a standard
normal random vanable.

EXAMPLE 6:

Suppose the current measurements in a strip of wire are assumed to follow a normal

distribution with a mean of 10 mA and a variance of 4 (mA)?2. What is the probability

that a measurement will exceed 13 mA?

Let X denote the current in mA.

The requested probability can be represented as P(X > 13).

Let Z= (X- 10)/ 2.

We note that X> 13 corresponds to Z> 1.5. Therefore, from Appendix Table 11,
PX>13)=PZ>15)=1—-PZ=15)=1—0.93319 = 0.0668]

Distribution of Z = X;'u

Distribution of X /—\

Standardizing a normal random variable.
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EXAMPLE 7: Continuing the previous example, what is the probability that a
current measurement is between 9 and 11 mA?

PO<X<I11)=P(9 - 10)/2 < (X —10)/2 < (11 — 10)/2)
=P(—05<Z<05)=PZ<05)— PZ<-0.5)
= 0.69146 — 0.30854 = 0.38292

Determine the value for which the probability that a current measurement is below
this value is 0.98. The requested value is shown graphically in the figure below. We
need the value of x such that P(X < x) = 0.98. By standardizing, this probability
expression can be written as

/

10 x

Appendix Table Il is used to find the z-value such that P (Z < z) = 0.98. The nearest
probability from Table Il results in

P (Z< 2.05) =0.97982
Therefore, (x - 10)/ 2= 2.05, and the standardizing transformation is used in reverse

to solve for x. The result is
X = 2(2.05)/10 = 14.1 mA
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EXAMPLE 8: The diameter of a shaft in an optical storage drive is normally
distributed with "mean 0.2508 inch and standard deviation 0.0005 inch. The
specifications on the shaft are 0.2500 £ 0.0015 inch. What proportion of shafts
conforms to specifications?

Let X denote the shaft diameter in inches. The requested probability is shown in the
figure below and

0.2485 — 0.2508 0.2515 — 0.2508
< /<
0.0005 0.0005
= P(—4.6<Z<14)=PZ<14)— P(Z< —4.6)
= 0.91924 — 0.0000 = 0.91924

P(0.2485 < X < 0.2515) = P(

Most of the nonconforming shafts are too large, because the process mean is located
very near to the upper specification limit. If the process is centered so that the process
mean is equal to the target value of 0.2500,

0.2485 — 0.2500 02515 — 0.2500>

P(0.2485 < X < 0.2515) = P< 00005~ %<7 0.0005

= P(-3<.Z<3)
= P(Z< 3) —P(Z< —3)
= 0.99865 — 0.00135

= 0.9973
By recentering the process, the yield is increased to approximately 99.73%.

flx) <— Specifications ———

N

0.2485 ;0.2508 0.2515 «x
0.25
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EXERCISES:

4-39. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:

(a) P(Z<1.32) (b) P(Z<3.0)

(c) P(Z > 1.45) (d) P(Z> =2.15)

(e) P(—2.34 < Z< 1.76)

4-40. Use Appendix Table II to determine the following
probabilities for the standard normal random variable Z:

(a) P(—1<Z<1) (b)P(-2<Z<2)

(¢) P(-3<Z<3) (d) P(Z=3)

(&) PO<Z<1)

4-41. Assume Z has a standard normal distribution. Use
Appendix Table 11 to determine the value for z that solves each
of the following:

(a) P(Z<z)=09

(¢) P(Z>2z)=0.1

(&) P(—124<Z<2)=08
4-42. Assume Z has a standard normal distribution. Use
Appendix Table II to determine the value for z that solves each
of the following:

(a) P(—z<Z<z)=0.95

(b) P(Z<z)=05
(d) P(Z>z) =009

(b) P(—z<Z<z)=0.99

(¢) P(—z<Z<z2) =068 (d) P(—z<Z <z)= 09973
4-43. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the following:

(a) P(X<13) (b) P(X=>09)

(c) P(6< X< 14) (d) P2 <X<4)

(e) P(—2<< X< 8)

4-44, Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the value for x that
solves each of the following:

(a) PX=x) =05

(b) P(X>x) =095

(¢) Pk<X<10)=0.2

(d) P(—x<<X—-10<x)=0095

(&) P(—x<<X-—10<x)=0.99

4-45. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the following:

(a) PIX<11) (b) P(X>0)

() PB<X<T) (d) P(—2<X<9)

(e) P2<X<§g)

4-46. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the value for x that
solves each of the following:
(a) P(X>x)=0.5

(¢) Px<X=<9)=02

() P(—x<<X<<x)=0.99
4-47. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000 kilo-
grams per square centimeter and a standard deviation of 100
kilograms per square centimeter.

(b) P(X> x)= 095
(d) PG < X<x)=095

(a) What is the probability that a sample’s strength is less than
6250 Kg/em??

(b) What is the probability that a sample’s strength is between
5800 and 5900 Kg/em??

(c) What strength is exceeded by 95% of the samples?

4.48. The tensile strength of paper is modeled by a normal

distribution with a mean of 35 pounds per square inch and a

standard deviation of 2 pounds per square inch.

(a) What is the probability that the strength of a sample is less
than 40 1b/in*?

(b) If the specifications require the tensile strength to
exceed 30 Ib/in’, what proportion of the samples is
scrapped?

4-49.  The line width of for semiconductor manufacturing is

assumed to be normally distributed with a mean of 0.5 mi-

crometer and a standard deviation of 0.05 micrometer.

(a) What is the probability that a line width is greater than
0.62 micrometer?

(b) What is the probability that a line width is between 0.47
and 0.63 micrometer?

(c) The line width of 90% of samples is below what value?

4-50. The fill volume of an automated filling machine used

for filling cans of carbonated beverage is normally distributed

with a mean of 12.4 fluid ounces and a standard deviation of

0.1 fluid ounce.

(a) What is the probability a fill volume is less than 12 fluid
ounces?

(b) If all cans less than 12.1 or greater than 12.6 ounces are
scrapped, what proportion of cans is scrapped?

(¢) Determine specifications that are symmetric about the
mean that include 99% of all cans.

4-51. The time it takes a cell to divide (called mitosis) is

normally distributed with an average time of one hour and a

standard deviation of 5 minutes.

(a) What is the probability that a cell divides in less than
45 minutes?

(b) What is the probability that it takes a cell more than
65 minutes to divide?

(c) What is the time that it takes approximately 99% of all
cells to complete mitosis?

4-52. In the previous exercise, suppose that the mean of the

filling operation can be adjusted easily, but the standard devi-

ation remains at 0.1 ounce,

{a) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces?

(b) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?

Page | 5
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SAMPLING THEORY

Link between Population and Sampling:

Probability ———»
Population
<+——  Statistics

1.0 SAMPLING DISTRIBUTIONS

Statistical inference is concerned with making decisions about a population based
on the information contained in a random sample from that population.

For instance, the mean fill volume of a can (population) is required to be 300 mm.

An engineer takes a random sample of 25 cans and computes the sample
average fill volume to be

X =298 mm
The engineer will probably decide that the population mean is p=300 mm,
even though the sample mean was 298 mm because he or she knows that the sample
mean is a reasonable estimate of p and that a sample mean of 298 mm is very likely
to occur, even if the true population mean is =300 mm.

Test values of X~ vary both above and below p=300 mm.
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Definition
The probability distribution of a statistic is called a sampling distribution.

The sampling distribution of a statistic depends on:

e The distribution of the population,
e The size of the sample, and
e The method of sample selection.

2.0 SAMPLING METHODS:

1. Random sampling
2. Systematic sampling
3. Stratified sampling
4. Multi-stage sampling

3.0 SAMPLING DISTRIBUTIONS OF MEANS

Suppose that a random sample of size n is taken from a normal population with
mean p and variance o2,

Now each observation in this sample, say, Xi, X2, Xs... X;, IS a normally and
independently distributed random variable with mean p and variance c?

The sample mean:

X = n

has a normal distribution with mean:

R e
My = " = M

and variance:
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0'2+0'2+---+0'2_0'_2 (For large N)
n

gl =
< = 5 =
X n-
2 N
gt= 9 N-r (For small N)
X n N-1
Theorem:
IfX, X, ..., X, 15 a random sample of size n taken from a population (either finite

or infinite) with mean p and finite variance g, and if X is the sample mean, the lim-
iting form of the distribution of

X -
=
a/\'n

EXAMPLE 1:

An electronics company manufactures resistors that have a mean resistance of 100 ohms
and a standard deviation of 10 ohms. The distribution of resistance is normal.

Find the probability that a random sample of n= 25 resistors will have an average
resistance less than 95 ohms.

Note that the sampling distribution of X is normal, with mean p- = 100 ohms and a
standard deviation of:

10

g
X \n V25

Therefore, the desired probability (shaded area) is shown in the figure
below:
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95 100

=

Standardizing the point x~ =95 in the Figure. We find that:

95 — 100
=

—2.5

7 =
and therefore,
P(X < 95) = P(Z < —2.5)
= 0.0062
3.0 SAMPLING DISTRIBUTIONS OF DIFFERENCES & SUM:

For two independent populations,

Let the first population has mean 1 and variance 612 and the second population has mean pi2 and
variance 6,2. Suppose that both populations are normally distributed. Then, we can say that the
sampling distribution of (X1~ - X27) is normal with mean:

MY -6 = W, — Y, = b~ W2

And variance
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If we have two independent populations with means p; and iz and variances ¢ 2and
o2 and if x;” and x,” are the sample means of two independent random samples of
sizes n1 and n, from these populations, then the sampling distribution is:

E ‘3_’2 = (= pa)

- T 7
Vaoi/n + oi/ns

with condition nl, n2 > 30

EXAMPLE 2:

The effective life of a component used in an engine is a random variable with mean 5000 hours
and standard deviation 40 hours. The distribution of effective life is fairly close to a normal
distribution.

The engine manufacturer introduces an improvement into the manufacturing process for
this component that increases the mean life to 5050 hours and decreases the standard deviation to
30 hours. Suppose that a random sample of n1= 16 components is selected from the “old”
process and a random sample of n=25 components is selected from the “improved” process.

What is the probability that the difference in the two sample means Xz - X1~ is at least 25
hours? Assume that the old and improved processes can be regarded as independent populations.

the distribution of X1~ is normal with mean p1= 5000 hours and standard deviation

61/Nn1 = 40/716 = 10 hours,

and the distribution of x2™ is normal with mean p2= 5050 hours and standard deviation
62/\np = 30/\25 =6 hours,
Now the distribution of X2~ - X1~ is normal with mean
Mz - M1 = 5050 — 5000 = 50 hours
and variance
622In2% + 61%In £ = 62+ 10% = 136 hours?.

This sampling distribution is shown in the Figure below:
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0 25 a0 75 100 x,-ix;

The sampling distribution of in Example 2
The probability that X~ - X3~ > 25 hours is the shaded portion of the normal
distribution in this figure.

So,

and we find that:
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EXERCISES:

1. PVC pipe is manufactured with a mean diameter of 1.01 inch and a
standard deviation of 0.003 inch. Find the probability that a random sample
of n = 9 sections of pipe will have a sample mean diameter greater than
1.009 inch and less than 1.012 inch.

2. A synthetic fiber used in manufacturing carpet has tensile strength that is
normally distributed with mean 75.5 psi and standard deviation 3.5 psi. Find
the probability that a random sample of n= 6 fiber specimens will have
sample mean tensile strength that exceeds 75.75 psi.

3. A random sample of size n;= 16 is selected from a normal population
with a mean of 75 and a standard deviation of 8. A second random sample
of size n,= 9 is taken from another normal population with mean 70 and
standard deviation 12. Let X;~ and x;~ be the two sample means. Find

a) The probability that X;™- X;~ exceeds 4
a) (b) The probability that 3.5 <x;7- Xz~ <5.5

4. The elasticity of a polymer is affected by the concentration of a reactant.
When low concentration is used, the true mean elasticity is 55, and when
high concentration is used the mean elasticity is 60. The standard deviation
of elasticity is 4, regardless of concentration. If two random samples of size
16 are taken, find the probability that X high- X jow = 2.

Page | 7
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REGRESSION & CORRELATION

Many problems in engineering and science involve exploring the relationships between
two or more variables. Regression analysis is a statistical technique that is very useful for these

types of problems.

For example, in a chemical process, suppose that the yield of the product is related to the
process-operating temperature. Regression analysis can be used to build a model to predict yield
at a given temperature level. This model can also be used for process optimization, such as finding

the level of temperature that maximizes yield, or for process control purposes.

Table 1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x(%) v(%)
1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73 : "
6 1.36 04 45 i . . : . : : : . : .
7 0.87 87.59 : ] o
8 1.23 91.77 98
9 1.55 99.42 .
10 1.40 93.65 =z :
1 1.19 93.54 3 o4 .
12 1.15 92.52 2 . LT "
13 0.98 9056 £ %2 c >
14 1.01 89.54 90 = . - [~
15 111 89.85 %
16 1.20 90.39 s R
17 1.26 93.25 86
18 1.32 93.41 085 095 105 115 125 135 145 1.55
19 1.43 94.98 Hydrocarbon level (x)
20 0.95 87.33 Figure 1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.

1.0 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single predictor independent variable x
and a dependent or response variable Y. Suppose that the true relationship between Y and x is a
straight line and that the observation Y at each level of x is a random variable.
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The expected value of Y, can be described by the model:

Y280+le+€

where the intercept o and the slope B1 are unknown regression coefficients.
€ is a random error with mean zero

Observed value
Data (y)

Estimated
regression line

X
Figure 2: Deviation of data from the estimated regression model

We call this criterion for estimating the regression coefficients the method of least
squares. We may express the n observations in the sample as
yf:BO—’_le[—’_Efs i:1929°-°9n
and the sum of the squares of the deviations of the observations from the true regression line is

L= 26[2 = 2(}'}' — Bo — lef)z

i=1 i=1

The least squares estimators of fo and B1, must satisfy

oL n n -
Bol = _2;()’1 — Bo = Bix) =0
dL ’ L .

= =2 o - Xj)X; = 0
a8, 2, (5= Bo ~ Bux)

=

Simplifying these two equations yields:
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nBy + By _Ex;': _ Vi

1

n n n
Bo 2xj+ B E'xfz = 2}’55\73
<=

i=1 i=1

—
—
—

The solution to the normal equations results in the least squares estimators o and B1:

_ XyiXxi ‘- XX XXy

Bo

nYxi’—(Xxi)’
8 _NXXiyi = XX XY
o nExt-Cx)’

Note that each pair of observations satisfies the relationship:
Yi =Po+ PrXi + € =1,2, ......... , N

where ei = yi- yiis called the residual. The residual describes the error in the fit of the model to
the ith observation yi.

Let:
n 2
,, . (2
S.\'.\' = ; (xi - E)2 = xiz - 1:’11
i=1 i=1
and
n n
n . (3)(E)
Sy = Zyi(xi - 37)2 = inyi e n =
= =

EXAMPLE 1: We will fit a simple linear regression model to the oxygen purity data in Table 1.
The following quantities may be computed:

20 20
n=20 > x=2392 > y=184321 x=1190 y=92.1605
i=1 i=1

20 20
vi=170,044.5321 > x7 = 29.2892 Xy = 2,214.6566

1 i=1 i=1

(3

0
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_XyiXx®— XX XXy

bo nYxi’—(Qx)’
8 _nXXyi — XXV
T nEx-(Exi)?

_1843.21 % 29.2892 — 23.92 * 2214.6566
- 20 % 29.2892 — (23.92)2

0

_ 2022146566 — 23.92 * 1843.21
20 % 29.2892 — (23.92)°

1

Bo = 74.283
B1=14.947
As a double check:
Yy =?Po+ P1x”
So,

92.160 =? 74.283 + 14.947 * 1.196 if yes then continue
If not then re-check your calculations

The fitted simple linear regression model (with the coefficients reported to three decimal places)
is:

v =74283 + 14.947x
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102
99
9
> 96
2
5
Q
c
% 93
S
Figure 3  Scatter 90
plot of oxygen
purity y versus
) ; il 87
hydrocarbon level x 0.87 1.07 T2 1.47 1.67
and regression model Hydrocarbon level (%)
¥ =7420 + 14.97x. x

Using the regression model of Example 1, we would predict oxygen purity of y* =
89.23% when the hydrocarbon level is x = 1.00%.

The purity 89.23% may be interpreted as an estimate of the true population mean purity
when x=1.00%, or as an estimate of a new observation when x = 1.00%. These estimates are, of
course, subject to error; that is, it is unlikely that a future observation on purity would be exactly
89.23% when the hydrocarbon level is 1.00%. In subsequent sections we will see how to use

confidence intervals and prediction intervals to describe the error in estimation from a regression
model.

Estimating o

There is actually another unknown parameter in our regression model, o (the variance of the
error term €). The residuals e; = y; — §; are used to obtain an estimate of o. The sum of
squares of the residuals, often called the error sum of squares, is

n

n
5:= 36 = 3 00— )’

i=1 i=1
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2.0 Correlation

A measure of the linear relationship between two numerical variables is provided
by the correlation coefficient. A correlation coefficient takes a value between -1
(perfect negative correlation) to +1 (perfect positive correlation) with zero
representing no correlation.

H.W No. 1:

The accompanying data was taken from published paper. The independent variable
is SOz deposition rate (mg/m?/day) and the dependent variable is steel weight loss
(gm/m?).

X: 14,18, 40, 43, 45, 112
y: 280, 350, 470, 500, 560, 1200

a) Construct a scatter plot. Dose the simple linear regression model appear to be
reasonable in this situation?

b) Calculate the equation of the estimated regression line?

c) Estimate the standard deviation of observation about the true regression line.

H.W No. 2:

The accompanying data resulted from a study carried out to examine the relationship
between a measure of the corrosion of reinforcement (y) and the concentration of the
corrosion inhibitor solution in concrete pores (X, in ppm):

X:2.5,5.03, 7.6, 11.6, 13, 19.6, 26.2, 33, 40, 50, 55
y: 7.68, 6.95, 6.3, 5.75, 5.01, 1.43, 0.93, 0.72, 0.68, 0.65, 0.56

a. Construct a scatter plot of the data. Dose the simple linear regression
appear to be logical?

b. Calculate the equation of the estimated regression line, use it to predict the
value of the corrosion rate that would be observed for a concentration of 33
ppm, and calculate corresponding residual.

c. Estimate the standard deviation of observation about the true regression line.

Page | 6
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Probability mass function

In general, if the random variable X follows the binomial distribution with
parameters n € N and p € [0,1], we write X ~ B(n, p). The probability of getting
exactly k successes in n independent Bernoulli trials is given by the probability mass

function:

f(k,n,p) = Pr(k;n,p) =Pr(X =k) = (Z)pk(l _ p)n—k

fork=0,1, 2, ..., n, where

()=


https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Probability_mass_function

Binomial POF {P=01, K=100] Binomial PDF{P=025 N=100)
az2 ai
o w
B 015 B 0.075 1
= =
£ £
= ai 5 005
5 5
a aas n_ﬂ.ﬂ:Eﬁ
p +E l. ' ' : ' a - - ' ' '
a 20 4ad x &aa 81 144 a 20 4q » aa 810 104
Binomial PDF{P=0.50, N=100) Binomial PDF{P=0.75 hN=100)
aag ai
Qa7
E 046 Eﬂ.ﬂ?ﬁ'
; 005 ;
= 044 = 045
= =
B 0034 B
=] i %]
5 442 5 0.025
001 7 I h i
1] R Th T T a T | — S ¥
a 20 4d &0 81 144 a 240 44 » & 80 104

The formula can be wunderstood as follows: k successes occur with
probability p* and n — k failures occur with probability (1 —p)" % However,

the k successes can occur anywhere among the n trials, and there are () different
ways of distributing k successes in a sequence of n trials.




The binomial distribution is implemented in the Wolfram Language as Binomial
Distribution [n, p].

The probability of obtaining more successes than the » observed in a binomial
distribution is

. Jﬁllr !
F= [k)P"“U—PFH=pr"+1&”"”&
&

M-a—

A+l


http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/BinomialDistribution.html
http://reference.wolfram.com/language/ref/BinomialDistribution.html

Probability mass function

In general, if the random variable X follows the binomial distribution with
parameters n € N and p € [0,1], we write X ~ B(n, p). The probability of getting
exactly k successes in n independent Bernoulli trials is given by the probability mass
function:

f(k,n,p) =Pr(k;n,p) =Pr(X =k) = (Z)pk(l )t

fork=0,1, 2, ..., n, where

&)~z
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https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Probability_mass_function

The formula can be wunderstood as follows: k successes occur with
probability p* and n — k failures occur with probability (1—p)" % However,
the k successes can occur anywhere among the n trials, and there are () different

ways of distributing k successes in a sequence of n trials.

The binomial distribution is implemented in the Wolfram Language as Binomial
Distribution [n, p].

The probability of obtaining more successes than the » observed in a binomial
distribution is

.
p=Y [‘:)pi (1= p* =1, (n+1,N=n),

k=pn+]
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