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Processes Control: 

Second-Order Systems 

A second-order system is one whose dynamic behavior is represented by the second-

order differential equation of the type: 

  
   

   
   

  

  
       ( )              ( ) 

where y(t) and u(t) are respectively the system's output and input variables. Once again, it 

is customary to rearrange such an equation to a "standard form" in which the 

characteristic system parameters will be more obvious. In this case, the "standard form" 

is: 

  
   

   
    

  

  
     ( )                ( ) 

and the newly introduced parameters are given (for a0 ≠ 0 ) by: 

                              

Assuming, as usual, that the model in Eq. (1) is in terms of deviation variables, 

Laplace transformation and subsequent rearrangement gives the transfer function model: 

 ( )  
 

           
 ( ) 

so that the general transfer function for the second-order system is given by: 

 ( )  
 

           
                      ( ) 

Note that whereas the transfer function of the first-order system has a first-order 

denominator polynomial, the transfer function for the second-order system has a second-

order denominator polynomial (i.e., a quadratic). 

The second-order system has three characteristic parameters: 

1. K, the steady-state gain, 
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2.  , the damping coefficient, and 

3.  , the natural period (or the inverse natural frequency) 

Physical Examples of Second-Order Systems 

1. Two First-Order Systems in Series 

Let us now recall the dynamic behavior of two first-order systems in series. We 

obtained the differential equation model for the non-interacting arrangement as the 

second-order differential equation in Eq. (7-Lecture 16). Comparing this now with the 

standard form in Eq. (2), we see that: 

The system consisting of a noninteracting, series arrangement of two first-order systems 

(with time constants   and    and steady-state gains K1 and K2 ) is a second-order 

system with the following parameters: 

            √     

K=K1 K2 

    (      ) 

   
 

 

(      )

√    
 

A comparison of the transfer function representation in Eq. (17-Lecture 16) with Eq. 

(3) shows that the interacting configuration gives rise to a second-order system in which 

  and K are as given above for the noninteracting system, but with   given by: 

   
 

 

(          )

√    
 

2. The U-Tube Manometer 

The U-tube manometer shown in Figure 1 is a device used for measuring pressure. 

The dynamic behavior of the liquid level in each leg of the manometer tube in response to 

pressure changes can be obtained by carrying out a force balance on this system. The 

resulting equation is: 

   

   
 
  

   

  

  
 
 

 

 

 
  

 

   
                ( ) 
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Fig. 1. The U-tube manometer 

where h is the displacement of the liquid level from rest position, L is the total length of 

liquid in the manometer, R is the radius of the manometer tube;   and   are respectively 

the density and viscosity of the manometer liquid;    is the pressure difference across 

the tops of the two manometer legs; and g is the acceleration due to gravity. When Eq. (4) 

is arranged in the standard form, we observe that the dynamic behavior of this system is 

second order with: 
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Response of Second-Order Systems to Various Inputs 

Step Response 

The response of the second-order system to a step function of magnitude A may be 

obtained using Eq. (3). Since u(s) = A/s we have: 

 ( )  
 

           
  
 

 
                    ( ) 

We now choose to rearrange this expression to read: 

 ( )  
     

 (    )(    )
                      ( ) 

where r1 and r2 are the roots of the denominator quadratic (the transfer function poles). 

Ordinarily, one would invert Eq. (6), after partial fraction expansion, and obtain the 

general result: 

 ( )        
       

                        (7) 

where, as we now know, A0 , A1 , and A2 are the usual constants obtained during partial 

fraction expansion. However, the values of the roots r1 and r2, obtained using the 

quadratic formula, are: 

       
 

 
 
√    

 
                 ( ) 

By examining the quantity under the radical sign we may now observe that these roots 

can be real or complex, depending on the  value of the parameter  . Observe further that 

the type of response obtained in Eq. (7) depends on the nature of these roots. In particular 

when 0 <   < 1, Eq. (8) indicates complex conjugate roots, and we will expect the 

response under these circumstances to be different from that obtained when   > 1, and the 

roots are real and distinct. When   = 1, we have a pair of repeated roots, giving rise to yet 

another type of response which is expected to be different from the other two. The case 

 < 0 can occur only in special circumstances and signals process instability. 
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There are thus three different possibilities for the response in Eq. (7), depending on the 

nature of the roots rl, r2, that are dependent on the value of the parameter  . Let us now 

consider each case in turn. 

H.W. 19.1. Find Eq. 7 from Eq. 6. 

CASE 1: 0<   <1 (r1 and r2 Complex conjugates) 

It can be shown that in this case, Eq. (7) becomes, after some simplification: 

 ( )    [  
 

 
  

  
    (

 

 
   )]                      ( ) 

Where: 

  |    |
   

 

       (
 

 
) 

Note: 

1. The time behavior of fuis response is that of a damped sinusoid with   ⁄  as the 

frequency of oscillation. The damping is provided by the exponential term   
  

  which 

gets smaller in magnitude with time and eventually goes to zero as t   .  

2. The response ultimately settles, as t   , to the value AK. 

CASE 2:      (r1 and r2 Real and equal roots) 

In this case because we have a pair of repeated roots, we cannot use Eq. (7) directly. 

Laplace inversion of the appropriately modified version of Eq. (6): 

 ( )  
     

 (   ) 
                      (  ) 

gives the required response: 

 ( )    [  (  
 

 
)   

 
 ]                      (  ) 
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since r = -1/ . The time behavior indicated by this equation is an exponential approach to 

the ultimate value of AK. Note that just as in Case 1, as t   , y(t)  AK. 

CASE 2:      (r1 and r2 Real and distinct roots) 

With   as defined before, the roots are now given by: 

       
 

 
 
 

 
                 (  ) 

and the response is given by: 

 ( )    [    
  
  (    

 

 
  

 

 
    

 

 
 )]                      (  ) 

Where the hyperbolic functions sinh, cosh are defined as:: 

       
 

 
(      ) 

       
 

 
(      ) 

The indicated time response is another exponential approach to the ultimate value of 

AK. Although perhaps not immediately obvious from Eq. (13), it is true, however, that 

this particular exponential approach is somewhat slower than the one indicated in Eq. 

(11). 

 

Fig. 2. Step responses of the second-order system  
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These three responses are sketched in Figure 2. 

1. The Case 1 response (when 0<   <1) is oscillatory and is said to be under-damped. 

2. The Case 2 response (when   = 1) is said to be critically damped. It offers the most 

rapid approach to the final value without oscillation. 

3. The Case 3 response (when   > 1) is sluggish and is said to be over-damped. 

We thus see that whether the second-order response is under-damped, over-damped, or 

critically damped is determined solely by one parameter  . This is why it is referred to as 

the damping coefficient. 

Let us now return to the under-damped response in Eq. (9) and consider what happens 

when (is set equal to zero. This represents the situation in which there is no damping at 

all. The resulting response in this case is: 

 ( )    [     (
 

 
  

 

 
)]                      (  ) 

a pure, undamped sine wave, with frequency 1/ . This is referred to as the natural 

frequency of oscillation   . Observe that its reciprocal, the natural period of oscillation, 

is  , establishing the reason for the name given to this parameter. 

Having established that there are three categories of second-order systems (under-

damped, critically damped, and over-damped).  
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Processes Control: 

Second-Order Systems 

A second-order system is one whose dynamic behavior is represented by the second-

order differential equation of the type: 

  
   

   
   

  

  
       ( )              (   ) 

where y(t) and u(t) are respectively the system's output and input variables. Once again, it 

is customary to rearrange such an equation to a "standard form" in which the 

characteristic system parameters will be more obvious. In this case, the "standard form" 

is: 

  
   

   
    

  

  
     ( )                (   ) 

and the newly introduced parameters are given (for a0 ≠ 0 ) by: 

                              

Assuming, as usual, that the model in Eq. (2.1) is in terms of deviation variables, 

Laplace transformation and subsequent rearrangement gives the transfer function model: 

 ( )  
 

           
 ( ) 

so that the general transfer function for the second-order system is given by: 

 ( )  
 

           
                      (   ) 

Note that whereas the transfer function of the first-order system has a first-order 

denominator polynomial, the transfer function for the second-order system has a second-

order denominator polynomial (i.e., a quadratic). 

The second-order system has three characteristic parameters: 

1. K, the steady-state gain, 
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2.  , the damping coefficient, and 

3.  , the natural period (or the inverse natural frequency) 

Physical Examples of Second-Order Systems 

1. Two First-Order Systems in Series 

Let us now recall the dynamic behavior of two first-order systems in series. We 

obtained the differential equation model for the non-interacting arrangement as the 

second-order differential equation in Eq. (7-Course 1-Lecture 16). Comparing this now 

with the standard form in Eq. (2.2), we see that: 

The system consisting of a noninteracting, series arrangement of two first-order systems 

(with time constants   and    and steady-state gains K1 and K2 ) is a second-order 

system with the following parameters: 

            √               (2.4) 

K=K1 K2 

    (      ) 

   
 

 

(      )

√    
                      (   ) 

A comparison of the transfer function representation in Eq. (17-Course 1-Lecture 16) 

with Eq. (2.3) shows that the interacting configuration gives rise to a second-order system 

in which   and K are as given above for the noninteracting system, but with   given by: 

   
 

 

(          )

√    
 

2. The U-Tube Manometer 

The U-tube manometer shown in Figure 2.1 is a device used for measuring pressure. 

The dynamic behavior of the liquid level in each leg of the manometer tube in response to 

pressure changes can be obtained by carrying out a force balance on this system. The 

resulting equation is: 

   

   
 
  

   

  

  
 
 

 

 

 
  

 

   
                (   ) 
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Fig. 2.1. The U-tube manometer 

where h is the displacement of the liquid level from rest position, L is the total length of 

liquid in the manometer, R is the radius of the manometer tube;   and   are respectively 

the density and viscosity of the manometer liquid;    is the pressure difference across 

the tops of the two manometer legs; and g is the acceleration due to gravity. When Eq. 

(2.6) is arranged in the standard form, we observe that the dynamic behavior of this 

system is second order with: 
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Response of Second-Order Systems to Various Inputs 

Step Response 

The response of the second-order system to a step function of magnitude A may be 

obtained using Eq. (2.5). Since u(s) = A/s we have: 

 ( )  
 

           
  
 

 
                    (   ) 

We now choose to rearrange this expression to read: 

 ( )  
     

 (    )(    )
                      (   ) 

where r1 and r2 are the roots of the denominator quadratic (the transfer function poles). 

Ordinarily, one would invert Eq. (2.8), after partial fraction expansion, and obtain the 

general result: 

 ( )        
       

                        (2.9) 

where, as we now know, A0 , A1 , and A2 are the usual constants obtained during partial 

fraction expansion. However, the values of the roots r1 and r2, obtained using the 

quadratic formula, are: 

       
 

 
 
√    

 
                 (    ) 

By examining the quantity under the radical sign we may now observe that these roots 

can be real or complex, depending on the  value of the parameter  . Observe further that 

the type of response obtained in Eq. (2.9) depends on the nature of these roots. In 

particular when 0 <   < 1, Eq. (2.10) indicates complex conjugate roots, and we will 

expect the response under these circumstances to be different from that obtained when   

> 1, and the roots are real and distinct. When   = 1, we have a pair of repeated roots, 

giving rise to yet another type of response which is expected to be different from the 

other two. The case  < 0 can occur only in special circumstances and signals process 

instability. 
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There are thus three different possibilities for the response in Eq. (2.9), depending on 

the nature of the roots rl, r2, that are dependent on the value of the parameter  . Let us 

now consider each case in turn. 

CASE 1: 0<   <1 (r1 and r2 Complex conjugates) 

It can be shown that in this case, Eq. (2.9) becomes, after some simplification: 

 ( )    [  
 

 
  

  
    (

 

 
   )]                      (    ) 

Where: 

  |    |
   

 

       (
 

 
) 

Note: 

1. The time behavior of fuis response is that of a damped sinusoid with   ⁄  as the 

frequency of oscillation. The damping is provided by the exponential term   
  

  which 

gets smaller in magnitude with time and eventually goes to zero as t   .  

2. The response ultimately settles, as t   , to the value AK. 

CASE 2:      (r1 and r2 Real and equal roots) 

In this case because we have a pair of repeated roots, we cannot use Eq. (2.9) directly. 

Laplace inversion of the appropriately modified version of Eq. (2.8): 

 ( )  
     

 (   ) 
                      (    ) 

gives the required response: 

 ( )    [  (  
 

 
)   

 
 ]                      (    ) 

since r = -1/ . The time behavior indicated by this equation is an exponential approach to 

the ultimate value of AK. Note that just as in Case 1, as t   , y(t)  AK. 



Al-Muthanna University/ College of Engineering/ Chemical Engineering Department 

 

Processes Control                            Course 2; Lect.: 2                             Dr. Forat Yasir AlJaberi 

6 
 

CASE 2:      (r1 and r2 Real and distinct roots) 

With   as defined before, the roots are now given by: 

       
 

 
 
 

 
                 (    ) 

and the response is given by: 

 ( )    [    
  
  (    

 

 
  

 

 
    

 

 
 )]                      (    ) 

Where the hyperbolic functions sinh, cosh are defined as:: 

       
 

 
(      ) 

       
 

 
(      ) 

The indicated time response is another exponential approach to the ultimate value of 

AK. Although perhaps not immediately obvious from Eq. (2.15), it is true, however, that 

this particular exponential approach is somewhat slower than the one indicated in Eq. 

(2.13). 

 

Fig. 2.2. Step responses of the second-order system  

These three responses are sketched in Figure 2.2. 

1. The Case 1 response (when 0<   <1) is oscillatory and is said to be under-damped. 
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2. The Case 2 response (when   = 1) is said to be critically damped. It offers the most 

rapid approach to the final value without oscillation. 

3. The Case 3 response (when   > 1) is sluggish and is said to be over-damped. 

We thus see that whether the second-order response is under-damped, over-damped, or 

critically damped is determined solely by one parameter  . This is why it is referred to as 

the damping coefficient. 

Let us now return to the under-damped response in Eq. (2.11) and consider what 

happens when (is set equal to zero. This represents the situation in which there is no 

damping at all. The resulting response in this case is: 

 ( )    [     (
 

 
  

 

 
)]                      (    ) 

a pure, undamped sine wave, with frequency 1/ . This is referred to as the natural 

frequency of oscillation   . Observe that its reciprocal, the natural period of oscillation, 

is  , establishing the reason for the name given to this parameter. 

Having established that there are three categories of second-order systems (under-

damped, critically damped, and over-damped).  
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Processes Control: 

Second-Order Systems 

Example 3.1. Having shown that two first-order systems in series (be they interacting or 

otherwise) constitute a second-order system, the following questions are 

to be answered. 

1. What type of second-order system (under-damped, over-damped, or 

critically damped) is the noninteracting system? 

2. Compare the damping characteristics of the interacting and the 

noninteracting configurations and hence determine the type of second-

order system that describes the interacting system. 

Ans.:  

1. As earlier demonstrated, the damping characteristics of any second-order system are 

determined solely by the value of the parameter  . For the noninteracting arrangement, 

we had earlier shown that this parameter is given by: 

   
 

 

(      )

√    
                   (   ) 

and our task is now to find out whether this quantity is greater than, less than, or equal 

to 1. First observe that Eq. (2.5) is a ratio of the arithmetic mean and the geometric mean 

of the two time constants    and   · We may thus use the argument that the arithmetic 

mean of two positive quantities can never be smaller than their geometric mean to 

establish that    . 

Alternatively, let us assume that the converse is true: that is   . This leads us to 

conclude from Eq. (2.5) that 

         √                         (   ) 

Since the quantities involved in this inequality are all positive we may square both 

sides without altering the inequality; the result is: 

  
           

          

which simplifies to: 
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or 

(      )
                       (   ) 

Observe, however, that regardless of the actual values of    or    a squared quantity 

can never be less than zero, thus proving false the initial assumption of    . We 

therefore conclude that    . Note that when         Eq. (2.5) indicates that    . 

The conclusion is therefore that the noninteracting arrangement of two first-order 

systems in series is either critically damped (when the two time constants are identical) or 

over-damped; it can never be under-damped. 

2. For the interacting case, the damping coefficient was earlier given as: 

   
 

 

(           )

√    
                   (   ) 

A comparison of this expression with Eq. (2.5) shows that unless K2 is negative 

(which is not the case with the two physical interacting tanks) the damping coefficient for 

the interacting system takes on a value that is even greater than that for the noninteracting 

system. 

Thus if the noninteracting system is over-damped, then the interacting system is even 

more so. 

H.W. 3.1. Prove that the interacting system can never be critically damped. 

Thus we conclude that the interacting system is also over-damped; exhibiting 

"heavier" damping characteristics than the noninteracting system. This implies the 

interacting system will show more sluggish response characteristics than the 

noninteracting system; this, of course, had already been indicated earlier. 

One of the most important conclusions from this example is that two first-order 

systems in series can never exhibit under-damped characteristics. There are a number of 

other physical systems that do exhibit under-damped behavior. For example, the U-tube 

manometer will exhibit under-damped behavior for its most common configuration with 

water or mercury. 
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Under-damped behavior in chemical process systems often arises as a result of 

combining a feedback controller and the process itself. For this reason, the underdamped 

response takes on special significance in process control practice, and as a result, some 

special terminology (which will be defined) has been developed to characterize this 

behavior. 

Characteristics of the Under-damped Response 

Using Figure 3.1 as reference, the following are the terms used to characterize the 

under-damped response. 

 

Fig. 3.1. Characteristics of the under-damped response 

1. Delay Time, td : Time to reach 50% of the ultimate value for the first time: 

    (      )   
      

  
  
      

  
 √                       (   ) 

Where:        and       √     

2. Rise Time, tr : Time to reach the ultimate value for the first time; it can be shown that, 

for a second-order system: 

   
 

 
[   ]             (   ) 

where   and   have been defined as: 

td 
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  |    |
   

 

       (
 

 
) 

  must be in radian. (                 )   

3. Overshoot: The maximum amount by which the transient exceeds the ultimate value 

AK; expressed as a fraction of this ultimate value, i.e., the ratio at a1/AK in the diagram. 

For a second-order system, the maximum value attained by this response is given by: 

 

       [     (
   

 
)]                      (   ) 

so that the overshoot is now given by: 

          
  
  

    (
   

 
)                       (   ) 

The time to achieve this maximum value is: 

     
 

  
                        (   ) 

4. Period of Oscillation: From Eq. (9-Course 1-Lecture 19) observe that the radian 

frequency of oscillation is: 

  
 

 
     

and since the period (in times/ cycle) is given by      , we therefore have: 

  
  

 
 
   

 
                        (   ) 

5. Decay Ratio: A measure of the rate at which oscillations are decaying, expressed as the 

ratio a2/a1  in the diagram: 

            
  
  
    (

    

 
)                       (    ) 

H.W. 3.2. Find the mathematical relation between decay ratio and the overshoot. 
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6. Settling Time, ts : A somewhat arbitrary quantity defined as the time for the process 

response to settle to within some small neighborhood of the ultimate value; usually taken 

to be within ± 5%. 

For 2% tolerance: 

   
  

 
 

 

   
 
  √    

   
                 (      ) 

For 5% tolerance: 

   
  

 
 

 

   
 
  √    

   
                 (      ) 

7. Natural Period of Oscillation: It is the time required to finish a complete cycle when 

the system is free of damping. The form of this parameter is:  

                              (    ) 

Example 3.2. A system having the following transfer function  

 ( )  
  

        
 

Check the damping status and characterize it.  

Ans.: 

 ( )  
     

(     )  (     )  (     )
 

 ( )  
 

                  
 

                               

                         

Since the value of the damping factor is 0.42 so the system is under-damped system. 

Now we will characterize it. 
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1. Delay Time, td :  

   
 

 
 

 

     
           

      √           √               
   

    (      )   
      

  
  
      

  
 √               

2. Rise Time, tr :  

  |    |    |       |          

       (
 

 
)       (

     

    
)         

  must be in radian. 

            
 

   
        

 

   
       

   
 

 
[   ]   

     

     
[       ]              

3. Overshoot:  

          
  
  

    (
   

 
)     (

       

     
)         

                           

       [     (
   

 
)]    [     (

       

     
)]        

The time to achieve this maximum value is: 

     
 

  
 

 

     
             

4. Period of Oscillation:  
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5. Decay Ratio:  

            
  
  
    (

    

 
)     (

        

     
)          

                              

 

6. Settling Time, ts:  

For 2% tolerance: 

   
  

 
 
       

    
         

For 5% tolerance: 

   
  

 
 
       

    
         

7. Natural Period of Oscillation:   
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Processes Control: 

Second-Order Systems 

Let us now recall the dynamic behavior of two first-order systems in a noninteracting 

series with the following parameters: 

            √                                

   
 

 

        

√    

                            

Solving for    and    gives 

   
 

  √    
                          

   
 

  √    
                          

H.W. 4.1. Find equations (4.1) and (4.2) from equations (2.4) and (2.5) 

Example 4.1. An overdamped system consists of two first-order processes operating in 

series (   = 4,    = 1). Find the equivalent values of   and   for this 

system. 

Ans.:  

From equations (2.4) and (2.5), 

  √       √                            

   
 

 

        

√    

 
 

 

     

√      
                            

Equations (4.1) and (4.2) could be used to check on these results: 

   
 

  √    
  

 

     √         
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  √    
  

 

     √         
   

Example 4.2. A step change from 15 to 31 psi in actual pressure results in the measured 

response from a pressure indicating element shown in Fig. 4.1. 

 

Fig. 4.1. An example of second order system 

Assuming second-order dynamics, calculate all important parameters and write and 

approximate transfer function in the form 

 

where R' is the instrument output deviation (mm), P' is the actual pressure deviation 

(psi). 

Ans.: 

      
              

               
                              

          
  

  
 

                 

              
                            

             (
   

 
)       
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Since  

  |    |
   

 

From the above,         so the system is underdamped. 

  |          |
   

       

 

  
  

 
 

   

 
           

    
   

     
 

            

Other parameters could be calculated as follows: 

Delay Time, td :  

   
 

 
 

 

     
             

      √           √                     

              
      

  
  

      

  
 √                 

Rise Time, tr :  

       (
 

 
)       (

     

     
)         

  must be in radian. 

            
 

   
        

 

   
       

   
 

 
[   ]   

     

     
[       ]              

The time to achieve the maximum value (12.7 mm) is: 
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Decay Ratio:  

            
  

  
    (

    

 
)     (

         

     
)          

                                          

 

Settling Time, ts:  

For 2% tolerance: 

   
  

 
 

       

     
           

For 5% tolerance: 

   
  

 
 

       

     
           

Natural Period of Oscillation:   

                       
   

     
 

 

The final transfer form is 

     

     
 

   

                
 

 

H.W. 4.2. A second-order control system having a radian frequency for the control 

system is 1.9 rad/min. The time constant is 0.5 min. The control system is subjected to a 

step change of the magnitude 2. Characterize the status of this system and calculate all 

parameters. 
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Processes Control: 

Second-Order Systems 

Steady-state error analysis 

The function of a feedback control system is to ensure that the closed-loop system has 

desirable dynamic and steady-state response characteristics. Ideally, we would like the 

closed-loop system to satisfy the following performance criteria: 

1. The closed-loop system must be stable. 

2. The effects of disturbances are minimized, providing good disturbance rejection. 

3. Rapid, smooth responses to set-point changes are obtained, that is, good set-point 

tracking. 

4. Steady-state error (offset) is eliminated. 

5. Excessive control action is avoided. 

6. The control system is robust, that is, insensitive to changes in process conditions and to 

inaccuracies in the process model. 

The steady-state error (or offset) occurs after a set-point change or a sustained 

disturbance. Consider the general figure for a negative feedback closed-loop control 

system shown as follows 

 

 

 

 

 

G(s) 

H(s) 

X(s) Y(s) 

اورجينال للحاسبات
Text Box
T(s)= G(s)/[1+G(s) H(s)]
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For such a system, the steady-state error (   ) could be expressed as follows 

       
   

      

          
                          

 

(1) Steady-state error for step input 

As known that the formula of step input is 

               
 

 
 

So  

       
   

      

          
    

   
 

  
 
 

          
   

    
 

     
   

         
                              

The term [   
   

         ] is constant and is called the “static position coefficient (or 

constant)”, and it is denoted as Kp  
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(2) Steady-state error for ramp input 

The formula of ramp input is 

                
 

  
 

So  

       
   

      

          
    

   
 

  
 
  

          
   

    
 

     
   

           
                              

The term [   
   

           ] is constant and is called the “static velocity coefficient (or 

constant)”, and it is denoted as Kv  

      
   

                                      

    
 

  
                                         

(3) Steady-state error for parabolic input 

The formula of parabolic input is 

      
  

 
         

 

  
 

So  
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The term [   
   

            ] is constant and is called the “static acceleration 

coefficient (or constant)”, and it is denoted as Ka  

      
   

                                       

    
 

  
                                          

Steady-state error for type-0, type-1, and type-2 systems 

Types of the steady-state systems could be determined according to the open-loop 

transfer function [G(s) H(s)] which written as follows 

         
                          

                          
                         

The type of the system is (n) where 

n = 0    Type-0 

n = 1    Type-1 

n = 2    Type-2 

Example 5.1. Determine the types of the following systems: 

(1)      
       

  
      and          

      

         
 

(2)      
 

         
      and                

Ans.:  

(1)          
             

           
                 

(2)          
      

         
                       
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Steady-state error for type-0 system 

For type-0 system where (n=0), the open-loop transfer function [G(s) H(s)] will be as 

follows: 

         
                          

                        
                         

(1) Steady-state error for (type-0) and step input 

Since the steady-state error and the “static position coefficient (or constant)” have 

been determined as  

    
 

    
  

And  

      
   

          

So  

      
   

             
   

                          

                        
 

   
           

         
   

    
 

   
                                          

(2) Steady-state error for (type-0) and ramp input 

The steady-state error and the “static velocity coefficient (or constant)” have been 

determined as  
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And  

      
   

            

So  

      
   

               
   

                            

                        
 

   
             

         
   

    
 

 
                                            

(3) Steady-state error for (type-0) and parabolic input 

The steady-state error and the “static acceleration coefficient (or constant)” have been 

determined as  

    
 

  
 

And  

      
   

             

So  
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Steady-state error for type-1 system 

For type-1 system where (n=1), the open-loop transfer function [G(s) H(s)] will be as 

follows: 

         
                          

                         
                         

(1) Steady-state error for (type-1) and step input 

Since the steady-state error and the “static position coefficient (or constant)” have 

been determined as  

    
 

    
  

And  

      
   

          

So  

      
   

             
   

                          

                         
 

   
           

         
   

    
 

   
                                           

(2) Steady-state error for (type-1) and ramp input 

The steady-state error and the “static velocity coefficient (or constant)” have been 

determined as  
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And  

      
   

            

So  

      
   

               
   

                            

                         
 

   
            

         
   

    
 

 
                                          

(3) Steady-state error for (type-1) and parabolic input 

The steady-state error and the “static acceleration coefficient (or constant)” have been 

determined as  

    
 

  
 

And  

      
   

             

So  
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Steady-state error for type-2 system 

For type-2 system where (n=2), the open-loop transfer function [G(s) H(s)] will be as 

follows: 

         
                          

                          
                         

(1) Steady-state error for (type-2) and step input 

Since the steady-state error and the “static position coefficient (or constant)” have 

been determined as  

    
 

    
  

And  

      
   

          

So  

      
   

             
   

                          

                          
 

   
           

         
   

    
 

   
                                           

(2) Steady-state error for (type-2) and ramp input 

The steady-state error and the “static velocity coefficient (or constant)” have been 

determined as  
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And  

      
   

            

So  

      
   

               
   

                            

                          
 

   
            

         
   

    
 

 
                                            

(3) Steady-state error for (type-2) and parabolic input 

The steady-state error and the “static acceleration coefficient (or constant)” have been 

determined as  

    
 

  
 

And  

      
   

             

So  
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Processes Control: 

Second-Order Systems 

Advantages and disadvantages of static error coefficients  

 This method provides the variation of error with time. 

 It is applicable only for step, ramp, and parabolic forcing functions. It could not 

be applied for others of forcing function. 

 The values of steady-state error of zero and infinity cannot give exact value of the 

error. 

 This method could only be used for stable systems. 

Dynamic error coefficients  

This method could be used to overcome the disadvantages of static error coefficients. 

According to this method the (   ) could be expressed as follows: 

       ( )     
 ( )     

  ( )                         (   ) 

Where: 

R(t) is the input forcing function in time (t) domain. 

      
   

   ( )                      (   ) 

      
   

 
   ( )

  
                   (   ) 

      
   

 
    ( )

   
                 (   ) 

Where  

  ( )  
 

   ( ) ( )
                  (   ) 
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Example 6.1. Find the steady-state error for the input forcing function as [3+8t+(5/2) t
2
] 

for the following system: 

 

 

 

Ans.:  

 ( )   
  

(   )(   )
            ( )                ( )       

 

 
   

       ( )     
 ( )     

  ( )                         (   ) 

  ( )       

   ( )    

  ( )  
 

   ( ) ( )
                  (   ) 

  ( )  
 

  
  

(   )(   )
  

 
 

(   )(   )    

(   )(   )

 

  ( )  
(   )(   )

(   )(   )    
 

        

        
 

So, 

  ( )  
        

        
 

      
   

   ( )                      (   ) 

      
   

 
        

        
  

  

  
 

𝟏𝟓

(𝒔  𝟐)(𝒔  𝟓)
 

1 

R(s) Y(s) 
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   ( )

  
                   (   ) 

      
   

 

  
[
        

        
] 

      
   

 [
(        )(    )  (        )(    )

(        ) 
] 

      
   

 [
       

(        ) 
]  

   

(  ) 
 

         

      
   

 
    ( )

   
                 (   ) 

      
   

 
  

   
[
        

        
] 

      
   

 {
(        ) (  )  (        )  (        )(    )

(        ) 
} 

      
   

 [
   (  )   (   )(  )( )

(  ) 
] 

          

       ( )     
 ( )     

  ( ) 

        (     
 

 
  )        (    )        ( ) 
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H.W. 6.1. For the final equation obtained in Example 6.1, take the values of time as (0, 

0.5, 1, 1.5, 2, 2.5, 3) and draw a graph related the (   ) with time and discuss the 

behavior of this graph obtained.  

Example 6.2. Find the steady-state error for the input forcing function as [3+8t+(5/2) t
2
] 

for the following system: 

 

 

 

Ans.:  

 ( )   
(    )

  
      ( )   

(    )

( 
 
     )

            ( )       
 

 
   

       ( )     
 ( )     

  ( )                         (   ) 

  ( )       

   ( )    

  ( )  
 

   ( ) ( )
                  (   ) 

  ( )  
 

  
(    )

  

(    )
(       )

 

  ( )  
 

  (       )  (    )(    )
  (       )

 

  ( )  
          

                 
 

 

(𝟏  𝟖𝒔)

𝒔𝟐
 

(𝟏  𝟐𝒔)

(𝒔𝟐  𝟗𝒔  𝟖)
 

R(s) Y(s) 
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   ( )                      (   ) 

      
   

 
          

                 
  

 

 
 

     

      
   

 
   ( )

  
                   (   ) 

      
   

 

  
[

          

                 
] 

   
 

 
 

     

      
   

 
    ( )

   
                 (   ) 

      
   

 
  

   
[

          

                 
] 

     

       ( )     
 ( )     

  ( ) 

      (     
 

 
  )    (    )    ( ) 

                                      

H.W. 6.2. Find the steady-state error for the input forcing function as [3+8t+(5/2) t
2
] for 

the following system 

  ( )  
 

(       )
      and      ( )  (   ) 
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Processes Control: 

Block diagram development  

Block diagram representations of control systems are developed by: 

1. Identifying the individual elements of the control system (as was done in the previous 

course for the process mixing tank), 

2. Identifying the input and output for each element, 

3. Representing the individual input/ output transfer function relationship for each 

element in the block diagram, 

4. Finally, combining the individual block diagrams for each element to obtain the overall 

block diagram. 

Block diagrams containing the following elements: 

1- Block : It is the schematic representation that relating the input and output for each 

unit in the studied process as follows: 

 

Where: 

x(s) is the input (forcing function), y(s) is the output (response), and G(s) is the transfer 

function for a particular unit. 

 ( )  
 ( )

 ( )
 

2- Summing point: It is the representation of a point where two or more signals can be 

added or subtracted  

 

 

 

 

𝑮(𝒔) x(s) y(s) 

x(s) 

R(s) 

y(s) 

Z(s) 

+ 
+ 

- 
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The output of any summing point is the algebraic sum of the entering input signals as 

follows: 

 ( )   ( )   ( )   ( ) 

3- Take-off point: It is the point at which the signal could be conducted to two or more 

blocks as input. This element will not alter the original signal as represented below: 

 

 

 

 

 

4- Forward path: It is the direction of flow of signal from input to output. For the 

following closed-loop system: 

 

 

 

 

The forward path is  

 

 

5- Feedback path: It is the path of flow of signal from output to input such as the  

following closed-loop system: 

 

 

𝑮𝟏(𝒔) 
x(s) 

y1(s) 

𝑮𝟐(𝒔) 

x(s) 

x(s) 
y2(s) 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

- 

𝑮𝟐(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 
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There are several techniques that could be used to reduce the items of the block 

diagram to obtain the final gain, i.e. the overall transfer function, of the studied process. 

These techniques are: 

1- Blocks in series: Blocks connected in cascaded could be reduced to a signal block, 

and the product of the individual transfer functions will be the new transfer function 

where the initial input and the final output will not alter. For example, the following 

cascaded blocks  

 

 

Will be reduced to  

 

 

The condition of this procedure is that must be no summing points and/or take off 

points presented among blocks.   

2- Blocks in parallel: Blocks connected in parallel could be reduced to a signal block, 

and the new transfer function will be the sum of the individual transfer functions. 

The following example explain this technique.  

 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

+ 

Feedback path 

- 

𝑮𝟐(𝒔) 

 

x(s) y2(s) 𝑮𝟏(𝒔) 

 

y1(s) 

x(s) y2(s) 𝑮𝟏(𝒔)𝑮𝟐(𝒔) 
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This could be reduced to  

 

 

3- Moving a summing point after a block: This technique could be performed to move 

a summing point from its location to a new location after the block such as follows  

 

 

 

 

 

 ( )  [ ( )   ( )] ( ) 

It will be after moving the summing point after the block 

 

 

 

 

 ( )  [ ( )   ( )] ( ) 

As observed, each of side-streams should be multiplied by the transfer function 

presented in the main path that was passed front by the summing point. 

𝑮𝟏(𝒔) 
x(s) 

y(s) 

𝑮𝟐(𝒔) 

x(s) 

x(s) 

+ 

+ 

x(s) y(s) 𝑮𝟏(𝒔)  𝑮𝟐(𝒔) 

 

𝑮(𝒔) R(s) 
+ 

x(s) 

y(s) 

+ - 

𝑮(𝒔) R(s) 

x(s) 

y(s) 

+ 
- 

𝑮(𝒔) 

same sign 

same sign 
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4-  Moving a summing point before a block: This technique could be used to move a 

summing point from its location to a new location before the block as shown below  

 

 

 

 

 ( )   ( ) ( )   ( ) 

It will be after moving the summing point before the block 

 

 

 

 

 ( )  [ ( )  
 

 ( )
 ( )] ( ) 

As noted that each of side-streams should be multiplied by the reciprocal of the 

transfer function presented in the main path that was passed back by the summing point. 

5- Moving a tack off  point before a block: This technique could be used to move a 

take-off point a head of a block to simplify some problems.  

 

 

 

 

𝑮(𝒔) R(s) 

x(s) 

y(s) 

+ 
- 

same sign 

+ 

𝑮(𝒔) R(s) 
+ 

x(s) 

y(s) 

+ 
- 

same sign 𝟏/𝑮(𝒔) 

𝑮(𝒔) x(s) y(s) 

y(s) 
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It will be after moving the take-off point before the block as follows: 

 

 

 

 

6- Moving a tack off  point after a block: This technique could be used to move a take-

off point a head of a block to simplify some problems. 

 

 

 

It will be after moving the take-off point after the block as follows: 

 

 

 

 

7- Interchanging of two summing points: This technique provides the ability of 

interchanging the location of two summing points as shown below. 

 

 

 

 

𝑮(𝒔) x(s) y(s) 

𝑮(𝒔) y(s) 

𝑮(𝒔) x(s) y(s) 

x(s) 

𝑮(𝒔) x(s) y(s) 

𝟏/𝑮(𝒔) 
x(s) 

- +

- 

+

- 

+

- 

x(s) 

R(s) 

Z(s) 

y(s) 
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 ( )   ( )   ( )   ( ) 

After the interchanging process, it will be as follows: 

 

 

 

 ( )   ( )   ( )   ( ) 

8- Moving a take-off point before a summing point: There are some steps to applied 

this technique which are: (a) Move the take-off point, (b) Add a summing point to 

the moved side-stream, and (c) Algebraically, add the new stream with the side-

stream entering the original summing point without changing any sign. 

 

 

 

 ( )   ( )   ( ) 

 

 

 

 

9- Moving a take-off point after a summing point: This technique is used when the 

movement of a take-off point after a summing point is required as explained below:   

 

 

- +

- 

+

- 

+

- 

x(s) 

R(s) 

Z(s) 

y(s) 

- 
+

- 

+

- 

y(s) 

x(s) 

R(s) 

y(s) 

- 
+

- 

+

- 

y(s) 

x(s) 

R(s) 

y(s) 

+

- 
-

+

x(s) 
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 ( )   ( )   ( ) 

 

 

 

 

 

10- Eliminating a feedback loop: There two kinds of feedback closed-loop system, 

negative and positive. Both of them could be eliminated to only one block having 

the new transfer function as revealed below. 

 

 

 

 

 ( )  [ ( )   ( ) ( )] ( ) 

 ( )   ( ) ( )   ( ) ( ) ( ) 

 ( )   ( ) ( ) ( )   ( ) ( ) 

 ( )[   ( ) ( )]   ( ) ( ) 

- 
+

- 

+

- 

y(s) 

x(s) 

R(s) 

y(s) 

+

- 

-

+

x(s) 

- 
+

- 

+

- 
y(s) x(s) 

R(s) 

y(s) 

Sign 

reversed 

𝑯(𝒔) 

 

x(s) y(s) 𝑮(𝒔) 

 

+ 

- y(s) 

y(s) 

y(s) H(s) 

x(s) + y(s) H(s) 

+ 

اورجينال للحاسبات
Pencil
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 ( )

 ( )
 

 ( )

   ( ) ( )
 

So, the final transfer function T(s) or G(s) is  

 ( )  
 ( )

   ( ) ( )
 

 

Follow the following steps for simplifying (reducing) the block diagram, which is having 

many blocks, summing points and take-off points. 

1- Check for the blocks connected in series and simplify. 

2- Check for the blocks connected in parallel and simplify. 

3- Check for the blocks connected in feedback loop and simplify. 

4- If there is difficulty with take-off point while simplifying, shift it towards right. 

5- If there is difficulty with summing point while simplifying, shift it towards left. 

6- Repeat the above steps till you get the simplified form, i.e., single block.  
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Processes Control: 

Block diagram development  

Example 8.1. Find the overall transfer function for the following process: 

 

 

 

 

 

Ans.: 

At first, reduce the cascade blocks [G1(s) G2(s)] to one block then reduce it with the 

parallel block [G3(s)]. The new form of this process will be 

 

 

 

 

Now, reduce the negative feedback loop to be the final form of the process as follow: 

 

 

So, the overall transfer function is  

 ( )  
  ( )  ( )    ( )

   ( )   ( )  ( )    ( ) 
 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

- 

𝑮𝟑(𝒔) 

 

+ 

+ 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔)𝑮𝟐(𝒔)  𝑮𝟑(𝒔) 

 

 

+ 

- 

x(s) y(s) 
𝑮𝟏(𝒔)𝑮𝟐(𝒔)  𝑮𝟑(𝒔)

𝟏  𝑯(𝒔) 𝑮𝟏(𝒔)𝑮𝟐(𝒔)  𝑮𝟑(𝒔) 
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Example 8.2. Reduce the following block diagram and find the overall transfer function 

of the process. 

 

 

 

 

 

Ans.: 

Move the take-off point of the block [G3(s)] to the same location of the take-off of the 

feedback block [H(s)]. 

 

 

 

 

 

Now, simplify the parallel blocks to be 

  

 

 

Then, reduce the negative feedback loop to be as follows 

 

 

 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

- 

𝑮𝟑(𝒔) 

 
+ 

+ 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

- 

𝑮𝟑(𝒔)

𝑮𝟏(𝒔)
 

 + 

+ 

𝑮𝟑(𝒔)

𝑮𝟏(𝒔)
 𝑮𝟐(𝒔) 
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Finally, merge two blocks obtained to find the overall transfer function  

 

  

 

 

 ( )  
  ( )

    ( ) ( )
 

  ( )

  ( )
   ( ) 

 ( )  
  ( )

    ( ) ( )
 

  ( )    ( )  ( )

  ( )
 

 ( )  
  ( )  ( )    ( )

    ( ) ( )
 

Example 8.3. Simplify the following process to find the overall transfer function. 

 

 

 

 

 

 

Ans.: 

There are several suggestions to solve this diagram. Let following the next suggestion:  

At first, move the last take-off point to be ahead of the block [G4(s)] regarding the change 

of the feedback streams of the wire and the block [H1(s)] as follows: 

𝑮𝟏(𝒔)

𝟏  𝑮𝟏(𝒔)𝑯(𝒔)
 

 

𝑮𝟑(𝒔)

𝑮𝟏(𝒔)
 𝑮𝟐(𝒔) 

 

𝑮𝟏(𝒔)

𝟏  𝑮𝟏(𝒔)𝑯(𝒔)
 

 

x(s) y(s) 

𝑯𝟏(𝒔) 

x(s) y(s) 

𝑮𝟏(𝒔) 

 

+ 

- 

𝑯𝟐(𝒔) 

 

+ 

+ 
𝑮𝟐(𝒔) 

 

𝑮𝟑(𝒔) 

 

𝑮𝟒(𝒔) 

 - 

- 
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Now, simplify the following negative feedback loop 

 

 

 

 

To be as follows: 

  

 

 

Then 

  

 

 

Will be as follows: 

  

 

 

 

𝑮𝟒(𝒔)𝑯𝟏(𝒔) 

 

x(s) y(s) 

𝑮𝟏(𝒔) 

 

+ 

- 

𝑯𝟐(𝒔) 

 

+ 

+ 
𝑮𝟐(𝒔) 

 

𝑮𝟑(𝒔) 

 

𝑮𝟒(𝒔) 

 - 

- 

𝑮𝟒(𝒔) 

 

𝑮𝟒(𝒔)𝑯𝟏(𝒔) 

 

𝑮𝟑(𝒔) 

 

+ 

- 

𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
 

 

𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
 

 

𝑮𝟐(𝒔) 

 

𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
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Until now, the new form will be  

 

 

 

 

 

 

The negative feedback of [H2(s)]  

 

 

 

 

 

Will be as shown below: 

 

 

 

 

 

 

 

Then, multiply the last block by the block [G1(s)] because they are connected in series 

 

 

x(s) y(s) 

𝑮𝟏(𝒔) 

 

+ 

- 

𝑯𝟐(𝒔) 

 

+ 

𝑮𝟒(𝒔) 

 

- 

𝑮𝟒(𝒔) 

 

𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
 

 

𝑯𝟐(𝒔) 

 

𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
 

 

+ 

- 

𝑮𝟐(𝒔)𝑮𝟑(𝒔)
𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)

𝟏  
𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)
 𝑯𝟐(𝒔)

 

 

 
𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)
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It will be: 

 

 

 

The negative feedback of [G4(s)]  

 

 

 

 

Will be as follows: 

 

 

 

 

 

 

 

Consequently, multiply the final block by the block [G4(s)] which are a cascade blocks 

 

 

 

𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)
 

 

 

𝑮𝟏(𝒔) 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)
 

 

 

x(s) + 

- 

𝑮𝟒(𝒔) 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)
 

 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)

𝟏  
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)
 𝑮𝟒(𝒔)

 

 

 
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)  𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑮𝟒(𝒔)
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Will be reduced to be: 

 

 

 

This block is the final form of the studied process and the overall transfer function is:  

 ( )  
  ( )   ( )   ( )   ( )

    ( )  ( )  ( )    ( )  ( )  ( )    ( )  ( )  ( )  ( )
 

 

H.W. 8.1. Suggest another solution for the block diagram of Example 8.3 obtaining the 

same result of the overall transfer function. 

 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)  𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑮𝟒(𝒔)
 

 

 

𝑮𝟒(𝒔) 

 

𝑮𝟏(𝒔) 𝑮𝟐(𝒔) 𝑮𝟑(𝒔) 𝑮𝟒(𝒔)

𝟏  𝑮𝟑(𝒔)𝑮𝟒(𝒔)𝑯𝟏(𝒔)  𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑯𝟐(𝒔)  𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)𝑮𝟒(𝒔)
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Processes Control: 

Block diagram development  

Example 9.1. Reduce the following diagram and find the overall transfer function: 

 

 

 

 

 

 

Ans.: 

At first, move the take-off of the positive feedback of [H1(s)] to be after the block of 

[G3(s)] and divided the positive feedback of [H1(s)] by the block of [G3(s)]. Then 

multiply the cascade blocks of [G2(s) and G3(s)] to be one block.     

 

 

 

 

 

 

 

Now, move the summing point No. 3 ahead of the summing point No. 2 and simplify the 

cascade blocks of [G1(s)] and [G2(s)G3(s)] as follows: 

 

𝑯𝟏(𝒔) 

 
x(s) y(s) + 

- 

𝑯𝟐(𝒔) 

 

+ + 
𝑮𝟏(𝒔) 

 

𝑮𝟐(𝒔) 

 

𝑮𝟑(𝒔) 

 

- + 

1 2

1 

3

2

𝑯𝟏(𝒔)/𝑮𝟑(𝒔) 

 

 
x(s) y(s) + 

- 

𝑯𝟐(𝒔) 

 

+ + 
𝑮𝟏(𝒔) 

 

𝑮𝟐(𝒔)𝑮𝟑(𝒔) 

 

- + 

1 2

1 

3

2
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Simplify the following positive feedback 

 

 

 

It will be as follow: 

 

 

 

 

 

 

 

 

 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔) 

 

 

+ 

+ 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 −
𝑯𝟏(𝒔)
𝑮𝟑(𝒔)

[𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)]
 

 

𝑯𝟏(𝒔)/𝑮𝟑(𝒔) 

 
x(s) y(s) + 

- 

𝑯𝟐(𝒔)/𝑮𝟏(𝒔) 

 

+ + 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔) 

 

- 
+ 

1 3 2 

𝑯𝟏(𝒔)/𝑮𝟑(𝒔) 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔)
 

 

 
x(s) 

y(s) + 

- 

𝑯𝟐(𝒔)/𝑮𝟏(𝒔) 

 

+ 

- 
1 3 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔)
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The negative feedback could be reduced to be as follows: 

 

 

 

 

It will be after simplification as: 

 

 

 

 

 

The new form of the block diagram is 

  

 

 

 

The final form of this process after simplifying the unity-negative feedback is 

 

 

 

𝑯𝟐(𝒔)/𝑮𝟏(𝒔) 

 
- 

3 
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔)
 

 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔)

𝟏 +
𝑯𝟐(𝒔)
𝑮𝟏(𝒔)

 
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔)
 

 

 
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔) + 𝑯𝟐(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
 

 

 

x(s) y(s) + 

- + 

- 
1 

𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔) + 𝑯𝟐(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
 

 

x(s) y(s) 

+ 

- 𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔) + 𝑯𝟐(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 +
𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 − 𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔) + 𝑯𝟐(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
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The overall transfer function of this process will be: 

 ( )  
  ( )  ( )  ( )

 −   ( )  ( )  ( ) +   ( )  ( )  ( ) +   ( )  ( )  ( )
 

 

Example 9.2. Reduce the following diagram and find the overall transfer function. 

 

 

 

 

 

 

 

x(s) y(s) 

+ 

- 𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)

𝟏 −𝑯𝟏(𝒔)𝑮𝟏(𝒔)𝑮𝟐(𝒔) + 𝑯𝟐(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔) + 𝑮𝟏(𝒔)𝑮𝟐(𝒔)𝑮𝟑(𝒔)
 

 

 

𝒔 

 
x(s) y(s) + 

- 

𝟎. 𝟏 

 

- 

𝑲 

 

𝟏

𝒔 + 𝟏
 

 

+ 

1 2

1 
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Processes Control: 

Block diagram development  

Example 10.1. Two tanks are connected in series with recycle as shown in the following 

figure assuming that the flow rates entering the tanks are constants and are set such that 

accumulation occurs in neither tank. However, both T1 and T3 can vary, ultimately, 

leading to a change in the temperature of the fluid exiting the tank T4.  

 

 

 

 

 

When an energy balance is completed on each tank, the relations shown below are 

developed. Turn these equations into block diagram and use the diagram to find   
    

  

assuming that T3 is zero. 

  
  

  

     
  

  
  

     
  

                            

  
  

  

     
  

  
  

     
  

                             

Ans.: 

The block diagram of this process will be developed depending on the mathematical 

relations between the deviation values of the temperatures entire the two tanks and the 

individual first order effect of other temperature in each tank. The form of the block 

diagram will be as follows: 

 

T2 T4 

T2 

T3 
T4 

T4 T1 
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[

  

     
  

  
  

     
  

 ]  
  

     
  

      

According to the assumption give that T3 equals zero, so this equation will be as 

explained below: 

  
  

  

     
[

  

     
  

  
  

     
  

 ]     

  
  

  

     

  

     
  

  
  

     

  

     
  

  

  
 [  

  

     

  

     
]  

  

     

  

     
  

  

  
 

  
  

    

              

  
    

              

 

  
 

  
  

    

                   
 

 

𝑲𝟐

𝝉𝟏𝒔  𝟏
 

 

𝑻𝟏
  + 

+ 

+ 

𝑲𝟒

𝝉𝟐𝒔  𝟏
 

 

2 1 
𝑲𝟏

𝝉𝟏𝒔  𝟏
 

 

𝑲𝟑

𝝉𝟐𝒔  𝟏
 + 

𝑻𝟐
  

𝑻𝟑
  

𝑻𝟒
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Example 10.2. Simplify the block diagram shown below and obtain the overall closed-

loop function. 

 

 

 

 

 

Ans.: 

At first, move the summing point No. 2 ahead of the summing point No. 1 of the 

positive feedback of [H3(s)] as well as its take-off point by the blocks [G1(s)] and [G4(s)].  

 

 

 

 

 

Now , we have two negative feedback loops that could be reduced as explained below 

individually.  

 

 

 

 

𝑯𝟐 𝒔  

 
x(s) y(s) + 

- 

𝑯𝟑 𝒔  

 

+ 

+ 𝑮𝟏 𝒔  

 

𝑮𝟐 𝒔  

 

𝑮𝟑 𝒔  

 
- 

+ 

1 2

1 
3

2

𝑮𝟒 𝒔  

 

𝑯𝟏 𝒔  

𝑯𝟐 𝒔  

 
x(s) y(s) + 

- 

𝑯𝟑 𝒔 

𝑮𝟏 𝒔 𝑮𝟒 𝒔 
 

𝑮𝟏 𝒔  

] 

+ + 
𝑮𝟏 𝒔  

 

𝑮𝟐 𝒔  

 

𝑮𝟑 𝒔  

 
- 

+ 

1 2

1 
3

2

𝑮𝟒 𝒔  

 

𝑯𝟏 𝒔  

 

- 

+ 
𝑮𝟏 𝒔  

 

𝑮𝟐 𝒔  

 

1 

𝑯𝟏 𝒔  



Al-Muthanna University/ College of Engineering/ Chemical Engineering Department 

 

Processes Control                            Course 2; Lect.: 10                             Dr. Forat Yasir AlJaberi 

4 
 

Loop No. 1 

 

 

 

 

 

Loop No. 2 

 

 

 

 

 

 

 

 

 

 

 

The new form of the block diagram will be as follows: 

 

 

- 

+ 𝑮𝟏 𝒔 𝑮𝟐 𝒔  

 

1 

𝑯𝟏 𝒔  

𝑮𝟏 𝒔 𝑮𝟐 𝒔 

𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 
 

 

 

 

- 

+ 
𝑮𝟑 𝒔  

 

𝑮𝟒 𝒔  

 

3 

𝑯𝟐 𝒔  

 

- 

+ 𝑮𝟑 𝒔 𝑮𝟒 𝒔  

 

3 

𝑯𝟐 𝒔  

𝑮𝟑 𝒔 𝑮𝟒 𝒔 

𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 
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The cascade blocks should be reduced  

 

 

To be as follows: 

 

 

 

 

 

 

 

 

 

 

The final block diagram of the process will be 

 

x(s) y(s) + 

𝑯𝟑 𝒔 

𝑮𝟏 𝒔 𝑮𝟒 𝒔 
 

𝑮𝟏 𝒔  

] 

 

+ 

2

1 

𝑮𝟑 𝒔 𝑮𝟒 𝒔 

𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 
 

 

 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 

𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 
 

 

 

𝑮𝟑 𝒔 𝑮𝟒 𝒔 

𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 
 

 

 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 

𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 
 

 

 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 

[𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 ][𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 ]
 

 

 

x(s) y(s) + 

𝑯𝟑 𝒔 

𝑮𝟏 𝒔 𝑮𝟒 𝒔 
 

𝑮𝟏 𝒔  

]  

+ 

2

1 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 
[𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 ][𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 ]

𝟏  
𝑮𝟏 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 

[𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 ][𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 ]
×

𝑯𝟑 𝒔 
𝑮𝟏 𝒔 𝑮𝟒 𝒔 

 

 

y(s) x(s) 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 

[𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 ][𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 ]
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The overall transfer function of the closed-loop is 

    

 
                    

[                 ][                 ]                 
 

 

𝑮𝟏 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 

[𝟏  𝑯𝟏 𝒔 𝑮𝟏 𝒔 𝑮𝟐 𝒔 ][𝟏  𝑯𝟐 𝒔 𝑮𝟑 𝒔 𝑮𝟒 𝒔 ]  𝑯𝟑 𝒔 𝑮𝟐 𝒔 𝑮𝟑 𝒔 
 

 

 

y(s) x(s) 
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Processes Control: 

Signal flow graphs  

Signal flow graph is a graphical representation of algebraic equations. The basic 

concepts related signal flow graph and also learn how to draw signal flow graphs will be 

discussed. 

 

Basic elements of signal flow graph 

Nodes and branches are the basic elements of signal flow graph. 

 Node is a point which represents either a variable or a signal. There are three 

types of nodes which are the input node, output node and mixed node. 

 Branch: It is a direct line segment joining two nodes.  It has both gain and 

direction. The arrow on the branch refers to the direction of the signal flow. 

 Input Node − It is a node, which has only outgoing branches.  

 Output Node − It is a node, which has only incoming branches.  

 Mixed Node − It is a node, which has both incoming and outgoing branches. 

 Path: It is a traversal of branches from one node to any other node in the direction 

of branch arrows. It should not traverse any node more than once. 

 Forward Path: The path that exists from the input node to the output node is 

known as forward path. 

 Forward Path Gain: It is obtained by calculating the product of all branch gains 

of the forward path. 

 Loop: The path that starts from one node and ends at the same node is known as 

loop. Hence, it is a closed path. 

 Loop Gain: It is obtained by calculating the product of all branch gains of a loop. 

 Non-touching Loops: These are the loops, which should not have any common 

node. 
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Example 11.1. Explain the following signal flow graph. 

 

Ans.: 

 The nodes present in this signal flow graph are y1, y2, y3, and y4. 

 y1 and y4 are the input node and output node respectively.  

 y2 and y3 are mixed nodes. 

Let us construct a signal flow graph by considering the following algebraic equations  

 

There will be six nodes (y1, y2, y3, y4, y5 and y6) and eight branches in this signal flow 

graph. The gains of the branches are (a12, a23, a34, a45, a56, a42, a53 and a35). To get the 

overall signal flow graph, draw the signal flow graph for each equation, then combine all 

these signal flow graphs and then follow the steps given below: 

Step 1: Signal flow graph for (y2 = a12 y1 + a42 y4) is shown in the following figure: 
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Step 2: Signal flow graph for (y3 = a23 y1 + a53 y5) is shown in the following figure: 

 

Step 3: Signal flow graph for (y4 = a34 y3) is shown in the following figure: 

 

Step 4: Signal flow graph for (y5 = a45 y4 + a35 y3) is shown in the following figure: 

 

Step 5: Signal flow graph for (y6 = a56 y5) is shown in the following figure: 

 

Step 6: Signal flow graph of overall system is shown in the following figure: 
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Rules of signal flow graph 

There are several rules that could be used to find the overall transfer function using the 

technique of signal flow graph. They are as follows: 

1-  

 

 

 

 

2-  

 

 

 

 

 

 

 

3-  

 

 

 

 

 

4-  

 

 

 

 

 

y1 y2 

a 

y2 = a y1 

y1 

y2 

a 

y3 = a y1 + b y2 

b 

y3 

y1 y2 

a 

y2 = a y1 

b 

y3 

y3 

a b 

y1 

y3 = a y2 

y3 = (a b) y1 

y1 y2 

a 

y2 = (a + b) y1 

b 

اورجينال للحاسبات
Pencil
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5-  

 

 

 

 

 

 

 

 

 

 

 

 

6-  

 

 

 

 

 

 

 

 Mason's gain formula 

 
Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in 

a signal flow graph. The gain between the input and the output nodes of a signal flow 

graph is nothing but the transfer function of the system. It can be calculated by using 

Mason’s gain formula. Mason’s gain formula is: 

 

 

y1 

y2 

a 
y3 = a y1 + b y2 

b 

y3 

c 

y4 

y4 = c y3 

y1 

y2 

a c 

y4 = a c y1 + b c y2 

b c 

y4 

y1 y2 

y2 = a y1 

y3 

y3 = [b/(1-b c)] y2 

a b 

c 

y3 y1 

y3 = [a b/(1-b c)] y1 
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 ( )  
 ( )

 ( )
 
∑     
 
   

 
               (    ) 

  
Where, 

 

C(s) is the output node  

 

R(s) is the input node  

 

T(s) is the transfer function or gain between and  

 

Pi is the i 
th

forward path gain  

 

Δi is obtained from Δ by removing the loops which are touching the i 
th

 forward path. 

Consider the following signal flow graph in order to understand the basic terminology 

involved here.  

 

Path  
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Forward Path 

 

Forward Path Gain 

 

Loop 

 

Loop gain 

 

Non-touching Loops 

 

Let us consider the same signal flow graph for finding transfer function 
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Processes Control: 

Signal flow graphs  

Example 12.1. Find the overall transfer function from the following signal flow graph of 

a process. 

 

 

 

 

Ans.: 

Number of forward paths, N=1  

(P1: 12345) 

The Forward Path Gain: 

(P1= G1 G2) 

Number of individual loops, L=3 which are:  

(P11: 121) ; (P12: 1231) ; (P13: 454) 

Loop gains are: 

P11= - H1 

P12= - G1 H2 

P13= - H3 

Non-touching Loops are zero because all loops are touching the only forward-path. 

Gain product of first non-touching loops pair,  

-H1 

-H2 

G1 G2 

-H3 

R(s) C(s) 

1 2 3 4 5 
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P11 P13 = (- H1) (-H3) = H1 H3 

Gain product of second non-touching loops pair,  

P12 P13 = (- G1 H2) (-H3) = G1 H2 H3 

 

∆ = 1- (- H1 - G1 H2 - H3) + (H1 H3 + G1 H2 H3) 

∆ = 1+ H1 + G1 H2 + H3 + H1 H3 + G1 H2 H3 

There is no loop which is non-touching to the forward path. 

So, 

∆1 = 1- 0 = 1 

Substitute in Mason’s gain formula 

 ( )  
 ( )

 ( )
 
∑     
 
   

 
               (    ) 

 ( )  
 ( )

 ( )
 

(    )   

                        
 

So the overall transfer function of this process is: 

 ( )  
 ( )

 ( )
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Conversion of Block Diagrams into Signal Flow Graphs 

Follow these steps for converting a block diagram into its equivalent signal flow 

graph. 

 Represent all the signals, variables, summing points and take-off points of block 

diagram as nodes in signal flow graph.  

  Represent the blocks of block diagram as branches in signal flow graph.  

  Represent the transfer functions inside the blocks of block diagram as gains the 

of the branches in signal flow graph. 

  Connect the nodes as per the block diagram. If there is connection between two 

nodes (but there is no block in between), then represent the gain of the branch as 

one. For example, between summing points, between summing point and takeoff 

point, between input and summing point, between take-off point and output. 

Example 12.2. Convert the following block diagram into its equivalent signal flow graph 

then find the overall transfer function. 

 

 

 

Ans.: 

Follow the general steps to convert this block diagram into its equivalent signal flow 

graph, it will be as follows: 

 

 

 

Number of forward paths, N=1  

𝑮𝟐 

 

−𝟏 

 

R(s) C(s) 𝑮𝟏 

 

+ 

- 

-1 

G1 G2 
R(s) C(s) 

1 2 3 4 

اورجينال للحاسبات
Text Box
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(P1: 1234) 

The Forward Path Gain: 

(P1= G1 G2) 

Number of individual loops, L=1 which is:  

(P11: 232) 

Loop gain is: 

P11= - G1 

Non-touching Loops are zero because all loops are touching the only forward-path. 

Non-touching loop pairs are zero because there is only one loop. 

 

∆ = 1- (- G1)  

∆ = 1+ G1 

There is no loop which is non-touching to the forward path. So, 

∆1 = 1- 0 = 1 

Substitute in Mason’s gain formula 

 ( )  
 ( )

 ( )
 
∑     
 
   

 
 
(    )   
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So the overall transfer function of this process is: 

 ( )  
 ( )

 ( )
 
    
    

 

Example 12.3. Convert the following block diagram into its equivalent signal flow graph 

and find the overall transfer function. 

 

 

 

 

 

Ans.: 

Follow the general steps to convert this block diagram into its equivalent signal flow 

graph, it will be as follows:  

 

 

 

 

 

Ans.: 

Number of forward paths, N=2  

(P1: 123456) 

(P2: 12356) 

𝑮𝟐 

 

𝑯 

 

x(s) y(s) 𝑮𝟏 

 

+ 

- 

𝑮𝟑 

 
- 

+ 

G1 G2 
R(s) C(s) 

2 3 4 5 1 6 

-H 

-G3 
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The gain for first forward path is: 

(P1= G1 G2) 

The gain for second forward path is: 

(P2= - G3) 

Number of individual loops, L=1 which is:  

(P11: 2342) 

Loop gain is: 

P11= - G1 H 

Non-touching Loops are zero because all loops are touching the only forward-path. 

Non-touching loop pairs are zero because there is only one loop. 

 

∆ = 1- (- G1 H) 

∆ = 1+ G1 H 

There is no loop which is non-touching to the first forward path. So, 

∆1 = 1- 0 = 1 

Also, there is no loop which is non-touching to the second forward path. So, 

∆2 = 1- 0 = 1 
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Substitute in Mason’s gain formula 

 ( )  
 ( )

 ( )
 
∑     
 
   

 
               (    ) 

 ( )  
 ( )

 ( )
 
(    )    (−  )   

     
 

So the overall transfer function of this process is: 

 ( )  
 ( )

 ( )
 
    −   
     

 

H.W. 12.1. Convert the following block diagram into its equivalent signal flow graph and 

find the overall transfer function 

 

 

 

 

 

 

𝑮𝟐(𝒔) 

 

𝑯(𝒔) 

 

x(s) y(s) 𝑮𝟏(𝒔) 

 

+ 

- 

𝑮𝟑(𝒔) 

 

+ 

+ 
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Processes Control: 

Signal flow graphs  

Example 13.1. Find the overall transfer function from the following signal flow graph of 

a process. 

 

 

 

 

 

Ans.: 

Number of forward paths, N=2  

(P1: 12345678) 

(P2: 125678) 

The gain for first forward path is: 

(P1= G1 G2 G3 G4 G5 ) 

The gain for second forward path is: 

(P2= G4 G5 G6) 

Number of individual loops, L=3 which are:  

(P11: 343) ; (P12: 3453) ; (P13: 676) 

Loop gains are:  

P11= - G2 H1 

-H1 

-H2 

G1 G2 

-H3 

R(s) C(s) 
2 6 3 4 5 1 7 8 G3 G4 G5 

G6 
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P12= - G2 G3 H2 

P13= - G5 H3 

Gain product of first non-touching loops pair,  

P11 P13 = (- G2 H1) (- G5 H3) = G2 G5 H1 H3 

Gain product of second non-touching loops pair,  

P12 P13 = (- G2 G3 H2) (- G5 H3) = G2 G3 G5 H2 H3 

 

∆ = 1- (- G2 H1 - G2 G3 H2 - G5 H3) + (G2 G5 H1 H3 + G2 G3 G5 H2 H3) 

∆ = 1+ G2 H1 + G2 G3 H2 + G5 H3 + G2 G5 H1 H3 + G2 G3 G5 H2 H3 

There is no loop which is non-touching to the first forward path (P1). 

So, 

∆1 = 1- 0 = 1 

But, there is one loop non-touching to the second forward path (P2) which is the (P11). 

So, 

∆2 = 1- (- G2 H1)  = 1 + G2 H1 

Substitute in Mason’s gain formula 

 ( )  
 ( )

 ( )
 
∑     
 
   

 
               (    ) 
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 ( )  
 ( )

 ( )
 
         

 
 

 ( )  
 ( )

 ( )
 

                (        )(       )

                                           
 

So the overall transfer function of this process is: 

 ( )  
 ( )

 ( )
 

                                      

                                           
 

 

Example 13.2. Convert the following block diagram into its equivalent signal flow graph 

then find the overall transfer function. 

 

 

 

 

 

 

 

 

𝒔 

 
x(s) y(s) + 

- 

𝟎 𝟏 

 

- 

𝑲 

 

𝟏

𝒔  𝟏
 

 

+ 

1 2

1 
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Processes Control: 

Stability  

Most industrial processes are stable without feedback control. Thus, they are said to be 

open-loop stable, or self-regulating. An open-loop stable process will return to the 

original steady state after a transient disturbance occurs. By contrast, there are a few 

processes, such as exothermic chemical reactors, that can be open-loop unstable. These 

processes are extremely difficult to operate without feedback control. The stability 

criteria could be defined as an unconstrained linear system is said to be stable if the 

output response is bounded for all bounded inputs. Otherwise, it is said to be unstable. 

So, it could be recognized as an important consequence of feedback control is that it can 

cause oscillatory responses. If the oscillation has a small amplitude and damps out 

quickly, then the control system performance is generally considered to be satisfactory. 

However, under certain circumstances, the oscillations may be undamped or even have an 

amplitude that increases with time until a physical limit is reached, such as a control 

valve being fully open or completely shut. In these situations, the closed-loop system is 

said to be unstable, i.e. a system is said to be stable, if its output is under control. 

Otherwise, it is said to be unstable. 

 

Fig. 14.1. The response of first order control system for unit step input  
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For example, the response of first order control system for unit step input (Fig. 14.1), 

this response has the values between 0 and 1. So, it is bounded output. We know that the 

unit step signal has the value of one for all positive values of t including zero. So, it is 

bounded input. Therefore, the first order control system is stable since both the input and 

the output are bounded. Other figure (Fig. 14.2) shows the difference between the stable 

and unstable systems as follows 

 

 

 

 

 

Fig. 14.2. The difference between the stable and unstable systems  

Types of systems based on stability 

Systems could be classified into several types based on stability as follows. 

 Absolutely stable system 

 Conditionally stable system 

 Marginally stable system 

Absolutely stable system 

If the system is stable for all the range of system component values, then it is known 

as the absolutely stable system. The open loop control system is absolutely stable if all 

the poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, 

the closed loop control system is absolutely stable if all the poles of the closed loop 

transfer function present in the left half of the ‘s’ plane. 

X(t) X(t) 

t t 

S.S S.S 

t0 t0 

Stable system Un-stable system 



Al-Muthanna University/ College of Engineering/ Chemical Engineering Department 

 

Processes Control                            Course 2; Lect.: 14                Dr. Forat Yasir AlJaberi 

3 
 

Conditionally stable system 

If the system is stable for a certain range of system component values, then it is 

known as conditionally stable system. 

Marginally stable system or relatively stable system 

If the system is stable by producing an output signal with constant amplitude and 

constant frequency of oscillations for bounded input, then it is known as marginally 

stable system. The open loop control system is marginally stable if any two poles of the 

open loop transfer function is present on the imaginary axis. Similarly, the closed loop 

control system is marginally stable if any two poles of the closed loop transfer function 

is present on the imaginary axis. In other words, this type of system is a quantitative 

measure of how fast the transient vanish in the system. 

 

Characteristic equation 

The characteristic equation of a closed-loop system plays a decisive role in 

determining system stability. Consider a system having the following characteristic 

equation, i.e. the denominator of the overall transfer function: 

 ( )     
     

       
           

     
            (    ) 

The following conditions should be provided in the characteristic equation for the 

system to be expected as a stable system: 

 All powers of (s) must be presented in descending order or no missing term 

should be presented. 

 All the coefficients presented in the characteristic equation must have the same 

sign.  

Several methods have been performed to evaluate the stability of any system without 

requiring calculation of the roots of the characteristic equation. 

Routh-Hurwitz stability criterion 

This technique is applied to analyze the coefficients of the characteristic equation, we 

can determine whether the closed-loop system is stable. criterion. It can be applied only 
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to systems whose characteristic equations are polynomials in (s). It depends on 

converting the characteristic equation into an array called “Routh’s array”    

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient 

condition for stability. If any control system doesn’t satisfy the necessary condition, then 

we can say that the control system is unstable. But, if the control system satisfies the 

necessary condition, then it may or may not be stable. So, the sufficient condition is 

helpful for knowing whether the control system is stable or not. 

Necessary Condition for Routh-Hurwitz Stability 

The necessary condition is that the coefficients of the characteristic polynomial should 

be positive. This implies that all the roots of the characteristic equation should have 

negative real parts. Considering the characteristic equation presented in Eq.  14.1, there 

should not be any term missing in the n
th

 order characteristic equation. This means that 

the n
th

 order characteristic equation should not have any coefficient that is of zero value. 

It depends on converting the characteristic equation into an array called “Routh’s 

array”    

Sufficient Condition for Routh-Hurwitz Stability 

The sufficient condition is that all the elements of the first column of the Routh array 

should have the same sign. This means that all the elements of the first column of the 

Routh array should be either positive or negative. 

Routh Array Method 

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then 

the control system is stable. If at least one root of the characteristic equation exists to the 

right half of the ‘s’ plane, then the control system is unstable. So, we have to find the 

roots of the characteristic equation to know whether the control system is stable or 

unstable. But, it is difficult to find the roots of the characteristic equation as order 

increases. 

So, to overcome this problem there we have the Routh array method. In this method, 

there is no need to calculate the roots of the characteristic equation. First formulate the 

Routh table and find the number of the sign changes in the first column of the Routh 
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table. The number of sign changes in the first column of the Routh table gives the number 

of roots of characteristic equation that exist in the right half of the ‘s’ plane and the 

control system is unstable. Follow this procedure for forming the Routh array as the 

following table. 

 Fill the first two rows of the Routh array with the coefficients of the characteristic 

polynomial as mentioned in the table below. Start with the coefficient of s
n
 and 

continue up to the coefficient of s
0
. 

 Fill the remaining rows of the Routh array with the elements as mentioned in the 

table below. Continue this process till you get the first column element 

of row s
0
 is an. Here, an is the coefficient of s

0
in the characteristic polynomial. 

Note − If any row elements of the Routh table have some common factor, then you can 

divide the row elements with that factor for the simplification will be easy.  

The following table shows the Routh array of the n
th
 order characteristic polynomial. 
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Example 14.1. Evaluate the stability of the control system having characteristic equation, 

                  

Ans.: 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. All the 

coefficients of the characteristic polynomial are positive. So, the control system satisfies 

the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
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Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. All the elements 

of the first column of the Routh array are positive. There is no sign change in the first 

column of the Routh array. So, the control system is stable. 

H.W. 14.1. Check the stability of a system having the following characteristic equation. 
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Processes Control: 

Stability  

Special Cases of Routh Array 

We may come across two types of situations, while forming the Routh table. It is 

difficult to complete the Routh table from these two situations. 

The two special cases are: 

 The first element of any row of the Routh array is zero. 

  All the elements of any row of the Routh array are zero. 

Let us now discuss how to overcome the difficulty in these two cases, one by one. 

First Element of any row of the Routh array is zero 

If any row of the Routh array contains only the first element as zero and at least one of 

the remaining elements have non-zero value, then replace the first element with a small 

positive integer, ϵ. And then continue the process of completing the Routh table. Now, 

find the number of sign changes in the first column of the Routh table by 

substituting ϵ tends to zero. 

Example 15.1. Let us find the stability of the control system having characteristic 

equation, 

                 

Ans.: 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. All the 

coefficients of the characteristic polynomial,                are positive. So, 

the control system satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
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The row    elements have 2 as the common factor. So, all these elements are divided 

by 2. 

Special case (i) − Only the first element of row    is zero. So, replace it by ϵ and 

continue the process of completing the Routh table. 
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Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. As ϵ tends to 

zero, the Routh table becomes like this. 

 

There are two sign changes in the first column of Routh table. Hence, the control 

system is unstable. 

All the Elements of any row of the Routh array are zero 

In this case, follow these two steps: 

 Write the auxilary equation, A(s) of the row, which is just above the row of zeros. 

 Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros 

with these coefficients. 

Example 15.2. Let us find the stability of the control system having characteristic 

equation, 

                    

Ans.: 



Al-Muthanna University/ College of Engineering/ Chemical Engineering Department 

 

Processes Control                            Course 2; Lect.: 15                Dr. Forat Yasir AlJaberi 

4 
 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. All the 

coefficients of the given characteristic polynomial are positive. So, the control system 

satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 

 

The row    elements have the common factor of 3. So, all these elements are divided by 

3. 

Special case (ii) − All the elements of row    are zero. So, write the auxiliary equation, 

A(s) of the row   .  

 ( )          

Differentiate the above equation with respect to s. 

  ( )
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Place these coefficients in row   . 

 

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. There are two 

sign changes in the first column of Routh table. Hence, the control system is unstable. 

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles 

are in on left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary 

axis. So, we can’t find the nature of the control system. To overcome this limitation, there 

is a technique known as the root locus. We will discuss this technique later. 

Example 15.3. Determine KC for a stable system  
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Ans.: 

The characteristic equation is  
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Processes Control: 

Types of controllers 

In order to keep the response of any system at the desired value, the output of this 

response should be measured and compared with the desired value to estimate how far 

this value deviated from the desired value. The technique of the controller is to receive 

the error, analyze it, and convert it to actuating signal C(t) which will handle the control 

action. Basically, three types of controllers exits as follows: 

1- Proportional controller (P-only). 

Its actuating output is proportional to the error: 

 ( )         ( )                             (    ) 

Where, Cs is Bias signal, and Kc is the gain of the proportional controller. When the e(t) 

equals zero the actuating signal equals the steady state value. 

The P-only controller is described by the value of its proportional gain (Kc) or 

equivalently by its proportional band (PB): 

   
   

  
                               (    ) 

So,  

(  )       
  ( )

 ( )
                   (    ) 

The sensitivity of this controller to e(t) is directly proportional with the increase of the 

gain (Kc). 

An example, for error type change:  

 ( )         ( )   

  ( )      ( ) 

  ( )      
 

 
 

Taking Laplace invers 

  ( )     

 ( )        
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2- Proportional – Integral controller (PI). 

This controller is known also as “proportional-plus-reset controller”. Its actuating 

signal is related to the error by the following equation: 

 ( )         ( )  
  

  

∫ ( )                               (    ) 

Where,   is the integral time or reset time. 

  ( )      ( )  
  

  

∫ ( )                               (    ) 

(  )   
  ( )

 ( )
   (  

 

   
)                (    ) 

Note that: 

 The integral action eliminates the offset. 

 First-order system in addition to PI-controller obey as a second-order system. 

 The larger the value of Kc, the smaller the offset. 
 

3- Proportional – Integral – derivative controller (PID). 

Sometimes, it called as “Proportional-plus-reset-plus-rate controller”. Its actuating 

signal is related to the error by the following equation: 

 ( )         ( )  
  

  

∫ ( )       

  

  
                             (    ) 

Where,   is the derivative time or reset time. 

  ( )      ( )  
  

  

∫ ( )       

  

  
                             (    ) 

If the error is constant, the derivative action will be omitted. 

(  )    
  ( )

 ( )
   (  

 

   
    )                (    ) 
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The choice of controller parameters (Kc,      )depends basically on the nature of the 

process model. The adjustment of controller parameters to attain acceptable control 

action is called “controller tuning”. The Zieglar-Nichols tuning technique goes through 

the following steps: 

 Bring the system to the desired operational level, i.e. design condition. 

 Using P-only controller with feed-back closed loop, introduce sinusoidal change 

with low amplitude (
  

√      
) and varying frequencies until the system oscillates 

continuously. The frequency of continuous oscillation is the crossover frequency 

(   ). 

 Let (M) be the amplitude ratio (AR) where (AR=√     ); the ultimate gain 

(Ku=1/M), the ultimate period of sustained cycling (Pu=                    ). 

 Depending on the values of Ku and Pu, Zieglar-Nichols recommended the 

following setting for feedback controller: 

Type of controllers Kc    (   )    (   ) 

P-only Ku /2 --- --- 

PI Ku /2.2 Pu /1.2 --- 

PID Ku /1.7 Pu /2 Pu /8 

Example 17.1. A control system has been constructed to control a temperature value. The 

ultimate gain was (Ku=0.4) and the ultimate period of sustained oscillation was (Pu=2). 

Find the controller parameters for P, PI, and PID controllers using  Zieglar-Nichols 

method. 

Ans.: 

Type of 

controllers 

Kc    (   )    (   ) 

P-only Ku /2=0.4/2=0.2 --- --- 
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PI Ku /2.2=0.4/2.2=0.182 Pu /1.2=2/1.2=1.67 --- 

PID Ku /1.7=0.4/1.7=0.24 Pu /2=2/2=1 Pu /8=2/8=0.25 

Another type of controller is known as ON-Off controller. It is a simple inexpensive 

feedback controller that could be performed in heating systems, refrigerators , lab. 

Furnaces, etc. 

 ( )  {
                                                                      

                                                                        
 

Some examples of systems used this controller are as follows: 

 Digital computer:                     

 Current – based electronic controller:                        

 Pneumatic controller:                           

Note that: 

 If the gain (Kc) is very large for P-only controller, the control system behaves as ON-

Off controller. 

 The controllers P-only, PI, and PID are more efficient than the ON-off controller. 

Measuring devices (sensors) 

The effective operation of any feed-back control systems depends upon good 

measurement of the controller output and correct transmission of the controller. These 

sensors could be categorized as follows: 

 Flow sensors: These sensors are widely used in the industrial practice where they are 

measuring the pressure gradient developed across a constriction. By using Bernoulli 

equation, the flow rate could be computed. These sensors can be used for both gases 

and liquids. The orifice plate and Venturi  tube are typical examples of sensors based 
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on the above principle. Orifice plate is more popular due to its simplicity and low 

cost. The Venturi tube is more expensive but it is more accurate. 

 

 

 Pressure sensors: They are used to measure the pressure of a process or the pressure 

difference which is performed to manipulated a liquid level or a flow rate (orifice 

plate, Venturi tube). The available capacitance differential pressure transducer has 

become very popular.  

 

 Temperature sensors: The most common are thermocouples, resistance bulb 

thermometers, and thermistors. All provide the measurements in term of electrical 

signals. 
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 Composition analyzers: Typical examples of such sensors are gas-liquid 

chromatographs and various types of spectroscopic analyzers. They are used to 

measure the composition of liquids and gases in terms of one or two key components 

or in terms of all components presented in a process stream. 
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The following details conclude the most important measuring devices:  

Temperature: 

1- Thermocouple Resistance. 

2- Temperature detector (RTD). 

3- Filled-system thermometer. 

4-  Bimetal thermometer. 

5- Pyrometer (a. Total radiation ; b. Photoelectric; c. Ratio). 

Flow: 

1- Orifice. 

2- Venturi. 

3- Rotameter. 

4- Turbine. 

5- Vortex-shedding. 

Pressure: 

1- Liquid column. 

2-  Elastic element (a. Bourdon tube; b. Bellows; c. Diaphragm). 

3- Strain gauges. 

4- Piezoresistive transducers. 

Level: 

1- Float (a. Activated ; b. Chain gauge, lever; c. Magnetically coupled. 

2- Head devices (Bubble tube). 

3- Electrical (conductivity). 

Composition: 

1- Gas-liquid chromatography (GLC). 

2- Mass spectrometry (MS). 

3- Magnetic resonance analysis (MRA). 

4- Infrared (IR) spectroscopy. 

 

 

 


