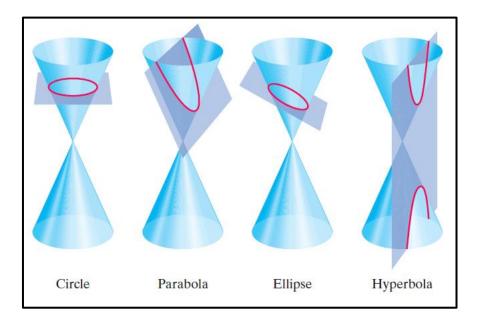
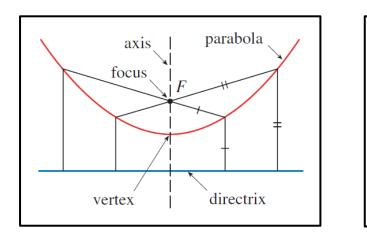
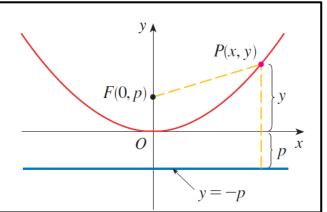
Conic sections are the curves obtained by intersecting a plane and a right circular cone. A plane perpendicular to the cone's axis cuts out a **circle**; a plane parallel to a side of the cone produces a **parabola**; a plane at an arbitrary angle to the axis of the cone forms an **ellipse**; and a plane parallel to the axis cuts out a **hyperbola**. If we extend the cone through its vertex and form a second cone, you find the second branch of the hyperbola. All these curves can be described as graphs of second-degree equations in two variables.



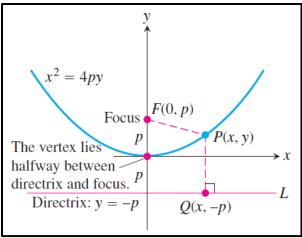
parabola

1. A **parabola** is defined as the set of all points in a plane that are equidistant from a line and a point not on the line. The line is called the **directrix** and the point is called the **focus** (plural, *foci*).





A parabola has its simplest equation when its focus and directrix straddle one of the coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive y-axis and that the directrix is the line (y = - p)



In the notation of the figure, a point P(x, y) lies on the parabola if and only if PF = PQ From the distance formula,

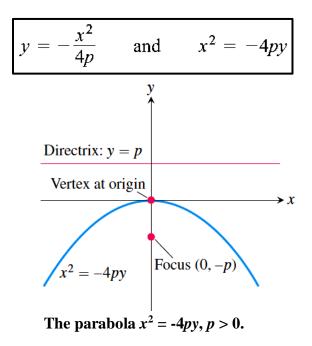
$$PF = \sqrt{(x-0)^2 + (y-p)^2} = \sqrt{x^2 + (y-p)^2}$$
$$PQ = \sqrt{(x-x)^2 + (y-(-p))^2} = \sqrt{(y+p)^2}.$$

When we equate these expressions, square, and simplify, we get

$$y = \frac{x^2}{4p}$$
 or $x^2 = 4py$ standard form (1)

These equations reveal the parabola's symmetry about the y-axis. We call the y-axis the **axis** of the parabola (short for "axis of symmetry"). The point where a parabola crosses its axis is the **vertex**. The vertex of the parabola $x^2 = 4py$ lies at the origin. The positive number p is the parabola's **focal length**.

If the parabola opens downward, with its focus at (0, -p) and its directrix the line y = p. Then Eq.(1) become

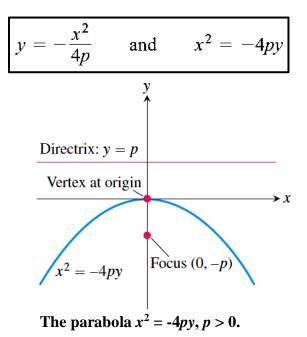


We can obtain similar equations for parabolas opening to the right or to the left

Standard-form equations for parabolas with vertices at the origin (p > 0					
Equation	Focus	Directrix	Axis	Opens	
$\overline{x^2 = 4py}$	(0, <i>p</i>)	y = -p	y-axis	Up	
$x^2 = -4py$	(0, -p)	y = p	y-axis	Down	
$y^2 = 4px$	(p, 0)	x = -p	<i>x</i> -axis	To the rig	
$y^2 = -4px$	(-p, 0)	x = p	<i>x</i> -axis	To the left	

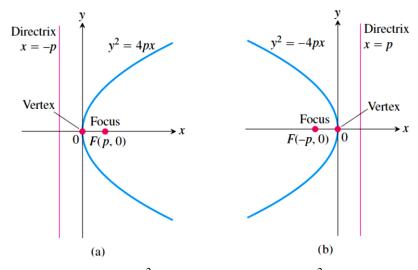
a) The parabola $y^2 = 4px$ (b) The parabola $y^2 = -4px$.

If the parabola opens downward, with its focus at (0, -p) and its directrix the line y = p. Then Eq.(1) become

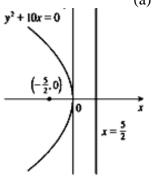


We can obtain similar equations for parabolas opening to the right or to the left

Equation	Focus	Directrix	Axis	Opens
	rocus	Directin	AAIS	Opens
$x^2 = 4py$	(0, p)	y = -p	y-axis	Up
$x^2 = -4py$	(0, -p)	y = p	y-axis	Down
$y^2 = 4px$	(<i>p</i> , 0)	x = -p	<i>x</i> -axis	To the rig
$y^2 = -4px$	(-p, 0)	x = p	<i>x</i> -axis	To the left



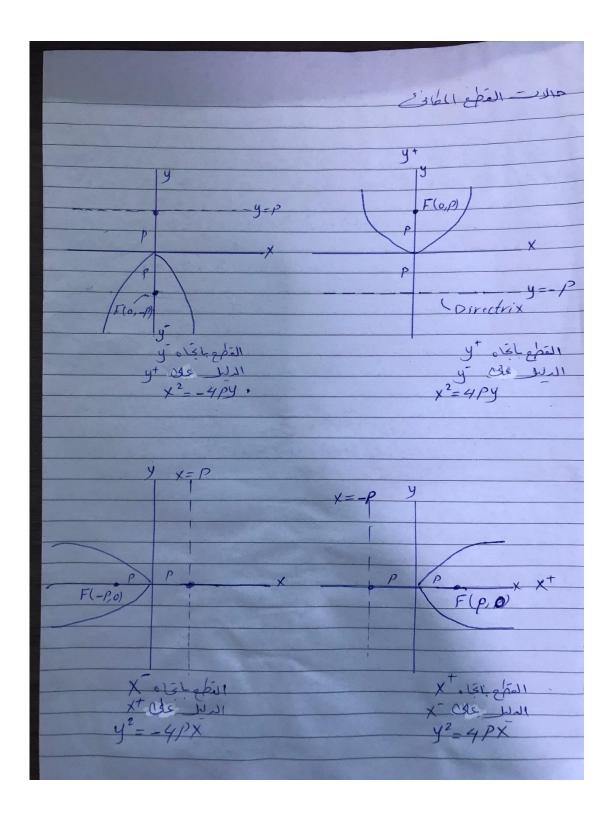
(a) The parabola $y^2 = 4px$ (b) The parabola $y^2 = -4px$.



which is an equation of the parabola with focus (p, 0) and directrix x = -p. (Interchanging x and y amounts to reflecting about the diagonal line y = x.) The parabola opens to the right if p > 0 and to the left if p < 0 [see Figure 4. parts (c) and (d)]. In both cases the graph is symmetric with respect to the x-axis, which is the axis of the parabola.

EXAMPLE 1 Find the focus and directrix of the parabola $y^2 + 10x = 0$ and sketch the graph.

SOLUTION If we write the equation as $y^2 = -10x$ and compare it with Equation 2, we see that 4p = -10, so $p = -\frac{5}{2}$. Thus the focus is $(p, 0) = (-\frac{5}{2}, 0)$ and the directrix is $x = \frac{5}{2}$. The sketch is shown in Figure 5.



1.1 Writing Quadratic Equations in the Form $y = a(x - h)^2 + k$

The standard form of a quadratic function is $y = ax^2 + bx + c$ In this section, we will write the quadratic equation in the form $y = a(x - h)^2 + k$ where a, h, and k are real numbers. To do that, we will need to complete the square

→ To write a quadratic equation in the form $y = a(x - h)^2 + k$

- 1) Isolate the *x*-terms to one side of the equation.
- 2) Factor out the leading coefficient.
- 3) Add the value needed to complete the square to both sides of the equation.
- 4) Rewrite the trinomial as a binomial squared.
- 5) Solve the equation for *y*.

SUMMARY OF THE EFFECTS OF THE REAL NUMBERS a, h, AND k OF A QUADRATIC EQUATION ON A VERTICAL PARABOLA

The real numbers a, h, and k of a quadratic equation in the form $y = a(x - h)^2 + k$ affect the graph of the equation.

If a > 0, then the graph is concave upward (opens upward).

If a < 0, then the graph is concave downward (opens downward).

If |a| > 1, then the graph is narrower than it would be if a = 1.

If |a| < 1, then the graph is wider than it would be if a = 1.

The vertex of the graph is (h, k). The axis of symmetry is the line graphed by x = h.

EXAMPLE I

Write the quadratic equations in the form $y = a(x - h)^2 + k$. Identify a, h, and k.

a.
$$y = x^2 - 4x + 7$$
 b. $y = -2x^2 - 16x - 35$

 $y = x^2 - 4x + 7$

Solution

a.

 $y - 7 = x^2 - 4x$ Isolate the x-terms. $y - 7 + 4 = x^2 - 4x + 4$ Add $(\frac{-4}{2})^2 = 4$ to both sides. $y - 3 = (x - 2)^2$ Write the trinomial as a binomial squared. $y = (x - 2)^2 + 3$ Solve for y. In the equation $y = (x - 2)^2 + 3$, a = 1, h = 2, and k = 3. $v = -2x^2 - 16x - 35$ b. $v + 35 = -2x^2 - 16x$ Isolate the x-terms. $y + 35 = -2(x^2 + 8x)$ Factor out the leading coefficient, -2. $y + 35 + [-2(16)] = -2(x^2 + 8x + 16)$ Add $-2(\frac{\beta}{2})^2$, or -2(16), to both sides $y + 3 = -2(x + 4)^2$ Write the trinomial as a binomial squared. $y = -2(x + 4)^2 - 3$ Solve for y. In the equation $y = -2(x + 4)^2 - 3$, or $y = -2[x - (-4)]^2 + (-3)$,

a = -2, h = -4, and k = -3.

Determine the vertex and axis of symmetry for the graph of each equation. Describe the graph, but do not draw it.

a.
$$y = 2(x - 4)^2 - 3$$
 b. $y = -x^2 - 4x - 8$

Solution

 $y = 2(x - 4)^2 - 3$ a. or $y = 2(x - 4)^2 + (-3)$ Write the equation in $y = a(x - h)^2 + k$ form. We see that a = 2, h = 4, and k = -3. Since a = 2 and 2 > 0, the graph is concave upward. Since |2| = 2 > 1, then the graph is narrower than it would be if a = 1. The vertex is (h, k), or (4, -3). The axis of symmetry is the graph of x = 4. **b.** $v = -x^2 - 4x - 8$ First, write the equation in the form $y = a(x - h)^2 + k$. $y+8=-x^2-4x$ Isolate the x-terms. $y + 8 = -1(x^2 + 4x)$ Factor out the leading coefficient. $y + 8 + [-1(4)] = -1(x^2 + 4x + 4)$ Add $-1(\frac{4}{2})^2$, or -1(4), to both sides. $y + 4 = -1(x + 2)^2$ Write the trinomial as a binomial squared. $y = -1(x + 2)^2 - 4$ Solve for y. or $y = -1[x - (-2)]^2 + (-4)$ Therefore, a = -1, h = -2, and k = -4. Since a = -1 and -1 < 0, the graph is concave downward.

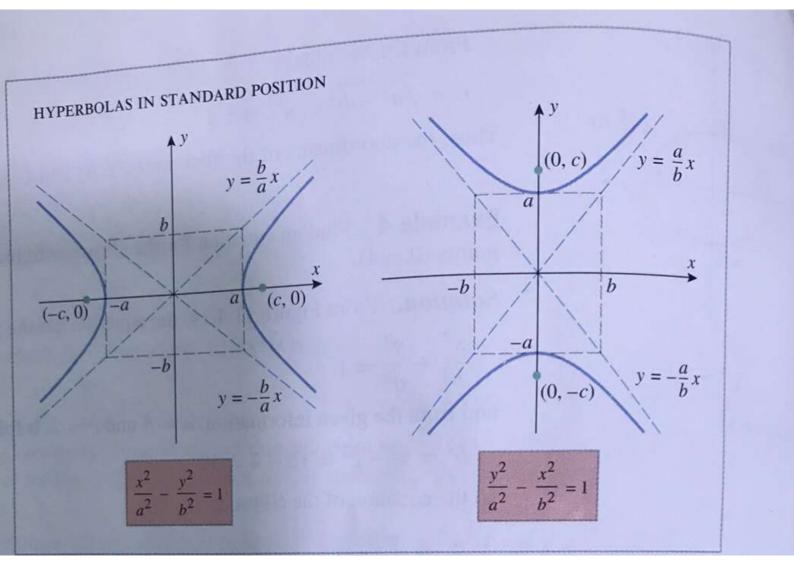
Since |-1| = 1, the graph is the same width as it would be if a = 1. The vertex is (h, k), or (-2, -4).

The axis of symmetry is the graph of x = -2.

Hy perbola A hyperbola is the set of all Points in a plane such that the absolute value of the difference of the distance between two fixed points stays Constant. Each fixed Point is called a focus, and the Point midway between the foci is called the centre. The Line Containing the Foci is the transverse axis. The graph is made up of two Parts Called branches. Each branch intersects the transverse axis at a point Called the vertex. , figure 1, figure 2 Transverse axis focus focus & Centre Vertices Fig » branches F2(C,0) Fi(-C,0) Fig 2

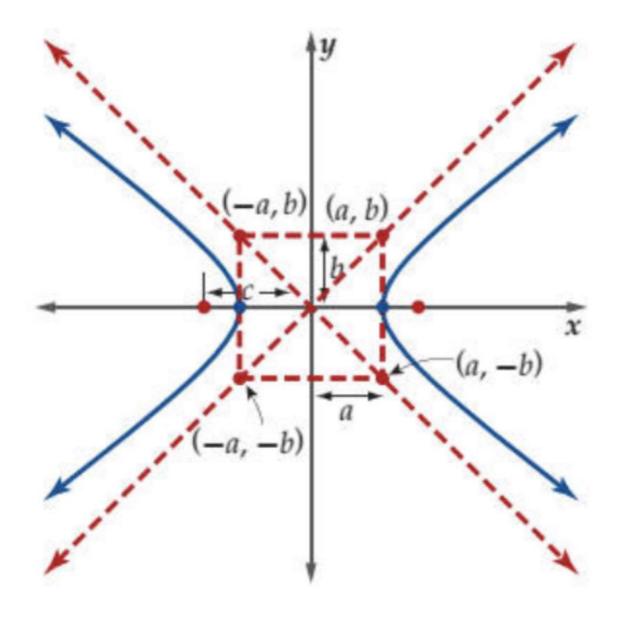
It is traditional in the study of hyperbolas to denote the distance between the vertices by 2a, the distance between the focily 2C Figure 3, and to define the quantity bas b= V c2 a2 This relationship, which can also be expressed as A a j+ a -Fig 3 is pictured geometrically in figure 4 $C = \sqrt{a^2 + b^2}$ Ь Fig 4 The number a is called the semifocal axis of the hyperbola and the number b the the Semilonjugate axis.

If V is one vertex of hyperbola, then as illustrated in Figure 5 1 a st a d Eig 5 C-a The distance from V to the Farther focus minus the distance from V to the closer focus is $\left\lfloor (C_{-\alpha}) + 2\alpha \right\rfloor - (C_{-\alpha}) = 2\alpha$ Thus, for all points on a hyperbola, the distance to the farther focus minus the distance to the closer focus is 2a The equation of a hyperbola is simplest if the Center of the hyperbola is at the origin and the foci are on the x-axis or y-axis. The two possible such orientations are shown in figure 6. There are called the standard Positions of a hyperbola, and the resulting equations are called the standard equations of a hyperbola.



Standard form equations for hyperbolas centered at the origin Fuci on the X-axis Foci on the Yaxis $\frac{\chi^2}{a^2} \frac{\gamma^2}{b^2} = 1$ $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ Sea -Ceitre to hours distance Centre to Focus distance $C = \sqrt{a^2 + b^2}$ $C = \sqrt{a^2 + b^2}$ Fuci (FC, 0) Fuci (O, FC) Vertices (7a,0) Vertices (0, Fa) Asymtotes Asym totes $\frac{\chi^2 \cdot y^2}{a^2 \cdot b^2} = 0$ $\frac{y^2}{a^2} - \frac{y^2}{b^2} = 0$ OF $or y = \pm b x$ or $y = \pm \alpha$ b

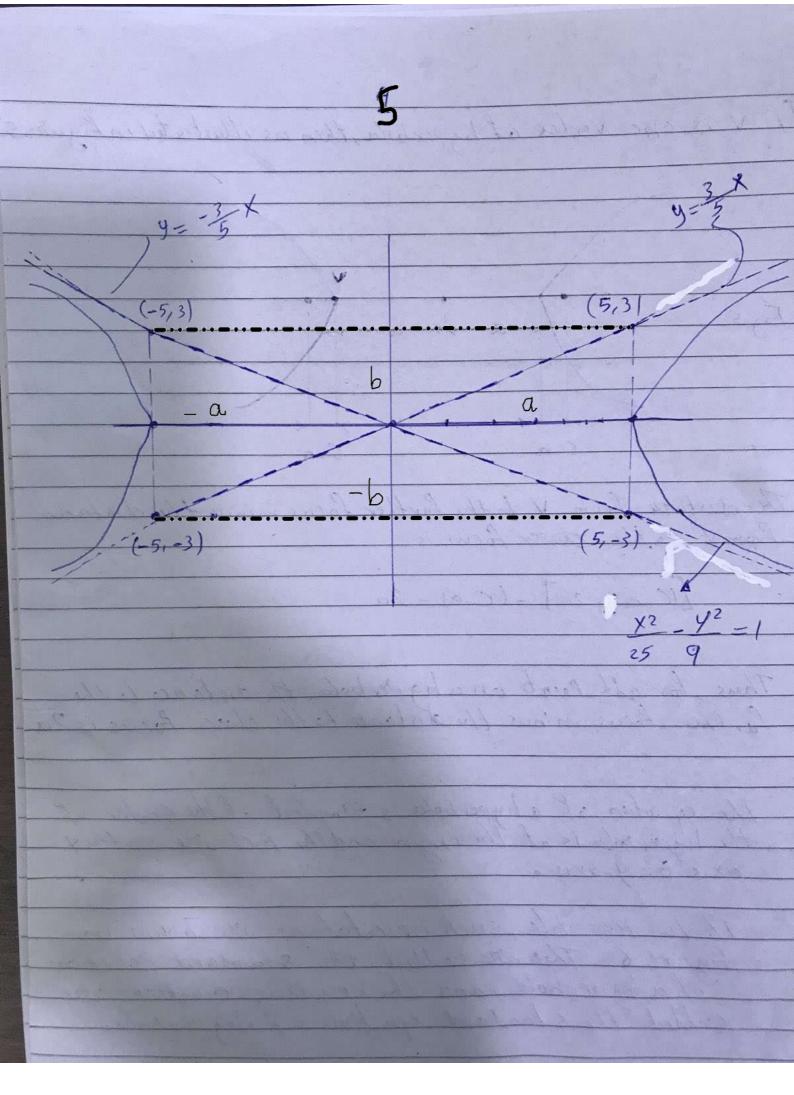
Asymboles Tograph a hyperbolas asymptotes, we need to draw a certral rectangular with worners at (a,b), (-a,b) (a, -b) and (-a, -b). The asymptotes are extended diagonals of this rectangle. Note the Center is the intersection of the diagonals. The equation of the asymptotes are $y = \pm \frac{b}{\alpha} \times \frac{b}{\alpha}$ To graph any perhola with the contre at the origin:-1. Find a, b, and C 2. With a dashed line, draw a central rectangle with lorners of (a, b), (-a, b), (a, -b) and (-a, -b) 3- With a dashed line, draw the asym to tes 4- sketch the hyperbola. (a,b) (-a, -b) (a,-b)

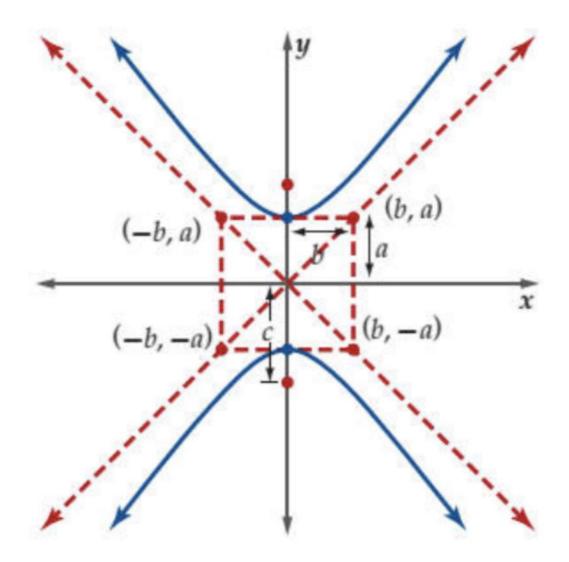


Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Ex. 1 sketch the graphs of the quetions: $a \cdot \frac{\chi^2}{25} - \frac{y^2}{q} = 1$ Solution .. $\frac{\chi^2 - \gamma^2}{\alpha^2 - b^2} = 1$ the second $a^{*}=5, b=3$ $C = \sqrt{a^2 + b^2}$ $C = \sqrt{25+9} = \sqrt{34}$ find (a,b) (-a,b) (a,-b) & (-a,-b) (5,3) (-5,3) (59-3) & (-5,-3) to draw the rectangle Draw the asymtotes sketch the hyperbola

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com





sketch thegraph of the equation: $-49 \chi^{2} + 36 \chi^{2} = 1764$ - X2 36 X2 1.0 36 49 Find a, b & c $6 \quad C = \sqrt{\alpha^2 + b^2}$ 7 49+36 9.2 a

Circle Acivale is the sat of Points in a plane that are equidistant from agiven Point, called the centre The radius (Pluval, radii) of the circle is the distance between each of its points and the centre. Contre vadius The star of the star and the state of the state Graphing circles with the Centre at the origin The equation of the distance can be used to determine the equation of the circle P(X, Y) . C(0,0) 1-22 - 27 2 275! $D = \sqrt{(\chi_2^2 - \chi_1)^2 + (\gamma_2 - \gamma_1)^2}$ HURST AND CONTRACT CON and as a mar and the stand of the stand of the law $V = \sqrt{(\chi - 0)^{2} + (Y - 0)^{2}}$ and the state of 11 States and the $V = \chi^2 + \chi^2$ a challen and

2 To graph a circle with the centre at the origin The origin of the circle is (0,0) - Find the two X_ intercepts (r, o) and (-r, o) Find the two Y- intercepts (0, r) and (0, -r) Sketch the circle $\chi^{2} + \dot{y}^{2} = q$ $x^{2}+y^{2}=9$ (3,0) (-3,0) (0, -3) $\chi^{2} + \gamma^{2} = 16$ (0,4) (4,6) (-4,0) x2+y= 16

Graphing circles with the centre not at the origin The distance formula can be use to determine the equation of the circle (c(h,K)) $D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $v = \sqrt{(x-h)^2 + (y-K)^2}$ *centre (0,0)* $Y^{2} = (X - h)^{2} + (Y - IK)^{2}$ $Y^{2} = (X - h)^{2} + (Y - IK)^{2}$ $Y^{2} = X^{2} + Y^{2}$ To graph a circle with its Centre not at the origin Find hand K Find (h+r, K), (h-r, K), (h, K+r)&(h, K-r) Draw the graph

14 te March 18 ab the goal to . 2 Et sketch the graph of the below equations $(1/3)^{2} + (1/-1)^{2} = 4$ (X-3)² + (Y-1)² = 4 The equation is similar to the formula $(X-h)^{2} + (Y-K)^{2} - r^{2}$ V2=21, V=2 Find hand K _ ph=3, & K=1 find (h+r, K) (h-r, K) (h, K+r) & (h, K-r) (h+r,1K) - 2 (5,1) and the daman first (h-r, 12) -> (1,1) (h, K+r)- (3,3) (h, K-r) - (3,-1) Draw the graph

5 Chin If we have the Centre ander), the equation (an be found Et Write an equation of each circle if @ Centre at the origin and radius 7 Centre at the origin, then the formula is $x^{2}+y^{2}=r^{2}$ $x^{2}+y^{2}=7^{2}$ $\chi^{2}_{+}y^{2} = 49$ (B) Centre at (-1,3) & radius 4 The formula is $(\chi - h) + (\gamma - K)^{2} = r^{2}$ $(\chi - (-1))^{2} + (\gamma - 3)^{2} = 4^{2}$ $(x + 1)^{2} + (y - 3)^{2} = 16$

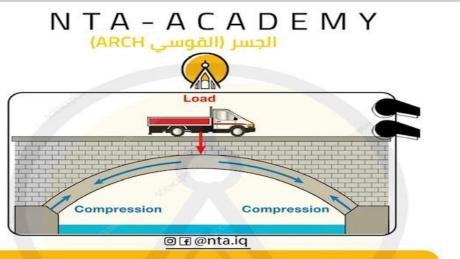
Translated Conics Equations of Conics that are translated from their standard Positions can be obtained by replacing X by X h and y by y-K in their standard equations. For a parabola this translates the vertex from the origin to the Point (h,K), and for ellipses and hyperbolas this translates the Centre Rom the origin to the Point (hoK). Parabolus with vertex (h, K) and axis Parallel to X-axis:opens right $(y - K)^{2} = 4P(x - h)$ $(y_{-ix})^{2} = -4P(x_{-h})$ opens left x p p p (y 2) - 5×+32 (+-3) - S(x+4) y=-4PX y Directvix $4 y^2 = 4PX$ Directvit ×=P X = -Pverter Focus vertex Fl-Rollo F(P, 6) 0 Pattle Parel 1 2

Ex Describe the graph of the equation y²-8x-6y-23=0 Solution. The equation in volves quadratic terms in y but none in X, so we first take all of the y-terms to one side: $y^2 - 6y = 8x + 23$ Next, we complete the square on the y-terms by adding q to both sides: $y^2 - 6y + 9 = 8x + 23 + 9$ (-4,3) * $(y-3)^2 = 8x + 32$ $(Y-3)^{2} = 8(X+4)$ This equation is of form (Y-K) = 4P(X-K) with (-4,3) (-7,3) K = 3, P = 2, h = -4Sothe graph is a parabula with ** Vertex (-4,3), opening to the right. Since P=2, the focus units to the right of the vertex, which Places it at the Point (-2,3), and X=-6 the directvix 15 2 whit to the left of the vertex which means that its equation is X = -6

3 Parabolas with vertex (h, K) and axis Parallel to Y-axis (X-h)² - 4p(y-K) opens up (X-h)² - - 412 (Y-K) opens dun Directrix y=P Focus (0, 1?) vertex atorgin Focus (01-p) Directrix Y=-P The Parabola X = - 4PY, The Parahola X2=4PY

Application of Parabola in real life

An arch bridge: a parabola represents the profile of the supporting structure of an arch bridge. This concrete bridge transfers its weight horizontally into abutments

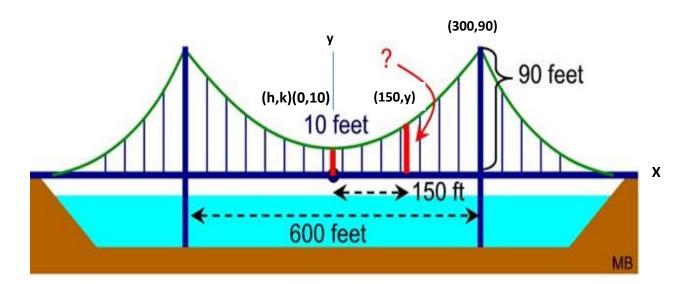


* على الأرجح هذا النوع هو أقدم أنواع الجسور, ويقوم بحمل الأحمال أولاً عن طريق الضغط و من ثم تنقل إلى الأساسات بقوة رأسية و قوة أفقية , لذلك يجب أن تكون أساسات هذا الجسر تمنع الحركة الأفقية (الانزلاق) و الحركة الرأسية (الهبوط) ,على الرغم من صعوبة تصميم أساسات هذا الجسر , إلا أن هيكل الجسر نفسه يحتاج مواد أقل مما يحتاجها الجسر ذو الكمرات بنفس(SPAN–البحر) . ** دائماً يقع القوس تحت الجسر القوسي وليس فوقه .

A suspension bridge: a parabola represents the profile of the cable of a suspended-deck suspension bridge. The curve of the cable created by the chains follows the curve of a parabola.

** هذا النوع يشبه الجسر القوسي ولكن مقلوباً.

Example: The cables of a suspended-deck suspension bridge are in the shape of a parabola. The pillars supporting the cable are 600 feet apart and rise 90 feet above the road. The lowest height of the cable, which is 10 feet above the road, is reached halfway between the pillars. What is the height of the cable from the road at a point 150 feet (horizontally) from the center of the bridge?



ANSWER: Let the *x*-axis be the road and the *y*-axis be the location halfway between the pillars. The vertex of the parabola will be (0,10). The point on the pillar (300,90) lies on the parabola. We need an equation for the parabola to find (150,y) on the parabola.

Coordinate of vertex(h,k) (0,10)-Coordinate of pillar (x,y)(300,90) (x-h)² = 4p(y-k) (x-0)²=4p(y-10)

 $(300-0)^2 = 4p(90-10)$

(300)²=4p(90-10) p=281.25

Coordinate of vertex(h,k) (0,10) Needed coordinate (x,y) (150,y)

 $(x-h)^2 = 4p(y-k)$ $(x-0)^2 = 4p(y-10)$ $(x-0)^2 = 4(281.25)(y-10) \longrightarrow (150-0)^2 = 4(281.25)(y-10) \longrightarrow (150)^2 = 1125(y-10)$

22500=1125y-11250

Y=30 feet

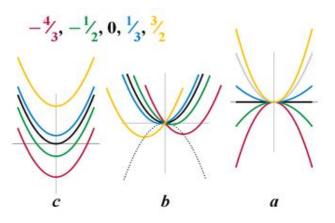
المعادلة التربيعية

المعادلة التربيعية (Quadratic equation) هي معادلة جبرية احادية المتغير من الدرجة الثانية تكتب وفق الصيغة العامة:

$$ax^2+bx+c=0$$

حيث يمثل x المجهول او المتغير اما ال a,b,c فيطلق عليها الثوابت او المعاملات

a=0 يطلق على $a \neq 0$ العامل الرئيسي وعلى c الحد الثابت ويشترط ان يكون $a \neq a$ اما اذا كان a = 0 عندها تصبح المعادلة معادلة خطية



رسم تخطيطي للدالة التربيعية .cx + bx + c في كل مرة نقوم بتغيير قيمة أحد معاملات الدالة (بينما يكون المع تخيير المنحنى البياني فيها

تم إيجاد حلول (أو جذور) المعادلة التربيعية باستعمال عدة طرق: باستعمال الصيغة التربيعية أو طريقة إكمال المربع أو طريقة حساب المميز أو طريقة الرسم البياني

طريقة الرسم البياني

الدوال على الشكل $ax^2 + bx + c$ تسمى دوال تربيعية. جميع الدوال التربيعية لها شكل عام a,b,c متشابه يسمى القطع المكافئ، موقع وحجم المقطع يرتبط بالقيم

Writing Quadratic Equations in the Form $y = a(x - h)^2 + k$

The standard form of a quadratic function is $y = ax^2 + bx + c$ In this section, we will write the quadratic equation in the form $y = a(x - h)^2 + k$ where a, h, and k are real numbers. To do that, we will need to complete the square

→ To write a quadratic equation in the form $y = a(x - h)^2 + k$

- 1) Isolate the *x*-terms to one side of the equation.
- 2) Factor out the leading coefficient.
- 3) Add the value needed to complete the square to both sides of the equation.
- 4) Rewrite the trinomial as a binomial squared.
- 5) Solve the equation for *y*.

SUMMARY OF THE EFFECTS OF THE REAL NUMBERS a, h, AND k OF A QUADRATIC EQUATION ON A **VERTICAL PARABOLA**

The real numbers a, h, and k of a quadratic equation in the form $y = a(x - h)^2 + k$ affect the graph of the equation.

If a > 0, then the graph is concave upward (opens upward). If a < 0, then the graph is concave downward (opens downward).

If |a| > 1, then the graph is narrower than it would be if a = 1.

If |a| < 1, then the graph is wider than it would be if a = 1.

The vertex of the graph is (h, k).

The axis of symmetry is the line graphed by x = h.

MathematicsII,

Write the quadratic equations in the form $y = a(x - h)^2 + k$. Identify a, h, EXAMPLE I and k. **a.** $y = x^2 - 4x + 7$ **b.** $y = -2x^2 - 16x - 35$ Solution $v = x^2 - 4x + 7$ a. $y - 7 = x^2 - 4x$ Isolate the x-terms. $y - 7 + 4 = x^2 - 4x + 4$ Add $\left(\frac{-4}{2}\right)^2 = 4$ to both sides. $y - 3 = (x - 2)^2$ Write the trinomial as a binomial squared. $v = (x - 2)^2 + 3$ Solve for v. In the equation $y = (x - 2)^2 + 3$, a = 1, h = 2, and k = 3. $v = -2x^2 - 16x - 35$ b. $v + 35 = -2x^2 - 16x$ Isolate the x-terms. $y + 35 = -2(x^2 + 8x)$ Factor out the leading coefficient, -2 $y + 35 + [-2(16)] = -2(x^2 + 8x + 16)$ Add $-2(\frac{\beta}{2})^2$, or -2(16), to both sides. $y + 3 = -2(x + 4)^2$ Write the trinomial as a binomial squared. $y = -2(x + 4)^2 - 3$ Solve for y. In the equation $y = -2(x + 4)^2 - 3$, or $y = -2[x - (-4)]^2 + (-3)$, a = -2, h = -4, and k = -3.

EXAMPLE 2 Determine the vertex and axis of symmetry for the graph of each equation. Describe the graph, but do not draw it.

a.
$$y = 2(x - 4)^2 - 3$$
 b. $y = -x^2 - 4x - 8$

Solution

a.

 $y = 2(x - 4)^2 - 3$ or $y = 2(x - 4)^2 + (-3)$ Write the equation in $y = a(x - h)^2 + k$ form.

We see that a = 2, h = 4, and k = -3.

Since a = 2 and 2 > 0, the graph is concave upward. Since |2| = 2 > 1, then the graph is narrower than it would be if a = 1. The vertex is (h, k), or (4, -3). The axis of symmetry is the graph of x = 4. →

Graphing a Vertical Parabola

To graph a parabola, we use the information that we can determine from its

equation and add points to establish a pattern for the curve.

- \checkmark To graph a vertical parabola,
 - Locate and label the vertex, (h, k)
 - Graph the axis of symmetry x = h, with a dashed line.
 - Graph enough points to see a pattern. The x- and y-intercepts are important points to

determine. Connect the points with a smooth curve.

EXAMPLE 3 Graph the vertical parabola for $y = 2(x - 4)^2 - 3$.

Solution

$$y = 2(x - 4)^{2} - 3$$

$$y = 2(x - 4)^{2} + (-3)$$

- (-3) Write the equation in the form $y = a(x - h)^2 + k$.

Therefore, a = 2, h = 4, and k = -3. The vertex is (h, k), or (4, -3). The axis of symmetry is the line x = 4. The graph opens upward, because a = 2 > 0.

The graph is narrower than it would be if a = 1, because |a| = |2| > 1.

The y-intercept is the point on the graph where x = 0. Substitute 0 for x and solve for y.

$$y = 2(x - 4)^{2} - 3$$

$$y = 2(0 - 4)^{2} - 3$$

$$y = 2(16) - 3$$

$$y = 32 - 3$$

$$y = 29$$

The y-intercept is (0, 29).

The x-intercept is the point on the graph where y = 0. Therefore, substitute 0 for y and solve for x.

$$y = 2(x - 4)^2 - 3$$

$$0 = 2(x - 4)^2 - 3$$

$$2(x - 4)^2 = 3$$

$$(x - 4)^2 = \frac{3}{2}$$

$$x - 4 = \pm \sqrt{\frac{3}{2}}$$

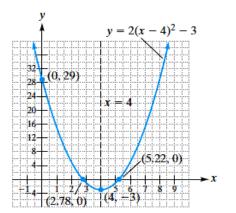
$$x = 4 \pm \sqrt{\frac{3}{2}} \cdot \frac{2}{2}$$

$$x = 4 \pm \sqrt{\frac{3}{2} \cdot \frac{2}{2}}$$

$$x = 4 \pm \frac{\sqrt{6}}{2}$$

$$x = \frac{8 \pm \sqrt{6}}{2}$$

The x-intercepts are about (5.22, 0) and (2.78, 0).



→

Graphing a Horizontal Parabola

Some parabolas open left or right. In such a case, the parabola has a horizontal axis of symmetry and is called a **horizontal parabola**.

The form of a quadratic equation that will graph a horizontal parabola is $x = a(y-k)^2 + h$ the real numbers a, h, and k affect a vertical parabola, they also affect a horizontal parabola.

SUMMARY OF THE EFFECTS OF THE REAL NUMBERS *a*, *h*, AND *k* OF A QUADRATIC EQUATION ON A HORIZONTAL PARABOLA

The real numbers a, h, and k of a quadratic equation in the form $x = a(y - k)^2 + h$ affect its graph.

If a > 0, then the graph opens to the right. If a < 0, then the graph opens to the left. If |a| > 1, then the graph is narrower than it would be if a = 1. If |a| < 1, then the graph is wider than it would be if a = 1. The vertex of the graph is (h, k). The axis of symmetry is the line graphed by y = k.

EXAMPLE 4	Graph the horizontal parabolas.
-----------	---------------------------------

a. $x = (y - 3)^2 + 5$ **b.** $x = -2y^2 - 4y - 5$

Solution

a. $x = (y - 3)^2 + 5$

The equation is written in the form $x = a(y - k)^2 + h$. Therefore, a = 1, h = 5, and k = 3.

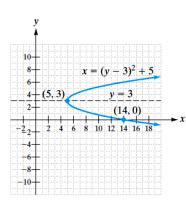
The vertex is (h, k), or (5, 3).

The axis of symmetry is the graph of y = k, or y = 3.

The graph opens to the right, because a = 1 > 0.

Al_Muthanna University, College of Engineering, Dep. Of Civil Eng. 2nd Year

MathematicsII,



The *y*-intercept is the point on the graph where x = 0. Substitute 0 for *x* and solve for *y*.

$$x = (y - 3)^{2} + 5$$

$$0 = (y - 3)^{2} + 5$$

$$(y - 3)^{2} = -5$$

$$y - 3 = \pm \sqrt{-5}$$

$$y = 3 \pm i\sqrt{5}$$

y is an imaginary number. Therefore, the graph has no y-intercept. In fact, we know this is so because the vertex is located at (5,5) and opens to the right.

The *x*-intercept is the point on the graph where y = 0.

$$x = (y - 3)^{2} + 5$$

$$x = (0 - 3)^{2} + 5$$

$$x = 14$$

The *x*-intercept is (14, 0).

→ Writing Quadratic Equations, Given the Vertex and a Point on the Graph

Earlier, we learned that although two points determine a straight line, you need three points to determine a curve. Thus, an infinite number of parabolas can be drawn through any two given points. However, if we know that one of these points is the vertex and if we know that the parabola is vertical or horizontal, then we can write an equation for the specific parabola that passes through these points.

EXAMPLE 5

a. Write an equation of a vertical parabola with a vertex of (2, 6) and passing through the point (-1, 4).

b. Write an equation of a horizontal parabola with a vertex of (-1, 1) and a *y*-intercept of (0, 2).

Solution

a. Since the vertex is (2, 6), it follows that h = 2 and k = 6. Also, we know that the point (-1, 4) is a solution of the equation. We will substitute -1 for x and 4 for y, as well as 2 for h and 6 for k, in the equation $y = a(x - h)^2 + k$ and solve for a.

$$y = a(x - h)^{2} + k$$

$$4 = a[(-1) - 2]^{2} + 6$$

$$4 = a(-3)^{2} + 6$$

$$4 = 9a + 6$$

$$a = -\frac{2}{9}$$

Now, we write an equation using the known values for *a*, *h*, and *k*.

$$y = a(x - h)^{2} + k$$
$$y = -\frac{2}{9}(x - 2)^{2} + 6$$

The graph of the equation $y = -\frac{2}{9}(x-2)^2 + 6$ is a vertical parabola with a vertex of (2, 6) and passing through the point (-1, 4).

b. First, we substitute values for h, k, x, and y. Given the vertex (-1, 1), we know that h = -1 and k = 1.

We use the coordinates of the *y*-intercept for *x* and *y*, x = 0 and y = 2. Then we solve for *a*.

$$x = a(y - k)^{2} + h$$

$$0 = a(2 - 1)^{2} + (-1)$$
 Substitute.

$$0 = a(1)^{2} - 1$$

$$0 = a - 1$$

$$a = 1$$

Write an equation using a = 1, h = -1, and k = 1.

$$x = a(y - k)^{2} + h$$

$$x = 1(y - 1)^{2} + (-1)$$

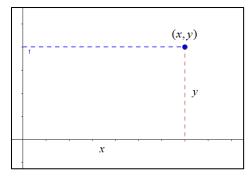
$$x = (y - 1)^{2} - 1$$

The graph of the equation $x = (y - 1)^2 - 1$ is a horizontal parabola with a vertex of (-1, 1) and a *y*-intercept of (0, 2).

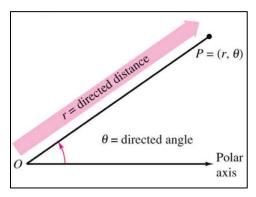
AL Muthanna University, College of Engineering, Dep. Of Civil Eng.

Polar Coordinates

Consider the rectangular coordinate system.



We want to find another way to get to the point (x, y). One way to do this is to use an angle θ and a distance **r**. It will look like this

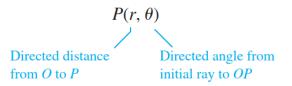


To form the polar coordinate system in the plane, fix a point *O*, called the pole (or origin), and construct from *O* an initial ray called the polar axis, as shown in the above figure. Then, each point (*P*) in the plane can be assigned polar coordinates (*r*, θ).

Where

r = directed distance from O to P

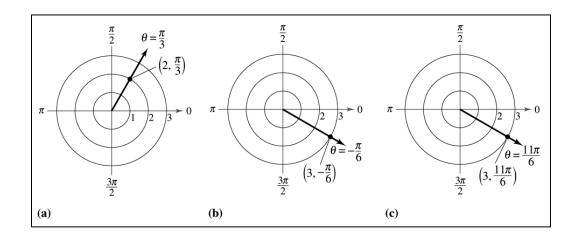
 θ = directed angle, counter clockwise from polar axis to \overline{OP} .



 The θ coordinate in (r, θ) is this angle, in degree or radian measure. <u>The angle θ is positive if</u> the rotation is counterclockwise and negative if the rotation is clockwise.

AL Muthanna University, College of Engineering, Dep. Of Civil Eng.

The r coordinate in (r, θ) is the directed distance from the pole to the point P. It is positive if measured from the pole along the terminal side of θ and negative if measured along the terminal side extended through the pole.



With rectangular coordinates, each point (x, y) has a unique representation. This is not true with polar coordinates. For instance, the coordinates (r, θ) and $(r, 2\pi + \theta)$ represent the same point. Also because *r* is a directed distance, the coordinates (r, θ) and $(-r, \pi + \theta)$ represent the same point.

Sign conversion

 θ :+ve when measured counter clockwise

 θ :-ve when measured clockwise

r:+ in the direction of θ

r:- in the opposite direction of θ

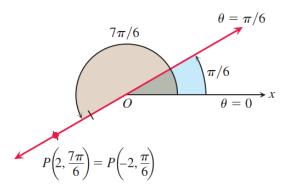
• Three are infinite pairs of polar coordinates of each point

EXAMPLE 1 Find all the polar coordinates of the point $P(2, \pi/6)$.

Solution We sketch the initial ray of the coordinate system, draw the ray from the origin that makes an angle of $\pi/6$ radians with the initial ray, and mark the point $(2, \pi/6)$ (Figure 11.22). We then find the angles for the other coordinate pairs of *P* in which r = 2 and r = -2.

For r = 2, the complete list of angles is

 $\frac{\pi}{6}, \ \frac{\pi}{6} \pm 2\pi, \ \frac{\pi}{6} \pm 4\pi, \ \frac{\pi}{6} \pm 6\pi, \ldots$



For r = -2, the angles are

$$-\frac{5\pi}{6}$$
, $-\frac{5\pi}{6} \pm 2\pi$, $-\frac{5\pi}{6} \pm 4\pi$, $-\frac{5\pi}{6} \pm 6\pi$,...

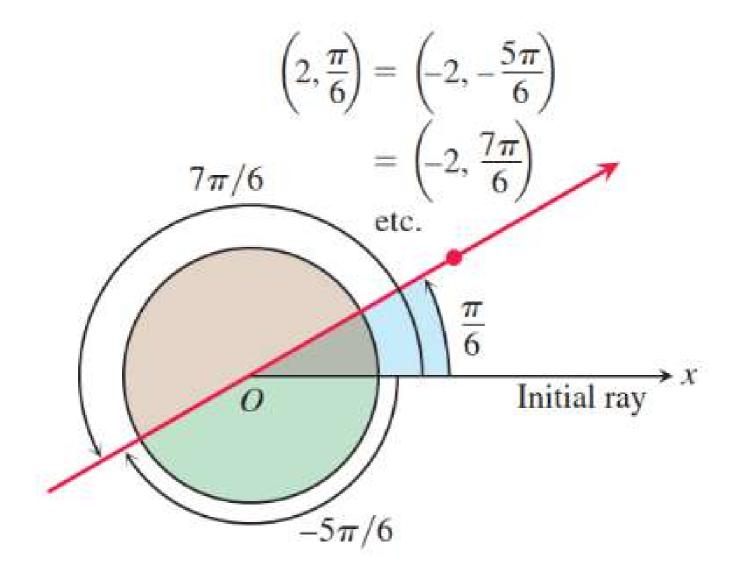
The corresponding coordinate pairs of P are

$$\left(2,\frac{\pi}{6}+2n\pi\right), \quad n=0,\,\pm 1,\,\pm 2,\ldots$$

and

$$\left(-2, -\frac{5\pi}{6} + 2n\pi\right), \quad n = 0, \pm 1, \pm 2, \dots$$

When n = 0, the formulas give $(2, \pi/6)$ and $(-2, -5\pi/6)$. When n = 1, they give $(2, 13\pi/6)$ and $(-2, 7\pi/6)$, and so on.



for many purposes it does not matter whether Polar angles are measured in degrees or radiants. However, in problems that involve derivatives or integrals they must be measured in radians, Since the derivatives of the trigono metric functions Were derived under this assumption. Henceforth, we will Use radian measure for Polar angles, elcept in Certain application where it is not required and degree measure is more convenient. Frequently, it will be useful to superimpose arcctangular Xy Coordinate system on top of a Polar wordinate system making the positive X_axis Wincide with the polar axis. If this is done, then every point P will have both rectangular Coordinates (X, Y) and Polar Coordinates (V,O). As suggested by figure 1, these Coordinates are related by the equations $y = r \sin \theta$ $\frac{1}{x} = r \cos \theta$ $\frac{1}{x} = r \cos \theta$ $\frac{1}{x} = r \cos \theta$ $\frac{1}{x} = r \cos \theta$ $\frac{1}{x} = r \cos \theta$ tand = y ___ These equations are well suited for finding & and y when r and I are Known. However to find r and & when X and y are Known , it is Preferable to use Sin + Coso =1 and tand = sino/ Coso $r^2 = \chi^2 + \gamma^2$

Find the rectangular Coordinates of the Point P whose Polar Coordinates are (6,2TT/3) Sol: Substituting the polar coordinates V=6, and O= 2T $X = Y \log 0 = 6 \log \frac{2\pi}{3} = 6(-\frac{1}{2}) = -3$ $Y = r \sin \theta = 6 \sin \frac{2\pi}{3} = 6 \left(\frac{\sqrt{3}}{2} \right) = 6 \times 0.866 = 5.2$ EVER I TEVER Thus, the rectangular wordinates of Pare (-3,3V3), Figure: r=6 211/3 X 0

Find Polar Wordinates of the point P whose rectangular Coordinates are (-2,2/3) $r^{2} = \chi^{2} + y^{2} = (-2)^{2} + (2\sqrt{3})^{2} = 4 + 12 = 16$ So y = 4 $\frac{1}{2} = 2\sqrt{3} = -\sqrt{3}$ $\frac{1}{2} = -\sqrt{3}$ from this and the fact that (-2, 2, 3) lies in the second quadrant the angle O is = 2TT/3. Thus (4, 2TT/3) are polar wordinates ofp All other Polar Coordinates of P are expressible in the form (4,2TT+2nTT) Or (-4,5TT+2nTT)