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Module No. 4

Analysis and Design of Flexural Members




FLEXURAL MEMBERS
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‘ Yield and Plastic Moments

P =]c8A=0
F. =c0A
2F=0

M =lycdA _._
M =2yt

Centroid

Elastic Neutral
Axis, ENA




Yield and Plastic Moments ‘

Elastic Behavior:
Strain related to stress by Modulus of Elasticity, E
o=Fk¢




Yield and Plastic Moments

Beyond yield -
Stress 1S constant,
Strain 1s notrelated to stress by Modulus of Elasticity, £




Yield and Plastic Moments

Now, consider
what happens once
some of the steel
yields.

Beyond yield -
Stress 1S constant,
Strain 1s notrelated to stress by Modulus of Elasticity, £




. . y
Beyond Elastic Behavior > Theoretically, reached at

infinite strain.




‘ Yield and Plastic Moments ‘

Elastic Neutral Axis = Centroid Plastic Neutral Axis —

ENA - > Ay, g If homggenous material (similar F)),
Z A PNA divides Equal Areas, A +A 2.

For symmetric homogeneous sections, PNA
= ENA = Centroid




‘ Yield and Plastic Moments ‘

Yield Moment, M, = (I /c)F,= S.F,

S=1/c
¢ = y =distance to outer fiber
.= Moment of Inertia

Plastic Moment, M= Z.F,
Z=[ 84

For homogenous materials,
Z =2Ay;

| = Z(bh/2)+z Ay’

‘ Shape Factor = M /M, ‘




‘ Yield and Plastic Moments ‘

Plastic Neutral Axis # Centroid

PNA divides equal forces in
compression and tension.

T
Z
>
I
M
I
<

If all similar grade of steel
PNA divides equal areas.




‘ Yield and Plastic Moments ‘

oy
PNA » fomm
Y
Ay
-~
Yield Moment, M= (1 /c)F,= S.F, Plastic Moment, M,= Z.F,

S=1/c
¢ = y =distance to outer fiber
I = Moment of Inertia

Z=[A=3Ay,
for similar material throughout the
section.

Shape Factor = M /M, ‘




‘ Yield and Plastic Moments

‘ With residual stresses, first yield actually occurs before M.

Therefore, all first yield
equations 1n the specification reference

0.7F,S,

This indicates first yield 30% earlier than A,

For 50 ksi steel this indicates an expected residual stress of
(50 * 0.3) = 15 ksi.




Yield and Plastic Moments

Consider what this does to the Moment-Curvature relationship

Moment E7

curvature, ¢




Yield and Plastic Moments

Consider what this does to the Moment-Curvature relationship

7
2 Y /\Including Residual Stresses

Moment El

curvature, ¢




I:l Elastic
v Plastic in compression
_ Plastic in tension

b
R i By SEy fi< f,
A
d
g7 4
(a) Elastic
81 >8y f.y.
g2 ey
{b} Elastic-plastic
2] >S\-’ fv
g2 -,

(c) Plastic

Cross-section Strain pattern Stress pattern



Beam Stability

(Buckling in Beam)




Beam Stability




L ocal Buckling




Beam L.ocal Buckling

A <=
7 Z |
» z Compression, possible buckling
M
z Tension, no buckling
Lz =~ |
& %
A
M M Flange Local Buckling (FLB)
[ = |

T}




Local Buckling is related to Plate Buckling

‘ Flange is restrained by the web at one edge.

Failure is localized at areas of high stress
(maximum moment) or imperfections.




Local Buckling is related to Plate Buckling

Flange is restrained by the web at one edge. I

6"/2‘2"”

Failure is localized at areas of high stress
(maximum moment) or imperfections.




‘ Local Buckling is related to Plate Buckling ‘

Failure is localized at areas of high stress
(maximum moment) or imperfections.




M

Beam Local Buckling

[ Z Z

LA

M i

7z
Lz y

) A
L=z = 1

M

= = |

Compression, possible buckling

Tension, no buckling

Web Local Buckling (WLB)



Local Buckling is related to Plate Buckling
Web is restrained by the flange at one edge, web in tension at other.
«
&
e&%\qg' .7
7
¥ L,

Failure is localized at areas of high stress
(maximum moment) or imperfections.




Local Buckling is related to Plate Buckling

Web is restrained by the flange at one edge, web in tension at other.

Failure is localized at areas of high stress
(maximum moment) or imperfections.




Local Buckling is related to Plate Buckling

Web is restrained by the flange at one edge, web in tension at other.

Failure is localized at areas of high stress
(maximum moment) or imperfections.




If a web buckles, this is not necessarily a
final fallure mode. Significant post-buckling
strength of the entire section may be
possible (see advanced topics).

—OTe carn conceptuaiy
visualize that a cross section | =
could be analyzed as if the
buckled portion of the web is N~ malysi
“missing” from the cross assumes that

I- n buckled sections are

not effective, but
overall section may
still have additional
strength in bending
and shear.




focar-Wetb BucKimg
CoReeris

Bending in the plane of the web;
Reduces the ability of the web to carry its share of the
bending moment (even in elastic range).

SUPPOrtT vertical ptane,
Vertical stiffness of the web may be
compromised to resist compression flange

——dowwward-RoHon-

Shear b-uckling-;
Shear strength may be reduced.




A = width-to-thickness ratio
27;, = upper limit for compact category

A, = upper limit for noncompact category
Then

if A < zlp and the flange is continuously connected to the web, the shape is compact:
it A, < A <A,. the shape is noncompact; and
if A > A,, the shape is slender.




Beam Cross-Sectional Category

A = width-to-thickness ratio
)7, = upper limit for compact category

A, = upper limit for noncompact category
Then

if A < /1p and the flange is continuously connected to the web, the shape is compact;
if 4, < A <A4,, the shape is noncompact; and
if A > A,, the shape is slender.




Beam Cross-Sectional Category

Element A Ay A,
b | E

Flange e i 0.38 |— 1.0 £
21 ¢ \ F 1

h E - ||?
Web S o :'}_}"'U —
‘. 3.76 ll,ﬁ \ F,

For I shapes:
= The ratio for the projecting flange (unstiffened element) is b,/ 2L,

* The ratio for the web (stiffened element) is h / tw



Beam

Over all
Buckling




Beam Over all Buckling

Compression, possible buckling

AN

M

NN

Tension, no buckling

Torsional Displacement

A .
Lateral Displacement
Lateral Braces ‘
~ ¢ /’ B Y
IPerL >
M MY e Lateral Torsional
- L \ -
X Buckling (LTB)
A
= =

Lateral Braces

Compression Flange

B
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A compression flange by itself would
tend to buckle much like a column

Compression
Flange

Tension
Flange




The web,
however prevents
the flange from
buckling about its
minor axis

But if there is
enough
compression with
no lateral
support, the
flange and web
will buckle
together




The tension
flange, which is
stable, restrains
the compression
flange and web
causing the
beam to twist.
The result is
Lateral Torsional

Buckling (LTB)




Lateral Torsional Buckling
(LTB)




‘ Lateral Torsional Buckling

‘ LTB occurs along the length of the section.

Compression flange tries to buckle as a column.
Tension flange tries to stay in place.

Result is lateral movement of the compression flange and torsional twist of the
Cross section.




Stocky or continually laterally braced
eams will not experience LTB,
they can carry their full

plastic moment (Mp)

Moment

Lr
Length




Slender beams with a long unbraced
ength, experience Elastic LTB

=
@
E
o
=

X, %)
“h jonW



Elastic LTB occurs when the member is
slender enough to deflect without
yielding.

w—

This type of buckling is elastic. When
the load is removed, the member

returns to its original shape. f

T —




Shorter beams that are not laterally
supported may experience
Inelastic LTB

Mp

=
@
=
O
=

Aﬁc

| ateral Torsional Buckling

PR STEE, >

Length £

X, S
1 jonaWY

X
£0uNpED \¥>



Inelastic LTB is similar to elastic LTB,
but the shorter unbraced length allows
for a larger capacity and does not allow

enough deflection to prevent the residual

stresses Iin the steel from causing it
yield as it buckles.

SO STEE, &,

% S
N §o AN

x Xy
Foyppro W



This type of buckling is inelastic. The
non-elastic portion of the deformation
remains when the load is removed.




NOTE: providing bracing regularly
along the length of the beam
will keep the compression
flange stable and

prevent LTB

t=
@
=
o
=

—

Inelastic

Lateral

Torsional Elastic

Buckling Lateral Torsional Bucklin
Lp Lr

QF STEE;
{\\\'\E ‘f'ﬂ,;,

Length

5 &
21 jon o



NOTE: Local Buckling is still a
limit state that must be
considered In addition
to global buckling

=
@
=
O
=

—

Inelastic

Lateral

Torsional Elastic

Buckling Lateral Torsional Buckling
Lp Lr

3N

Length




LATERAL SUPPORT

——
| £
i I

‘ ]
-
-

Fully unsupported
beams.

The unbraced
length is equal to
the entire length of
the member.




These beams are
continually
supported with
the deck that is
mechanically
attached with
screws or welds.




These girders are fully
unsupported temporarily during
construction.
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Once the joists are placed in 1: =
position and attached, the [J[ESSEEIN
unbraced length is reduced to the fpe==mill
joist spacing. B



Here, beams
are used as
blocking and
spaced to
provide the
necessary
lateral
support.




Lateral bracing must be used for any member loaded in

D

N

It could be curved or in any orientation.

CTION
QUUUVY A 2
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Beam Lateral Bracing Examples
Brace must either prevent lateral
displacement of the compression
flange, or twist of the cross section

Compression Flange = =z | Cross beam acts as a lateral brace
'S ‘::7 since it will prevent lateral
@ displacement of the girder's
P compression flange.

Tension Flange — =]




&

Cm:upr!es.ﬂinﬂ Flange

Tension Flange

I : ;J | Concrete Slab 41"

| Continuous concrete floor slab
' provides continuous bracing for the
compression flange, Ly=0, no LTE.

Note that if the bottom flange was mn
! compression there would be no lateral

o ——] bracing provided.

Tension Flange

Compression Flange

C te Slab
i — L Tension Flﬂ.ﬂgj

o

= Compression Flange

Lateral Displacement of the compression flange 1s
prevented by the diagonal members (typically angles)



Lateral Torsional Buckling

L, is referred to as the unbraced length.

Braces restrain EITHER:
Lateral movement of compression flange or
Twisting in torsion.




Lateral Torsional Buckling

FACTORS IN LTB STRENGTH

L, - the length between beam lateral bracing
points.

C,- measure of how much of flange is at full
compression  within L.

‘ F, and residual stresses (1 yield).

‘ Beam section properties - J, C, S, and Z..

W’_Y’X’




Lateral Torsional Buckling

T

against LTB for typical shapes and sizes.

ne following sections have inherent restraint

W shape bent about its minor axis.
Box section about either axis.
HSS section about any axis.







GIRDERS




BEAM

AISC Requirements for Beam

BEAM MEMBERS:

CHAPTER F: FLEXURAL STRENGTH
CHAPTER G: SHEAR STRENGTH
PART 3: DESIGN CHARTS AND TABLES

CHAPTER B: LOCAL BUCKLING CLASSIFICATION










Flexural Strength

LOCAL BUCKLING:
CRITERIA IN TABLE B4.1
STRENGTH IN CHAPTER F: FLEXURE
STRENGTH IN CHAPTER G: SHEAR




Chapter F: Flexural Strength

@, = 0.90 (Q, = 1.67)

Specification assumes that the following failure modes have minimal
interaction and can be checked independently from each other:

 Lateral Torsional Buckling(LTB)
* Flange Local Buckling (FLB)
e Shear




Local Buckling Criteria
Doubly Symmetric I-Shaped Members

Equation F3-1 for FLB:

M, =M, ~(M, -0.7FS,) A Ay
M,= FZ, §_ n p : R /1rf_/1pf
) N S
M n Equation iF3-2 for FLB:; 0.9EK S,
| Min = 12




Local Buckling Criteria
Doubly Symmetric I-Shaped Members

Rolled W-shape sections are dimensioned
such that the webs are compact and flanges

) are compact in most cases. Therefore, the
B full plastic moment usually can be obtained
#l prior to local buckling occurring.

Equation F3-2 ;for FLB: M

Ay A, 2\

Note: WLB not shown. |




Flexural Strength

Local Buckling Criteria

Slenderness of the flange and web, A, are used as criteria to determine
whether buckling would control in the elastic or inelastic range,
otherwise the plastic moment can be obtained before local buckling
OCcCurs.

Criteria A, and A, are based on plate buckling theory.

For W-Shapes ‘
b= A= 038 | = ~1.0 |=
FLB, A= b,/2¢, o= 0. 5 A, F_y
E E
WLB, A= /#/¢, Apw= 37615 A= 570 |—
Fy Fy




‘ Flexural Strength

‘ Local Buckling ‘

A<, “compact”
M, 1s reached and maintained before local buckling.
oM, =M,

A, <A<A.  “non-compact”
Local buckling occurs 1n the inelastic range.
$0.7M, < oM, < ¢ M,

A> A, “slender element”
Local buckling occurs in the elastic range.
O M,< 90.7M,
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K . Doubly Symmetric Compact FShaped Members and Channels Bend About Their Major Axis
tﬂ 1. Yielding
K| 2. Lateral-Torsional Buckling
K Fs. Doubly Symmetric -Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent About Their Major Axis
t[ﬂ 1. Lateral-Torsional Buckling
K 2 Compression Flange Local Buckling
K] F4. Other F5haped Members with Compact or Noncompact Webs, Bent About Their Major Axis
- 1. Compression Flange Yielding
-] 2. Lateral-Torsional Buckling
-1 s, Compression Flange Local Buckling
] 4. Tension Flange Yielding
K Fs. Doubly Symmetric and Singly Symmetric FShaped Members with Slender Webs Bent About Their Major Axis

- 1. Compression Flange Yielding
-] 2. Lateral-Torsional Buckling
- 3. Compression Flange Local Buckling

] 4. Tension Flange Yielding
X Fs. FShaped Members and Channels Bent About Their Minor Axis
tﬂ 1. Yielding

K 2. Flange Local Buckling




= & Fr. Square and Rectangular HSS and Box-Shaped Members
®] 1. vielding
E] . Flange Local Buckling
®] =. web Local Buckling
=-®] Fs. Round HSS
®] 1. vielding
&] 2. Local Buckling
EHE] Fo. Tees and Double Angles Loaded in the Plane of Symmetry
®] 1. vielding
®] 2. Lateral-Torsional Buckling
&] . Flange Local Buckling of Tees
EHE] Fio. single Aangles
®] 1. vielding
®] 2. Lateral-Torsional Buckling
®] =. Leg Local Buckling
EHE] F11. Rectangular Bars and Rounds
®] 1. vielding
|'__| 2. Lateral-Torsional Buckling
EHE] Fi12. Unsymmetrical Shapes
®] 1. vielding
®] 2. Lateral-Torsional Buckling
®] 3. Local Buckling




TABLE USER NOTE F1.1
Selection Table for the Application
of Chapter F Sections

Section in Cross Flange Web Limit
Chapter F Section Slenderness | Slenderness States

F2 j—E } C C ¥, LTE

F3 E MC, 5 C LTB, FLE

- CFY, LTE,
F4 ]_E__ C, NC,8 C, NG e

o

CFY, LTE,
o ]-F__ GNC, 8 FLB, TFY

I e—
F& I C,NC, 5 MA ¥, FLB
o o ¥, FLE,
F7 H C,NC, 5 C, NC, 5 WLE, LTB
F8 % MA MA ¥, LB
. , ¥, LTE,
Fa C,NC, 5 MA FLE, WLB
F1Q ] A MA MA ¥, LTE, LLB
F11 . I MA MA ¥, LTB
F12 Unsymmetrical shapes, Al lienit
other than single angles MN/A MN/A states

Y = yielding, CFY = compression flange yielding, LTB = lateral-forsional bucking, FLB = fange local buck-
ng, WLB = web local budking, TFY = tension flange yielding, LLB = leg local bucking, LB = local budking,

C =compact, NC = noncompact, 5 = slender, M/A = not applcable

Spee farion for Siructural Steel Buildings, July 7, X116
AMERICAN INETITUTE OF STEEL CONSTRUCTION




Flexural Strength

THE FOLLOWING SLIDES ASSUME:
COMPACT SECTIONS

DOUBLY SYMMETRIC MEMBERS AND CHANNELS
MAJOR AXIS BENDING

SECTION F2




Flexural Strength ‘

When members are compact: ‘

Only consider LTB as a potential failure mode prior to reaching the
plastic moment.

LTB depends on unbraced length, Z,, and can occur in the elastic or
inelastic range.

If the section 1s also fully braced against LTB,
M,=M,=F 2, Equation F2-1




| When LTB 1s a possible failure mode: \

M,= FZ, Equation F2-1

M= 0.7F,S,

E
L,=1.76r, /F_ Equation F2-5
y

E ‘Jc ‘]c 2 7Fy 2 .
: y X0 X 0

Iy =" ¢ Equation F2-7
|
r, = Ky
For W shapes

¢ =1 (Equation F2-8a)
h, = distance between flange centroids

| Values of M, 9 M, L and L, are tabulated in Table 3-2




Strength for Compact

Lateral Torsional Bucklin
e g
Z

W-Shape Sections

Equation F2-2

---------------------- : Equation F2-3 and F2-4

. Inelastic |
Plastic LTB | LTB | Elastic LTB
3 > >0

L, L L,




If L,< L,
M,= M,

IfL,<L,<L,

L, - L :
anCb{Mp—(Mp_.ﬂ:ysx){ b pﬂgMquua‘[lonFZ-z

r p

Note that this 1s a straight line.

fL,>L,
M,=F.S5, = M, Equation F2-3
) 2
Where F., = Cyn”E \/l+0.078 Je (Lb} Equation F2-4
X0 rts

2
tS

‘Assume Cy=1 for now ‘




Flexural Strength

Plots of M, versus L, for C,= 1.0 are tabulated,
Table 3-10

Results are included only for:

« W sections typical for beams
* F,=50ksi

¢« (=1




Flexural Strength

To compute M for any moment diagram,

M, = Cb(Mn(CbD) < ij

n

OM,= COM,cp) < OM,
(M cor) = M, assuming C;,= 1

C,, Equation F1-1

o _ 12.5M
" 25M . +3M, +4Mg +3M




‘ Flexural Strength

Shown 1s the section of
the moment diagram

< My S between lateral braces.
LI LI L L
4 4 4 4
M .= absolute value of maximum moment in unbraced section

M, = absolute value of moment at quarter point of unbraced section

M, = absolute value of moment at centerline of unbraced section

M, = absolute value of moment at three-quarter point of unbraced
section




Flexural Strength ‘

Consider a simple beam with differing lateral brace locations.

" 5 +3(|\%)+4(|\%)+3(3|\%) 75

. _ 12.5M 125
" 25M +3(|\%)+4|v| +3(|\%) 9.5
- 12.5M 125

Note that the moment diagram 1s
unchanged by lateral brace locations.




‘ Flexural Strength ‘

M
R 10

M

V il c,-1 25
A ¢
M

C=1.67
C=2.3
C, approximates an equivalent

beam of constant moment.




Flexural Strength

g
M, AN
! N
! N
| RS
Myfooeneeeees oo .
: VN
| | ~
| | \\
M : : ~ <
n | I Cb:1/ TS~
L, L, Lb

Lateral Torsional Buckling
Strength for Compact W-Shape Sections
Effect of G,




Flexural Strength

\
\
~ \
~ N\
N
N\ ~
| ~ ~
: ~ T~ o
I -
: - ==
|
L, L,

Lateral Torsional Buckling

Strength for Compact W-Shape Sections
Effect of G,




Flexural Strength

\ . .
Limited by M,
AN
i <
_______________ L

i TN e Gl
| : S o
| i CbZI/\~~"~~_
L, L, Lb

Lateral Torsional Buckling
Strength for Compact W-Shape Sections
Effect of G,




Nominal Flexural Strength

Compact Sections




Nominal Flexural Strength of Compact Sections

Covered in F2

The nominal bending strength for compact sections can be summarized as follows:

For Lz = L,
M, =M, (AISC Eguation F2-1)

ForL,<l,<L,

(-]

M,=Cp| M, — (M, —0.7F,5, 'l lrlh - :' ”5 M, (AISC Equation F2-2)
For L, > L,

M, =F.5.= M, (AISC Equation F2-3)
where

v '!:1#'?]'-:-'['- Il I .Ir_lt. J:
Fop = ——, [1+ 0078 - . - quation F2-
(Lp/r 0 N Bxfl.;.[ M (AISC Equation F2-4)




Nominal Flexural Strength

NonCompact Sections




| Nominal Flexural Strength of NonCompact Sections |
Covered in F3

 Most standard W, M, S, and C shapes are compact.

1 A few are noncompact because of the flange width-to-thickness ratio,
1 None are slender.
4 In general, a noncompact beam may fail by:
¢ Lateral-torsional buckling (Elastic or Inelastic)
** Flange local buckling (Elastic or Inelastic)
“* Web local buckling (Elastic or Inelastic)
 The strength corresponding to each of these three limit states

must be computed, and the smallest value will control.




Nominal Flexural Strength of NonCompact Sections

Covered in F3

The nominal flexural strength, M,,, shall be the lower value obtained according
to the limit states of lateral-torsional buckling and compression flange local
buckling.

1. Lateral-Torsional Buckling

For lateral-torsional buckling, the provisions of Section F2.2 shall apply.

!\)

Compression Flange Local Buckling

(a) For sections with noncompact flanges

A — Apf
M" — Mp _(Mp _0.7F\»Sx) U — (F3"l)
' Arf — Apf
(b) For sections with slender flanges
0.9Ek.Sx
Mn — T (F3-2)
where
_ by
- 25

Apr = Ap 1s the limiting slenderness for a compact flange, Table B4.1
A = A, 1s the limiting slenderness for a noncompact flange, Table B4.1

4
k. = ——— and shall not be taken less than 0.35 nor greater than 0.76 for
¢ VAt ©

calculation purposes




Nominal Flexural Strength of NonCompact Sections

d Noncompact shapes are identified by an “7 footnote in the
dimensions and properties tables and Z, table

 Values of L, and L, are also given in Z, table

 The webs of all hot-rolled shapes in the Manual are compact

1 Hence, the noncompact shapes are subject only to the limit states of
lateral-torsional buckling and flange local buckling

 Built-up welded shapes, can have noncompact or slender webs as well as

noncompact or slender flanges. These cases are covered in AISC Sections

F4 and F5.

at OF [t»[c




Nominal Flexural Strength

Summary from Segui 5" Edition

1. Determine whether the shape is compact.
2. If the shape is compact, check for lateral-torsional buckling as follows.

If Ly < L,. there is no LTB, and M, = M,
IfL,<L,=L, there is inelastic LTB, and

r

L,—L,
M, =G, | M, —(M, —0.7F,S,) <M
L -1,

If L, > L,. there is elastic LTB, and
M,=F.,5=M,

= —. 1+ 0.078
(Lo/ 1)\ S.hy

CF

C,m'E | Je [ L, )3

Fis



Nominal Flexural Strength of NonCompact Sections

3. If the shape is noncompact because of the flange, the nominal strength will be
the smaller of the strengths corresponding to flange local buckling and lateral-
torsional buckling.

a. Flange local buckling:
If A < A, there is no FLB
If 4, < A < A, the flange is noncompact, and

M,=M,—(M,-0.7F,S 1[ A, ]
n P p- v yx A
A — 4,
b. Lateral-torsional buckling:
If L, = L, there is no LTB

If L, < L, = L,, there is inelastic LTB, and

— Ly — Ly
M, =G, | M, —(M, —0.7TES,) <M,
o \L-L,

If L, > L,. there is elastic LTB, and
M,=F.,S, <M,

where

2 | , 2
{Lb{(ﬁs ) Szho \ rs




Shear Strength in Beam




Shear Strength in Beam

Shear limit states for beams

Shear Yielding of the web:
Failure by excessive deformation.

Shear Buckling of the web:
Slender webs (large d'¢,) may buckle
prior to yielding.




Shear Strength in Beam

Failure modes:

Shear Yielding
Elastic Shear Buckling
Inelastic Shear Buckling




Shear in Beam

» As the member bends, shear stresses occur because of the changes in length of its longitudinal fibers.
» For positive bending the lower fibers are stretched and the upper fibers are shortened

» somewhere in between there is a neutral axis where the fibers do not change in length.

» Owing to these varying deformations, a particular fiber has a tendency to slip on the fiber above or

below it. | vl i . l l
SN N
. o T

» This presentation may be entirely misleading in seeming to completely separate horizontal and vertical
shears.

» In reality, horizontal and vertical shears at any point are the same, as long as the critical section at
which the shear stress 1s evaluated is taken parallel to the axis of symmetry. Furthermore, one cannot
occur without the other:




Shear Stress, T = ( VQ)/(1b)

T = shear stress at any height on the cross section

V= total shear force on the cross section

Q= first moment about the centroidal axis of the area
between the extreme fiber and where 1 1s evaluated

I = moment of 1nertia of the entire cross section

b = width of the section at the location where 7 1s
evaluated




Shear Strength in Beam
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= 13.1Ksi
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\[‘ 13.1ksi
I N A S
t,=0.355"
a=1s N 17.8ksi
J - N . S S
v VA
b=7.5" t=0.57"

7 is very low in the flanges.
Viange= 1/2(0.6)7.5(0.57))= 1.3 Kkips
V., =100-2(1.3) = 97.3 Kips

For a W-shape most of the shear is carried by the web. Therefore, in the AISC
Specification, the shear strength of a W-shape section is calculated based on an
effective area equal to the overall depth of the section times the web thickne




Shear Strength Shear Yield Criteria

G,

Yield defined by
Mohr’s Circle

GI‘SGY

Gz‘SGy

Gl—Gz‘SGy

Shear Yielding of the web:
Failure by excessive deformation.




Shear Strength Shear Yield Criteria

Von Mises Yield defined by maximum
distortion strain energy criteria (applicable
to ductile materials):

(o0 +(0,-0,) (0, -0) | <o

2 2 2
0, —0,06,+0, =0,

when o, =0

For Fy= constant for load directions

F
Tpue < —==0.577F,

max \/g
AISC Specification uses 0.6 F,




‘ Shear Strength

Von Mises Failure Criterion

(Shear Yielding)
When average web shear stress V/A4,,,= 0.6F,

V="0.6F,A,




‘ Shear Strength ‘ ‘ Shear Buckling

Shear Buckling of the web:
Slender webs (large d'¢,) may buckle
prior to yielding.

*

P\t g

é Shear Buckle

Shear buckling occurs due to diagonal compressive stresses.

Extent of shear buckling depends on #/¢,, of the web (web
slenderness).




Shear Strength Shear Buckling

Stiffener spacing = a < <

\ No Stlffeners
.

\II
,I\

V
| | Potent1al buckhng restrained by
V web slendemess

Potential buckling
restrained by stiffeners

If shear buckling controls a beam section, the plate section which buckles can be
“stiffened” with stiffeners. These are typically vertical plates welded to the web
(and flange) to limit the area that can buckle. Horizontal stiffener plates are also
possible, but less common.




Shear Strength ‘ ‘ Shear Buckling

4

llelgllel

Shear Buckling of Web

When the web i1s slender, it 1s more susceptible to web shear buckling. However, there is
additional shear strength beyond when the web buckles.
Web shear buckling is therefore not the final limit state.
The strength of a truss mechanism controls shear strength called ““Tension Field Action.”

Tension Field Action 1s a post buckling mechanism that is relied on to increase the overall
shear strength. For very slender webs this post-buckling strength 1s significant.

This strength 1s often relied upon in built up beam sections. Stiffeners must be properly
designed to carry the compression forces — in addition to out of plane stiffness criteria for
typical shear stiffener design.

e



Shear Strength Shear Buckling

Tension can still
be carried by the
Web.

When the web i1s slender, it 1s more susceptible to web shear buckling. However, there 1s
additional shear strength beyond when the web buckles.
Web shear buckling is therefore not the final limit state.
The strength of a truss mechanism controls shear strength called ““Tension Field Action.”




Shear Strength Shear Buckling
% f ‘

Tension can still Compression can be
be carried by the carried by the
Web. stiffeners.

When the web i1s slender, it 1s more susceptible to web shear buckling. However, there 1s
additional shear strength beyond when the web buckles.
Web shear buckling is therefore not the final limit state.
The strength of a truss mechanism controls shear strength called ““Tension Field Action.”




Shear Strength Shear Buckling
% f ‘

Tension can still  Compression can be
be carried by the  carried by the
Web stiffeners

For Tension Field Action to be effective the truss forces must be resisted at each
node point.

Therefore , end panels are not effective, nor are widely spaced stiffeners, nor panels
that are not well restrained around their perimeter.




Shear Strength

Shear stresses generally are low 1n the flange area
(where moment stresses are highest).

For design, simplifying assumptions are made:
1) Shear and Moment stresses are independent.
2) Web carries the entire shear force.
3) Shear stress 1s simply the average web value.




AISC Requirements for Shear Strength
Chapter G

Nominal Shear Strength
V;1: O.6FyAWCV Equation G2-1

0.6 F, = Shear yield strength per Von Mises Failure Criteria
A= area of web = d¥,,
C, = reduction factor for shear buckling




Shear Strength

C, depends on slenderness of web and locations of shear stiffeners.
It 1s a function of %..

K, =5+ > Equation G2-6
)

a = clear distance between transverse stiffeners
h = clear distance between flanges minus fillet on a rolled shape

260

2
k,= 5 1f no stiffeners are present, 1f % >3.0,0r %> {V}
tW




‘ Shear Strength

For a rolled I-shaped member

h E
IfASZ.Z‘l //Fy

Then ¢, = 1.00 (Q = 1.50)

‘ V,=0.6F A, (shear yielding) (C,= 1.0)




Otherwise, for other doubly symmetric shapes

.= 0.9 (Q=1.67)

If % < l-low/kv% then C, =1 Equation G2-3
w y

~  Equation G2-4

_ 1.51k,E

(%)

Equation G2-5




Shear Strength

Equation G2-4 C, reduction

Equation G2-5 C,
reduction

Inelastic
. Shear
Shear Yielding i Buckling | Elastic Shear Buckling

1.37 KE

y




AISC Requirements for Shear Strength

V,=0.6F,A,C, (AISC Equation G2-1)

where
A,, = area of the web  df,,
d = overall depth of the beam
C, = ratio of critical web stress to shear yield stress

The value of C, depends on whether the limit state is web yielding, web inelastic

buckling, or web elastic buckling.

Reference: .
sooiie Case 1: For hot-rolled I shapes with

/
Moy [E
r \} F,

The limit state is shear yielding, and
C,=10 (AISC Equation G2-2)
¢, = 1.00
Q,=1.50

Most W shapes with F, < 50 ksi fall into this category (see User Note in AISC G2.1[a]).




AISC Requirements for Shear Strength

Case 2: For all other doubly and singly symmetric shapes,
¢,=0.90
Q, =167

and C, is determined as follows:

For L] <1.10 ﬁ, there is no web instability, and
t, F

C,=10 (AISC Equation G2-3)

(This corresponds to Equation 5.8 for shear yielding.)
Reference:

Segui, 5th . . .
i For 1.10 kE < L <1.37 H, inelastic web buckling can occur, and
Bty Fy

(AISC Equation G2-4)

For i >1.37 ’%, the limit state is elastic web buckling, and
3
w y

1.51k,E

- v AISC Equation G2-5
* T ) F, (AISCEa )

where

k=5




AISC Requirements for Shear Strength

Reference:
Segui, 5th

1.10 / k, E/F, \ 1.37 [k E/F,




AISC Requirements for Shear Strength

Note:

kvo=>5

» This value of 4&.is for unstiffened webs with A/.< 260.

» Although section G2.1 of the Specification does not give A/.= 260 as an upper limit, no
value of A.is given when Af.> 260.

> In addition, AISC F13.2, “Proportioning Limits for I-Shaped Members” states that A/ in

unstiffened girders shall not exceed 260.




‘ AISC Requirements for Shear Strength \
‘ Situations where Shear might be excessive \

Generally, shear is not a problem in steel beams, because the webs of rolled shapes are capable
of resisting rather large shearing forces. most common situations where shear might be
€XCESSIVE:




AISC Requirements for Shear Strength

Situations where Shear might be excessive

0 Where beams are notched or coped, shear can be a problem. For this case, shear
forces must be calculated for the remaining beam depth. A similar discussion can
be made where holes are cut in beam webs for ductwork or other items.

Bearing
PL

%,

* Beam is coped

O Theoretically, very heavily loaded short beams can have excessive shears, but practically, this does
not occur too often unless large concentrated loads be placed near beam supports

Reference:
Mcormac, 5th




‘ AISC Requirements for Shear Strength \
‘ Situations where Shear might be excessive \
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Beam Deflections

In addition to being safe, a structure
must be serviceable.

A serviceable structure i1s one that
performs satisfactorily, not causing
any discomfort or perceptions of
unsafety for the occupants or users of
the structure.

Serviceability 1s defined in the
AISC Specification as “a state in
which the function of a building, its
appearance, maintainability,
durability, and comfort of its
occupants are preserved under
normal usage”.




Why deflections of steel beams are limited to

certain maximum values?

1. Excessive deflections may damage other materials
attached to or supported by the beam in question. Plaster
cracks caused by large celling joist deflections are one
example.

2. The appearance of structures is often damaged by
excessive deflections.

3. Extreme deflections do not inspire confidence in the
persons using a structure, although the structure may be
completely safe from a strength standpoint.

s 4.1t may be necessary for several different beams
g orting the same loads to deflect equal amounts.




‘ Beam Deflections ‘

‘ Typical limitation based on Service Live Load Deflection ‘

‘ Typical criteria: ‘

Max. Deflection, 0 = /240, /360, /500, or /1000
L = Span Length

For situations where precise and delicate machinery is

supported, maximum deflections may be limited to 111500 or
112000 of the span lengths.

Note that deflections are “serviceability” concern, so No
Load factors should be used in calculations.




Methods for Calculating Beam Deflections

These methods include:

1. the moment area,

2. conjugate beam,

3. virtual-work procedures.

From these methods, various expressions can be determined, such as

the following common one for the center line deflection of a uniformly
loaded simple beam:
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TABLE 5.4
Deflection
e the Type of member
Roof beam:
Supporting plaster ceiling
Supporting nonplaster ceiling

Not supporting a ceiling

Floor beam

Max. live
load defl.

L./360
L./240
L/180

L/360

Max. dead +
live load defl.

L/240
L/180
L/120

L/240

Max. snow or
wind load defl.

L/360
L/240
L/180
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Roof members:

Supporting plaster ceiling
Supporting nonplaster ceiling
Not supporting ceiling

o |- 140

Exterior walls and interior partitions:
With brittle finishes
With flexible finishes




‘ Beam Deflections: Maximum Deflections

‘ AISC Requirements, 1.3

1. L/360 for floors subjected to reduced live load

2. L/240 for roof members.

3. In long-span floors, it may be necessary to impose a limit on the
maximum deflection, independent of span length, to prevent damage
to adjacent nonstructural elements. Damage to nonload-bearing

partitions may occur when deflections exceed 3/8 in.




‘ Beam Deflections: Camber ‘

A A

‘ Beam without Camber

Camber: curvature applied to a beam during fabrication to
allow 1t to be relatively straight (no deflection) when dead
loads are applied (self weight, floor slab) — this allows for a
flat floor of consistent depth in a completed structure. Note
that this 1s not an exact process, so camber calculations to
the nearest 72 inch are usually sufficient.




Beam Deflections: Camber

Calculate deflection in beams from expected service dead
load.

Provide deformation in beam equal to a percentage of the
dead load deflection and opposite 1n direction. It 1s
important not to over-camber.

‘ Result 1s a straight beam after construction.

‘ Specified on construction drawings.




Results in deflection in floor under Dead Load.

Tl

h1s can affect thickness of slab and fit of non-structural components.

Beam with Camber
Cambered beam counteracts service dead load deflection.’
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The maximum vertical deflection A, in., can be calculated using the equations given in
Tables 3-22 and 3-23. Alternatively, for common cases of simple-span beams and I-shaped
members and channels, the following equation can be used:

A=ML*/(C1)

where

M = maximum service-load moment, Kip-ft

L = span length, ft

I. = moment of inertia, in.*

C, = loading constant (see Figure 3-2) which includes the numerical constants appropri-

ate for the given loading pattern, E, which has units of ksi, and a ft-to-in. conversion
factor of 1,728 in.}/ft3.
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Table 3-22¢
Continuous Beams

Moments and Shear Coefficients -
Equal Spans, Equally Loaded
Moment Uniform Load . _Ehraar

i 2 07
in iarms of w/ 126 2t . in tarmns of w/
575
P qp TS g 2

+ 07T +136 + 035 +077 q% QE _;'?aﬁ %
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Table 3-23
Shears, Moments, and Deflections

= — m— — —

1. SIMPLE BEAM — UNIFQRMLY DISTRIBUTED LOAD

Tetal Equiv. Uniform Load

B=V o
et b e et L=




Design of Beam
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Selection of a cross-sectional shape that will have enough
strength and that will meet serviceabillity requirements.

For any flexural member, flexure is almost always more
critical than shear, so the usual practice is to design for
flexure and then check shear.




AL-MUTHANNA UNIVERSITY, COLLEGE OF ENGINEERING, DEPARTMENT OF CIVIL ENGINEERING, CE401 DESIGN OF STEEL STRUCTURES, IV
CLASS DR. ZIYAD KUBBA

1. Compute the required moment strength, weight
may be i1gnored initially and checked after a
shape has been selected.

2.Select a shape that satisfies this strength
requirement. Use the beam design charts 1n
Part 3 of the Manual.
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Beam Subjected
to
Biaxial Bending
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Biaxial Bending

Bending about two axes

Biaxial bending is produced in a member when bending
moments are applied simultaneously about both

principal axes.

Biaxial bending Occurs when a beam is subjected to a
loading condition that produces bending about both
the major (strong) axis and the minor (weak) axis.
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Uniaxial bending vs Biaxial bending

Uniaxial bending Biaxial bending : :
In Blaxial
T T Bending,
Load may
= Where a single
concentrated load Passes

acts normal to the
longitudinal axis of the
beam.

through the

on not
through the

» Load passes through

shear center Where a single concentrated
load acts normal to the
longitudinal axis of the beam
but is inclined with respect to
each of the principal axes of
the cross section.
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Applications of Biaxial bending

Overhead crane runway girders Roof purlins side sheeting rails

Purlins Rafters

End carnage

ke Crane runway girder

{a) Top running bridge crane

End carriage S 7 e [
o %“_ﬂ
Crane runway girder |

K o

W

(b} Underslung bridge crane > ———
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» The shear center is that point through which the loads must act if there is to
be no twisting, or torsion, of the beam.

» The shear center is defined as the point on the cross section of a beam
through which the resultant of the transverse loads must pass so that the
stresses in the beam may be calculated only from the theories of pure
bending and transverse shear.

= Should the resultant pass through this point. it is unnecessary to analyze the
beam for torsional moments.

The deflected position of two beams when loads are applied through the shear center
and when they are not

Al
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Location of Shear Center

= shear center is indicated by a
circle.

= The value of e,, which Locates
the shear center for channel
shapes, is tabulated in the
Manual.

\ |
Axes of .
symmetry

The shear center is always
located on an axis of
symmetry; thus the shear
center will be at the centroid
of a cross section with two
axes of symmetry
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Location of Shear Center

O The shear center is o f particular importance for beams whose cross sections are
composed of thin parts that provide considerable bending resistance but little
resistance to torsion.

0 Many common structural members. such as the W. S, and C sections, angles, and
various beams made up of thin plates fall into this class.
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* The term Is often used when reference is made to thin-wall members,
although there is really no flowing involved.
refers to the shear per inch of the cross section and equals the unit
shearing stress times the thickness of the member.

The unit shearing stress:

F, =VQ/Dbl,

and

the shear flow qv can be determined by:

q,= VQ/I
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The term

Is often used when reference is made to thin-wall members,
although there is really no flowing involved.

refers to the shear per inch of the cross section and equals the unit
shearing stress times the thickness of the member.
The shear flow is shown with the small arrows in Figure a, and the values are
totaled for each component of the shape and labeled H and V in part (b).

= The two H values are in equilibrium horizontally, and the internal V value balances

the external shear at the section.

» Although the horizontal and vertical forces are in equilibrium, the

same cannot be said for the moment forces, unless the lines of
action of the resultant of the external forces pass through a certain
point called the

The horizontal H forces in part (b) of the figure can be seen to form
a couple. The moment produced by this couple must be opposed
by an equal and opposite moment, which can be produced only
by the two V values.

The location of the shear center is a problem in equilibrium;
therefore, moments should be taken about a point that eliminates
the largest number of forces possible. With this information, the
following equation can be written from which the shear center
can be located:
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When the applied loads about both principal axes act through the shear center,
twisting effects do not have to be considered.

For this situation, AISC 360 Commentary. Sec. H1.1 states that biaxial bending may be
considered a special case of AISC 360 Eqg. (H1-1b) with the axial load term equated to

Max av
MM/Q!J Mm/ﬂb <10 For ASD

+

where

Mux = factored-load moment about the x axis
Mnx = nominal moment strength for the x-axis
Muy = factored-load moment about the y axis
Mny = nominal moment strength for the y axis
Max = service load moment about the x axis
May = service load moment about the y axis




e —
AL-MUTHANNA UNIVERSITY, COLLEGE OF ENGINEERING, DEPARTMENT OF CIVIL ENGINEERING, CE401 DESIGN OF STEEL STRUCTURES, IV

CLASS DR. ZIYAD KUBBA

* |n most cases, the lateral load is applied to the compression flange of the
member as shown below.

* |n this situation, the design method proposed by Fisher, is appropriate. It is
assumed that the lateral load is resisted solely by the compression flange
and torsional effects are neglected.

For I-shapes, the plastic section modulus of one
Gravity load flange about the y-axis, is given by:

where 2y is plastic section modulus of the full
Lateral load section about the y-axis.

The nominal moment capacity of one flange
about the y-axis is:
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The rule:

Any shape bent about its weak axis cannot buckle in the other direction, so lateral-
torsional buckling is not a limit state

Hence,

M, ,=M,, = F,Z < 1.6F,S, (AISC Equation F6-1)

because of the flange width-to-thickness ratio, the strength will be given by:

A=A

My, =M, —(M,—0.7FS,) (AISC Equation F6-2)

P
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Case Il: Loads Not Applied Through the Shear Center

» When loads are not applied through the shear center of a cross section,
the result is flexure plus torsion

* |f possible, the structure or connection geometry should be modified to
remove the eccentricity

» The problem of torsion in rolled shapes is a complex one, and we resort to
approximate, methods for dealing with it.
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Case Il: Loads Not Applied Through the Shear Center

» The resultant load is applied to the center of the top flange, but its line of action
does not pass through the shear center of the section.

= As far as equilibrium is concerned, the force can be moved to the shear center
provided that a couple is added.

» The equivalent system thus obtained will consist of the given force acting through
the shear center plus a twisting moment.
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Case Il: Loads Not Applied Through the Shear Center

There iIs only one
component of
load to contend
with, but the
conceptis the
same
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Case Il: Loads Not Applied Through the Shear Center

The problem is reduced to a case of bending of two shapes, each one loaded through
its shear center.

The top flange is assumed to
provide the total resistance to the
horizontal component of the load

only about half the cross section is considered to
be effective with respect to its y axis; therefore,
when considering the strength of a single flange,
use half the tabulated value of Z, for the shape

= The twisting moment Pe is resisted
by a couple consisting of equal
forces acting at each flange

= As an approximation, each flange
can be considered to resist each
of these forces independently
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Case Il: Loads Not Applied Through the Shear Center

The problem is reduced to a case of bending of two shapes, each one loaded through
its shear center.

The top flange is assumed to
provide the total resistance to the
horizontal component of the load

only about half the cross section is considered to
be effective with respect to its y axis; therefore,
when considering the strength of a single flange,
use half the tabulated value of Z, for the shape

= The twisting moment Pe is resisted
by a couple consisting of equal
forces acting at each flange

= As an approximation, each flange
can be considered to resist each
of these forces independently




Beam Subjected to Biaxial Bending




Beam Bearing Plates




Beam Bearing Plates

Plate that transmits a load to the
top flange of a beam.
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The design of the bearing plate consists of three steps:

1. Determine dimension |b (bearing length) so that web yielding and web crippling
are prevented.

2. Determine dimension B so that the area B x |b is sufficient to prevent the
supporting
material (usually concrete) from being crushed in bearing.

3. Determine the thickness t so that the plate has sufficient bending strength.
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» The support reaction at the end of a girder is transmitted through the flange to
the
girder web. The failure stress in the web equals the yield stress Fy.

> Is the compressive crushing of a beam web caused by the application of a
compressive force to the flange directly above or below the web.

» This force could be an end reaction from a support or it could be a load
column or another beam

End reaction from a support
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* Yielding occurs when the compressive stress on a horizontal section through the
web reaches the yield point.

» When the load is transmitted through a plate, web yielding is assumed to take place
on the nearest section of width tw

* |n arolled shape, this section will be at the toe of the fillet, a distance k from the
outside face of the flange. (this dimension is tabulated in the dimensions and
properties tables in the Manual)

1 in wide
strip
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If the load is assumed to distribute itself at a slope of 1 : 2.5, the area at the support
subject to yielding is:

tw (2.5k + Ib)
Multiplying this area by the yield stress gives the nominal strength for web yielding at
the support:

For LRFD, the design strength is ¢R,,. where ¢ = 1.0.
For ASD, the allowable strength is R, /€, where Q = 1.50)
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At the interior load, the length of the section subject to yielding is:

2(2.5k) +lIb =5k + Ib
and the nominal strength is:

For LRFD, the design strength 1s ¢R, . where ¢ = 1.0.
For ASD, the allowable strength is R, /€2, where € = l.SD.|
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J10.  FLANGES AND WEBS WITH CONCENTRATED FORCES

2. Web Local Yielding

This section applies to single-concentrated forces and both components of double-
concentrated forces.

The available strength for the [imit state of web local yielding shall be determined
as follows:

¢ = 1.00 (LRFD) 2 = 1.50 (ASD)
The nominal strength, R,, shall be determined as follows:

(a) When the concentrated force to be resisted is applied at a distance from the
member end that is greater than the depth of the member d,

Ry = (5k 4+ N)Fyyty, (J10-2)
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J10. FLANGES AND WEBS WITH CONCENTRATED FORCES

(b) When the concentrated force to be resisted is applied at a distance from the
member end that is less than or equal to the depth of the member d,

R, = (2.5k + N) Fyyly (J10-3)
where

k = distance from outer face of the flange to the web toe of the fillet,
in. (mm)

F,, = specified minimum yield stress of the web, ksi (MPa)

N = length of bearing (not less than & for end beam reactions), in. (mm)

tw = web thickness, in. (mm)
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A concentrated load applied to a girder flange produces a compressive
stress in the web. If the compressive stress is excessive, local buckling of the
web may occur near the junction of the flange and the web. This is known

as web crippling and is more critical at the ends of a girder than in the
Interior.

Web crippling is buckling of the web
caused by the compressive force
delivered through the flange.

R

Under Support
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(a)The nominal web crippling strength of a beam, with a concentrated load
applied at a distance of not less than d/2 from the end of the beam, is given
by AISC 360 Eqg. (J10-4) as:

(a) When the concentrated compressive force to be resisted is applied at a distance
from the member end that is greater than or equal to d /2:

. N’
R, = 0.80r, [1 +3 (E)

; 1.5
IH! EF 1“': - .
(—) } s (J10-4)
fr t,
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(b) When the concentrated compressive force resiste to be d is applied at a
distance from the member end that is less than d/2:

(b) When the concentrated compressive force to be resisted 1s applied at a distance
from the member end that is less than d /2:

(1) For N/d = 0.2

N\ (t.\"| |EF,.t
R, = 0.4012 [1 +3 (—) (—) ] S (J10-5a)

(i) For N/d > 0.2
, 4N tw\' | |EFyuts
Ry =040t2 [ 14— —02) = * (J10-5b)
d s e

d = overall depth of the member, in. (mm)
t ¢ = flange thickness, in. (mm)

i = 0.75 (LRED) £2 =2.00(ASD)

where
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* The average bearing pressure is treated as a uniform load on the bottom of the

plate, which is assumed to be supported at the top over a central width of 2k and

length Ib.
he plate | onsidered to bend about an axis parallel to the beam span.

0 The plate is treated as a cantilever of span

and a width of |b
LRFD

ASD
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The nominal bearing capacity of the concrete support, when the bearing plate
covers the full area of the support, is given by AISC 360 Eqg. (J8-1) as

(a) On the full area of a concrete support:
Py =0.85fA

(b) On less than the full area of a concrete support:

P, =085f A\JA2 | A <1LTf A

0c =0.65 (LRFD) Q. =2.31 (ASD)

where
Ay = area of steel concentrically bearing on a concrete support, in.> (mm?)
A, = maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in.> (mm?)
f = specified compressive strength of concrete, ksi (MPa)




Column Base Plates
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» Loads from steel columns are transferred through a steel base plate to a fairly
large area of the footing below.

» Footing spreads the load over an even larger area so that the underlying soil will
not be overstressed.

P Anchor bnlts\\
O Q

>A11chur bolts

OSHA regulations for
the safe erection of

structural steel
requires use of no
less than four anchor
bolts for each

Base plate

column.
These bolts will
preferably be

laced at base piate




Column

ase Plates
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Column Base Plates




AL-MUTHANNA UNIVERSITY, COLLEGE OF ENGINEERING, DEPARTMENT OF CIVIL ENGINEERING, CE401 DESIGN OF STEEL STRUCTURES, IV
CLASS DR. ZIYAD KUBBA

Column Base Plates vs. Beam Bearing Plates

The major difference is that bending in beam
bearing plates is in one direction, whereas
column

base plates are subjected to two-way
bending.

Base PL has a tendency
" tocurl up

Moreover, web crippling and web yielding
are not factors in column base plates design. Footing

The AISC Specification docs not stipulate a
particular method for designing column
base plates.
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Large Plate vs. Small Plate

» Large Plates are larger than the column dimensions.

= Small plates are those whose dimensions are approximately the same as the
column dimensions

e ]

4
4
4
4
4
A
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A
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A
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Design of Plate

0 Base plates are provided to columns to ensure that the column load is distributed
to the concrete footing without exceeding the capacity of the concrete.

O The design of column base plates requires consideration of bearing pressure on
the supporting material and bending of the plate.

The column load is
assumed
dispersed in the
footing at a slope
of 2in 1.
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The nominal bearing strength of the concrete is given as:
(a) On the full area of a concrete support:

P, =0.85f/A,

(b) On less than the full area of a concrete support:

P, =085f A\A2 /Ay <171 A

0. =0.65 (LRFD) €. =2.31 (ASD)

 Where:

« f'c = compressive strength of footing concrete

« Al = area of the base plate =N x B

« A2 = area of the base of the pyramid, with side
slopes of 1:2, formed within the footing by the
base plate= (B + 4df)(N + 4df)

- df = effective depth of the concrete footing

N = length of base plate

B = width of base plate
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Plate Area

(Cantilever method)

N=%VA4 +A

area of plate = BN

0.3 (0.95d — (0L80 by)
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Plate Thickness

2P,

0.90BNF,

where L is the larger of m, n and n’
m= (N-0.95d)/2

n= (B-0.8bf)/2



Column Base Plates
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Major categories of connections

Simple Connections

= The line of action of the resultant force to be resisted passes through the
center of gravity of the connection.
= Each part of the connection is assumed to resist an equal share of the load
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The load capacity of the connection can be found by multiplying the capacity of each
fastener or inch of weld by the total number of fasteners or the total length of weld
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Major categories of connections

Eccentric Connections

= The line of action of the load does not act through the center of gravity of the
connection.

» The load is not resisted equally by each fastener or each segment of weld
» The determination of the distribution of the load is the complicating factor in the
design of this type of connection.

L P

‘ﬂ-ﬂ-ﬂ-ﬂ
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BOLTED SHEAR CONNECTIONS
FAILURE MODES:

1. Failure of the fastener
2. Failure of the parts being connected

I 1 e
[

f=t=—t
p I~—P AT N
P—‘-,%:““P

P=fA

(a) Single Shear

L Ram———
P = . ll:jl y —»> P/
PR—T
P/2 —
PR—T_ .
P/2 —=
prp—A=—F
PR'Z—"‘:%T_PQ

(b} Double Shear

Where

fvis the shearing stress on the cross-

sectional area of the bolt.
Ais the cross-sectional area
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2. Failure of the parts being connected
Failure resulting from excessive tension, shear, or bending in the parts being connected

= |f a tension member is being connected, tension on both the gross area and effective net

area must be investigated.
= Block shear might also need to be considered.
= Block shear must also be examined in beam-to-column connections in which the top

flange of the beam is coped

Failure of the connected part because of bearing exerted by the fasteners

= Hole is slightly larger than the fastener

= Fastener is assumed to be placed loosely in the hole

= Contact between the fastener and the connected part will exist over approximately half the
circumference of the fastener when a load is applied
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P '_' | * e p
t » The stress will vary from a
maximum at Ato zero at B
= For simplicity, an average
—-’:—3 70 stress, computed as the
d applied force divided by the

projected area of contact, is

? 5 TOPH e

= e —m

if
-
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\, The bearing stress would be computed as

=P/ (dt).
o0 } f,=P/(dn)
/ The bearing load is therefore
P =f,dt
(0 |—

The bolt spacing and edge distance will have an effect on the bearing strength
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BEARING STRENGTH, SPACING, AND EDGE-DISTANCE REQUIREMENTS

A possible failure mode resulting from excessive bearing is shear tear-out at the end

of a connected element
e
Failure surface~ . | R,/2
B
i O If the failure surface is idealized 7 R,
e cnefaca A TTee. '
Failure surface _# R.J2
R
2 =0.6F,f_t
2
where

0.6F,, = shear fracture stress of the connected part
£. = distance from edge of hole to edge of connected part
t = thickness of connected part
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-t—fc»( "‘_fc_"“

The total strength 1s ‘
R,=2(0.6F,¢ )= 1.2F,( t O 2 O N

The nominal bearing strength of a single bolt

4—53—#4—34:-

R, =1.2{ tF, <2.4dtF, (AISC Equation J3-6a)

where
£ . = clear distance, in the direction parallel to the applied load, from the edge of
the bolt hole to the edge of the adjacent hole or to the edge of the material
t = thickness of the connected part
F,, = ultimate tensile stress of the connected part (rof the bolt)

R =0.75R, LRFD R, _ &
¢ o 200 AP
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Summary of Bearing Strength, Spacing, and Edge-Distance Requirements
(Standard Holes)

a. Bearing strength:
R,=1.2¢1F, <24dtF, (AISC Equation J3-6a)

b. Minimum spacing and edge distance: In any direction, both in the line of force
and transverse to the line of force,

§=>2%d (preferably 3d)
¢, = value from AISC Table J3.4

» For single- and double-angle shapes, the usual gage distances given in Table 1-

/A in Part 1 of the Manual.
= Bearing strength is independent of the type of fastener



TABLE 12.3 Minimum Edge Distance!®! from Center of Standard
Hole!®! to Edge of Connected Part, inches

Bolt Diameter (in)

Minimum Edge Distance (in)

1/
/2

5!
/8

i
i

e
1
1Y
1Y

Over l’;ﬂl

3 /
{4

T
1
1Y
1Y,
1%
1

1, X Diameter

[a] If necessary, lesser edge distances are permitted provided the appro-
priate provisions from Sections J3.10 and J4 are satisfied, but edge dis-
tances less than one bolt diameter are not permitted without approval

from the engineer of record.

[b] For oversized or slotted holes, see Table J3.5.

AISC
Specification
Tables J3.4
Manual
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Example:
Check bolt spacing, edge distances, and bearing for the connection shown in Figure

¥ " PL

/[ 5 % 1

+\I /,
1/ ™
15— O O D =15 [ =45k
2'!&"¢ —»  A36 steel
1% o O 3" -diameter bolts

T ___,....---""""""#1

— T |21 ‘m"

—-— |




From AISC Table J3.4, the minimum edge distance in any direction is 1 inch.

Actual edge distance — 1% in.>1in. (OK)

For computation of the bearing strength, use a hole diameter of

N 1l _3_ 1 _13.
h—d+]ﬁ—4+16—16m.

Check bearing on both the tension member and the gusset plate. For the tension mem-
ber and the holes nearest the edge of the member,

b =t, %:1.2&%:0.3433 -

Ry =1.2¢ tF, <2.4dtF,
1.2¢ . tF, = 1.2((].3433](%){53} =29.36 kips

Check upper limit:

24dF, = 2.4[%)[%){58) =52.20 kips

29.36 kips < 52.20 kips Use R, = 29.36 kips/bolt.

(This result means that ¢ is small enough so that 1t must be accounted for.)
For the other holes,

£, =5—h=2.S—E=l.ﬁEB in.
16

R, =1.2¢F, <24dtF,
1.2¢ tF, =1.2(1 .EBS}(%)(EH} =58.74 kips

Upper limit (the upper limit is independent of ¢, and is the same for all bolts):

24dtF, = 5220 kips < 58 T4 kips .. Use R, = 52.20 kips/bolt.

(This result means that ¢ 1s large enough so that it does not need to be accounted for.
Hole deformation controls.)



The bearing strength for the tension member is
R, =2(29.36) + 2(52.20) = 163.1 kips
For the gusset plate and the holes nearest the edge of the plate,

=l —%: I.E—%:&E«ﬂﬂ in.

B = 1.2800F, <2 4dtF,

128 0F, = 1.2{0.3433}(%]{53}: 22.02 kips

Upper limit = 2 44dtF, = 14(%][% ](SE}I
=309.15kips = 22.07 kips Use R =22.02 kips/bolt.

For the other holes,

£ :.i—ﬁ:Ej—E:I_ISEE in.
16

By = 12005 < 24410,

122 1F, = I.Z(I.BEE}[%]{SE) =44.06 kips

Upper limit = 2.4d1F, = 39.15 kips < 44.06 kips . Use R, =39.15 kips/bo
The bearing strength for the gusset plate is

R, =2(22.02) + 2(39.15) = 122.3 kips
The gusset plate controls. The nominal bearing strength for the connection is theref

R, =1223 kips
LRFD The design strength is ¢f, = 0.75(122.3) =91.7 kips.
SOLUTION E“ . _Oﬂ : ’ d
The required strength is
B, =120+ 1.6L = 1.2(15) + 1.6(45) = 90.0 kips < 91.7 kips (K]
ASD The allowable strength is ﬂ=%=5|_3 kips.
SOLUTION L 1o

The required strength is
B,=D+L=15+45=60kips < 61.2 Kips {OK)
ANSWER  Bearing strength. spacing, and edee-distance requiremeants are satisfied.
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SHEAR STRENGTH

the shear load on a bolt is

Where
P=fA, = fvis the shearing stress on the cross-sectional area of the bolt
= Ab is the cross-sectional area

When the stress is at its limit, the shear load is the nominal strength, given by

Rﬂ = FHI’A!J'

where
F,, = nominal shear strength (expressed as a stress)
A, = cross-sectional area of the unthreaded part of the bolt (also known as the
nominal bolt area or nominal body area)
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High-strength bolts

High-strength bolts are available in two groups, defined by the strength of the
bolts in those groups.

Group A: ASTM A325, F1852, A352, A354 Grade BC, and A449.

Group B: ASTM A490, F2280, and A354 Grade BD.



TABLE 12.5 Nominal Strength of Fasteners and Threaded Parts, ksi (MPa)

Nominal Shear Strength

Nominal Tensile in Bearing-Type
Strength. F,, Connections, F,,,.,
Description of Fasteners ksi (MPa)l?] ksi (MPa)[®! . _ o ‘ )
[a) For high-strength bolts subjected to tensile fatigue loading, see Appendix 3
A307 bolts 45 (310) 27 (188)lelldl C :
o 1b] For end loaded connections with & fastener pattern length greater than 38 in
G A (A325 bol 54 (372
D by bolls 7 (93 mm), F,, shall be reduced to 83.3 percent of the tabulated values Fastener

excluded from shear planes

Group A {A325 type) bolts, 90 (620) 68 (457)
when threads are excluded

pattern length is the maxamum distance parelel to the line of force between the
centerline of the bolts connecting two parts With one faying surface,

from shear plancs ] For A307 boli,the tabulated vahuesshall be reduced by 1 percent for each !y in
Group B (A450 ype) bolts 113 (780) 68 (457) (2 mm) over  diameters of length In the erip.

excluded from shear planes \d] Threads permitted in shear planes

Group B (A490 ype) bolls, | 113(780) # O Source: American Insitute ofSteel Construction, Manual of Siee! Consiruction, 14th e
from shear planes (Chicago: AISC,2011), Table J3.2,p. 16.1-120." Copyright © American Institute of
Threaded parts meeting the 015, 0-430F, Steel Construction, Reprinted with permission. Al rights reserved”

requirements of Section
A3.4 of the Manual, when
threads are not excluded
from shear planes

Threaded parts meeting the 0.75F, (L.563F,
requirements of Section

A3.4 of the Manual, when
threads are excluded from
shear planes
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High-strength bolts

ASTM A325 (from Group A) and A490 (from Group B) are the traditional high strength bolts
and are covered in the Specification for Structural Joints Using High- Strength Bolts (RCSC,
2009), which is the basis for the AISC provisions for high-strength bolts.

A490 bolts have a higher ultimate tensile strength than A325 bolts and are assigned a
higher nominal strength. They were introduced long after A325 bolts had been in general
use, primarily for use with high-strength steels

The other bolts listed in Groups A and B have the same strengths, but have special
distinguishing characteristics. For example, F1852 and F2280 bolts have special twist-off
ends that simplify installation when a special bolt pretension is required.

we will use the designations Group A and Group B. For example, instead of referring to an
ASTM A325 bolt, we will call it a Group A bolt.

The usual selection process is to determine the number of Group A bolts needed in a
connection, and if too many are required, use Group B bolts.
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