Computer Applications <u>6-1</u> in Chemical Engineering

Solution of Equation of state Solving equation of state allows us to find the specific volume (molar volume) of gaseous mixture of chemicals at a specified temperature and pressure. Without using equation of state, it would be virtually impossible to design a chemical plant. The ideal gas equation of state relates the pressure, temperature, and the molar volume:

 $PV_m = RT$ where $V_m = \frac{V}{n}$

This equation is quite adequate when the pressure is low (e.g. 1 atm). To overcome this, many equation of state have been developed such as these listed below:

Van der Waals (vdw), 1873
$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$

Redlich-Kwong (RK), 1949
$$P = \frac{RT}{V_{m}-b} - \frac{a}{V_{m}(V_{m}+b)\sqrt{T}}$$

Soave (RKS), 1972

$$P = \frac{RT}{V_m - b} - \frac{a \alpha(T)}{V_m (V_m + b)}$$

Peng-Robinson (PR), 1976 $P = \frac{RT}{V_{m-b}} - \frac{a \alpha (T)}{V_m (V_m + b) + b (V_m - b)}$

where a and b are constants and & is a parameter depends on temperature.

Note that all the previous equations are non-linear equations in one unknown (Vm) if the temperature, pressure, and the equation parameters are given. The solution of such equations will be illustrated below.

Finding the zero of a function of one unknown

MATLAB uses the function $\frac{f_{zero}}{f_{zero}}$ to solve the following problem $f(\mathbf{x}) = o$ for \mathbf{x} starting from an initial guess. The function syntax is:

Note that you can check the result by saying: >> test (ans) step 4. 2 function name saved in step 2.

Pressure

Compressibility factor

where

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$
$$Z = \frac{V_m}{V_m - b} - \frac{a}{RTV_m}$$

$$a = \left(\sum_{i=1}^{n} x_i \sqrt{a_i}\right)^2 \qquad a_i = \frac{27(RT_{ci})^2}{64P_{ci}}$$

benent i
$$b = \sum_{i=1}^{n} x_i b_i \qquad b_i = \frac{RT_{ci}}{8P_{ci}}$$

total number of componen the mole fraction of compo $\mathbf{X}_{\mathbf{i}}$

n

6-3

Residual Enthalpy, Residual Entropy, and Fugacity Coefficient:

$$\frac{H_m^{res}}{RT} = \frac{b}{V_m - b} - \frac{2a}{RTV_m}$$
$$\frac{S_m^{res}}{R} = \ln\left[Z\left(1 - \frac{b}{V_m}\right)\right]$$
$$\ln\phi_i = \frac{b_i}{V_m - b} - \frac{2\sqrt{aa_i}}{RTV_m} - \ln\left[Z\left(1 - \frac{b}{V_m}\right)\right]$$

EX Find the molar volume for ammonia gas at 56atm and 450K Using the vander Waals equation of state, given: Tc= 405.5 K, Pc= 111.3 atm R=0.08206 Latm/molk (Hint: obtain an initial estimate from the ideal gas law)

MATLAB Session: >> clear >> global R T P Tc Pc >> R=0.08206;T=450;P=56; >> Tc=405.5;Pc=111.3; >> v guess=R*T/P v_guess = 0.6594 >> Vm=fzero('vdw1',v_guess) Vm =0.5749

function [f]=vdw1(v) global R T P Tc Pc a=27*(R*Tc)^2/(64*Pc); b=R*Tc/(8*Pc); $f=P-R*T/(v-b)+a/v^{2};$

EX Continue from the previous session and calculate the residual entropy for ammania gas at the same conditions.

<u>Continue from the previous session:</u> >> a=27*(R*Tc)^2/(64*Pc); >> b=R*Tc/(8*Pc); >> Z=Vm/(Vm-b)-a/(R*T*Vm); >> ResS=R*log(Z*(1-b/Vm))

ResS =

-0.0168

of Why you should determine the constants a and b again in this session in order to calculate the 5mes ??

write MATLAB code to compute the ΕX compressibility factor for a number of Pressure values (1-30 atm) at sook for n-butane given: Tc= 425.2K Pc= 37.5 atm R = 0.08206

The for loop The for loop is a loop that executes a block of statements a specified number of times. , step size for $index = \Box : \Box : \Box$ end value statements

6-5

Redlich-Kwong equation of state:

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m (V_m + b)\sqrt{T}}$$

$$a = \sum_{i=1}^n \sum_{j=1}^n x_i x_j (1 - k_{ij}) \sqrt{a_i a_j} \qquad a_i = 0.42748 \frac{R^2 T_{ci}^{2.5}}{P_{ci}}$$

$$b = \sum_{i=1}^n x_i b_i \qquad b_i = 0.08664 \frac{RT_{ci}}{P_{ci}}$$

6-6

 k_{ij} Binary interaction parameter (Note: K_{ij} =0)

Soave equation of state:

$$P = \frac{RT}{V_m - b} - \frac{a\alpha}{V_m(V_m + b)}$$

$$a\alpha = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} (1 - k_{ij}) \sqrt{(a_{i} \alpha_{i})(a_{j} \alpha_{j})} \qquad b = \sum_{i=1}^{n} x_{i} b_{i}$$

$$a_{i} = 0.42747 \frac{(RT_{ci})^{2}}{P_{ci}} \qquad b_{i} = 0.08664 \frac{RT_{ci}}{P_{ci}}$$

$$\alpha_{i} = \left[1 + n_{i} \left(1 - \sqrt{T_{ri}}\right)\right]^{2} \qquad n_{i} = 0.48508 + 1.55171\omega_{i} - 0.15613\omega_{i}^{2}$$

 ω_i Acentric factor

Peng-Robenson equation of state:

$$P = \frac{RT}{V_m - b} - \frac{a\alpha}{V_m(V_m + b) + b(V_m - b)}$$

$$a\alpha = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} (1 - k_{ij}) \sqrt{(a_{i}\alpha_{j})(a_{j}\alpha_{j})} \qquad b = \sum_{i=1}^{n} x_{i} b_{i}$$

$$a_{i} = 0.45724 \frac{(RT_{ci})^{2}}{P_{ci}} \qquad b_{i} = 0.07780 \frac{RT_{ci}}{P_{ci}}$$

$$\alpha_{i} = \left[1 + n_{i} \left(1 - \sqrt{T_{ri}}\right)\right]^{2} \qquad n_{i} = 0.37464 + 1.5422\omega_{i} - 0.26992\omega_{i}^{2}$$

Introduction	Input/Output	Functions	Exercises	Introduction	Input/Output	Functions	Exercises
oo	00000	○○○○ ○●○○○ ○○	0000	oo	00000		oooo
Local/Global	Variables			Local/Glob	al Variables		

Local Variables

A **local** variable is a variable which is defined in a function only. Indeed, this variable is not in the (base) workspace but in a specific workspace dedicated to the function. As a consequence, these variables cannot be used in other functions.

Global Variables

A **global** variable is a variable that is visible in some specified parts of a program and not restricted to a function only. It is important to note that a **global** variable has to be declared as **global** in the functions where it is used.

Example: Local Variable

```
function [ TheMax ] = MyMaxFunction2(Number1, Number2)
    tmp = -inf;
    if( Number1 > Number2 )
        tmp = Number1;
    else
        tmp = Number2;
    end
    TheMax = tmp;
end
```

・ ロ ト ・ 母 ト ・ 国 ト ・ 国 ・ の へ (や

oduction Input/Output 00000	Functions	Exercises 0000	Introduction oo	Input/Output	Functions ○○○○○○○○●○○	Exercises 0000
ocal/Global Variables			Local/Glob	al Variables		
Function with Global Variable	wMaxFunction3(Numb	per1)	First, decl	Global Variable are the variable Numberal Number2;	er2 as global:	
<pre>global Number2; if(Number1 > Number TheMax = Number else TheMax = Number end end</pre>	er2) c1;		Then, call » MyMax ans = 3	<pre>it a value: er2 = 0; the previous function: xFunction3(3) xFunction3(-1)</pre>		

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Introduction	Input/Output	Functions	Exercises	Introduction	Input/Output	Functions	Exercises
oo	00000	○○○○○○○●○	0000	oo	00000	○○○○○○○○○	0000
Inline Functions	3			Inline Func	tions: Example		

Definition

Inline functions are short functions which require simple implementation. Their implementation is done using the *inline* function whose syntax is as follows:

FunctionName = inline(expr, input)

where *FunctionName* is the name of the inline function, *expr* is a string corresponding the implementation and *input* is the input variable.

Example

In the following, we create the function $3sin(2x^2)$ called MyInlineFunction.

- » MyInlineFunction = inline('3*sin(2*x²)', 'x');
- » MyInlineFunction(90)
 ans =
 2.7888

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Introduction oo	Input/Output ooooo	Functions	Exercises ●o○○	Introduction oo	Input/Output 00000	Functions	Exercises o●○○
Exercise 3				Solution			

Exercise 3

We know that the roots of $ax^2 + bx + c = 0$ are

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Write a function providing these roots. What are the solutions if a = 1, b = 2, c = -3? if a = 1, b = 4, c = -21? if a = 9, b = 6, c = 1?

Solution to Exercise 3
<pre>function [Roots] = RootsOfSecondOrderEquation(a, b, c)</pre>
end The solutions are:
• $a = 1, b = 2, c = -3 \Longrightarrow x_1 = 1, x_2 = -3$
$a = 1, b = 4, c = -21 \Longrightarrow x_1 = 3, x_2 = -7$
$a = 9, b = 6, c = 1 \Longrightarrow x_1 = x_2 = -1/3$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

2. M-files:

An m-file is a text file where the MATLAB commands are written. When the file is run, MATLAB executes these commands sequentially exactly as they are typed at the command window. M-files are ended with the extension '.m' (e.g. chemical.m).

You create and edit the m-files or script files in one of the following ways:

- Click the **New Script**, **Creat new document and Open** button on the Home tab.
- Use the command:
 >> edit file_name

If file_name is unspecified, MATLAB opens a new file called Untitled. It is possible to run the commands in m-files in one of the following ways:

- Type the file name in command window and press Enter.
- Click the run button on the editor window.

3. Input and Output of data:

• You can use **input** command to enter single element, vector matrix or text as:

```
>> x= input('x= ')
x= 5
x =
5
>> x= input('x= ')
x= [5 1 7 5]
x =
5 1 7 5
>> x= input('x= ')
x= [2 7 8 10; 12 4 30 7];
```

```
x =
   2
       7
               10
           8
  12
       4 30
               7
>> x= input('x= ')
x= 'test'
x =
test
>> x= input('x= ', 's')
x= test
x =
test
```

You can use disp to display the data stored in x as:
 >> disp(x)

4. Functions files:

New functions can be added to MATLAB by using the function files as:

• **function** [out*var1*, out*var2*,...] = *filename* (*invar1*, *invar2*,...)

where both input and output arguments can be vectors.

Ex: create a new m-file is called : **fun_test** to calculate the y=x²+3x-5 for any given value of x

Solution:

Create a new m-file with the name fun_test and type the following code:

function y=fun_test(x) ;
y=x.^2+3*x-5

in command window:

>> a=1:5;

>> fun_test(a);

Ex: Define a function in a file named rect to calculate the area and circumference of the rectangle.

Solution:

Create a new m-file with the name rect and type the following code:

```
function [area, circumference]= rect(a, b)
area=a*b
circumference=(a+b)*2
```

in command window:

>> rect(10, 8);

area =

80

circumference =

36

MATLAB exercises

M-file:

Example:

a) Write a function that performs an ideal gas calculation, where the function is called as follows:

IdealGas(P,V,T,R), and returns the value of n, the number of moles.

function n = IdealGas(P,V,T,R) n = P*V/R/T;

b) Apply the function in the command window to calculate the number of moles that exist in a volume of 22.4 L, at a pressure of 1 atm, and at a temperature of 273 K.

>> IdealGas(1,22.4,273,0.082);

c) Write a script file IG_main.m that performs the ideal gas calculation to determine number of moles. The script should ask the user for each of the other four quantities.

```
R = input('Enter the universal gas constant: ');
P = input('Enter the gas pressure: ');
T = input('Enter the gas temperature :');
V = input('Enter the gas volume: ');
n = IdealGas(P,V,T,R);
disp('Moles of ideal gas =')
disp(n)
```

Example:

The quadratic equation provides the roots to the polynomial $ax^2 + bx - c = 0$ according to :

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Write a function called qe(a,b,c), that solves the quadratic equation and returns solutions. Use your function to solve for the roots of the equation $x^2 + 6x - 91 = 0$.

function [x1, x2] = qe(a,b,c) x1 = (-b + sqrt(b.^2 -4.*a.*c))/(2.*a); x2 = (-b - sqrt(b.^2 -4.*a.*c))/(2.*a);

>> [x1,x2]=qe(1,6,-91)

Example:

Function for calculating enthalpy depending on entering temperature, reference temperature and vector of specific heat equation constants.

function dH = deltaH_IG(Ti,Tf,Cp) dH = Cp(1)*(Tf-Ti)+Cp(2)*(Tf^2-Ti^2)/2+Cp(3)*(Tf^3-Ti^3)/3+Cp(4)*(Tf^4-Ti^4)/4;

Cp must be a vector of four values

Example:

Vapor Pressure for a given Temperature $\ln P = A - B/(T+C)$

Input: Antoine Constants (A,B,C), T

Output: Vapor Pressure

A, B, C constants of Antoine equation.

function vp = sat_pr_antoine(A, B, C, T)

vp = exp(A - B./(T+C));

Example:

Heat capacity of air in J/(mol K), where T is in K. The equation is valid only in the range 273 K < T < 1800 K the file is called as Cp = CpAir(T)

```
function Cp = CpAir(T)

if T < 273

disp('Temperature too low')

elseif T > 1800

disp('Temperature too high')

else

Cp = 28.09 + 0.1965e-2*T + 0.4799e-5*T^2 - 1.965e-9*T^3;
```

end

Modeling of Absorber Using HYSYS V9

The figure above shows a simple model containing the Absorber with inlet, and outlet streams using Aspen HYSYS V.9.

Example:

 CO_2 os absorbed into propylene carbonate in apcked column. The inlet gas stream is 20 mol% Co_2 and 80 mol% methane. The gas stream flows at a rate of 2 m³/s and the column operates at 60oC and 60.1 atm. The inlet solvent flow is 2000 kmol/h. Use Aspen HYSYS to determine the concentration of CO_2 in the exit gas stream, the column height (m) and the column diameter [1].

Solution:

- Starting HYSYS:
 - 1. Start menu.
 - 2. Type in the search field: Aspen HYSYS V9.
 - 3. Select open.

The above window will pop up once you start HYSYS. It is possible by the Aspen HYSYS start window to open previous cases or create a new window.

- Create a new case:
- 1. File menu
- 2. New \ case

- There are two main necessary information have to be given in the properties tab before starting the simulation:
 - 1. Property package : Sour PR
 - 2. Components: C1, CO₂, Propylene Carbonate
- 1. Properties
- 2. Component lists \ Add
- 3. Select: Pure components
- 4. Type in the serach field C1
- 5. Select C1 \setminus add
- 6. Repeat the steps (4,5) for CO₂ and Propylene Carbonate
- Add fluid package:
 - 1. Select Fluid package
 - 2. Click Add
 - 3. Select (Sour PR)

- Create new material stream:
 - 1. Select simulation.

- 2. Object palette.
- 3. Select the material stream icon.

Alternatively, you can add new material stream by pressing F11.

- 4. Double click on the added material stream
- 5. Give the below information:

Name	Solvent
Cond	itions
Temperature	60 ^o c
PRESSURE	60.1 atm
Molar flow	2000 kmol/h
Compo	osition
Propylene Carbonate	1

6. Repeat step 5 to add another stream and give the following information:

Name	Gas
Cond	itions
Temperature	60 ^о с
PRESSURE	60.1 atm
Molar flow	7200 m³/h
Comp	osition
C1	0.8
CO ₂	0.2

Worksheet	Attachme	nts Dynamics			
Works	heet	Stream Name	gas	Vapour Phase	
Conditio	ons	Vapour / Phase Fraction	1.0000	1.0000	
Properti	es	Temperature [C]	60.00	60.00	
Composition Pres Oil & Gas Feed Mol		Pressure [kPa]	6090	6090	
		Molar Flow [kgmole/h]	304.5	304.5	
		Mass Flow [kg/h]	6588	6588	
User Variables Std Ideal Liq Vol Flow [m3/h]			16.30	16.30)
Notes	19-20-0 C.A	Molar Enthalpy [kJ/kgmole]	-1.384e+005	-1.384e+005	
Cost Par	unicitaits	Molar Entropy [kJ/kgmole-C]	153.2	153.2	
Normali	zed Yields	Heat Flow [kJ/h]	-4.216e+007	-4.216e+007	
		Liq Vol Flow @Std Cond [m3/h]	7179	7179	
		Fluid Package	Basis-1		
		Utility Type			
	ete	OK Define from Stream	View Assay		

- Adding Absorber:
 - 1. Object palette.
 - 2. Select column\absorber
 - 3. Place the selected unit in the desired position.

You can add a new unit by pressing F12 and select the desired unit.

- 4. Double click on the absorber
- 5. In the Top Stage inlet, select Solvent
- 6. In the Bottom Stage inlet, select Gas
- In the Ovhd Vapour outlet field, type (vap_out). [a new material stream will be created and connected to the compressor]
- 8. In Bottom Liquid Outlet, type (Liq_out) [a new energy stream will be created and connected to the compressor].

Absorber Colum	nn Input Expert					10 <u>11</u> 54		×
Column Name	T-100							
Top Stage Inlet		L			Ovhd	Vapour Outlet	-	
solvent	•		Ì		vap	out	-	•
Optional Inlet Stream Stream <	Inlet Stage	2 # Stages n = 10		Optional Side Draws	© F	Stg. Reflux — iquid inlet Pump-around		
		n-1		Stream	Туре	Draw Stage		
Bottom Stage Inlet		> n)	<< Stream >>	Botto	ms Liquid Outle	et	
gas					Liq	out		•
Stage Numbering Top Down	Bottom Up							
< Prev	Next >			Connections (page 1 o	f 3)	Cance	el	

- Click (next)
 - 9. Set the top stage pressure to 60.1 atm.
 - 10. Set the Bottom stage pressure to 60.1 atm.

Absorber Column Input Expert				×
	Top Stage Pressure	->	-	
	6090 kPa			
\checkmark	Bottom Stage Pressure			
	6090 kPa			
		~		
< Prev Next >	Pressure Profile (page 2 of 3)	Cance		ail

• Click (next)

11. Set the temperature in the top stage pressure to 60.1 atm.

- 12. Set the temperature in the top stage pressure to 60.1 atm.
- 13. Click (Done).

Absorber Column Input Expert	;	×
	Optional Top Stage Temperature Estimate	
	60.00 C	
\downarrow	Optional Bottom Stage Temperature Estimate	
	60	
< Prev Done Side Ops >	Optional Estimates (page 3 of 3)	

- Convergence:
 - 1. Design \ connections.
 - 2. Click (Run).

esign Paramet	ers Side Ops I	nternals Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics			
Design Connections Monitor Specs Specs Summary Subcooling Notes	Column Name Top Stage Inlet solvent Optional Inlet St Stream	T-100 T-100	Su	10.0	g COL1		ional Side Dr	Ovhd Vapour vap_out	Outlet	•
	Stream << Stream Bottom Stage In gas CStage Number	>> let		Stages n = 10	6090 kPa ^O n 6090 kPa		Stream << Stream	Type	Draw Stage	
	Top Down	Bottom	Up					Bottoms Li	quid Outlet	•
Delete	Column	Environment	Run	Re	set	Cor	werged	V U:	odate Outlets	🖉 Igr

- Sections:
- 1. Internals
- 2. Click Auto Sections

- 3. In Internal type field, select packed
- 4. In the Tray Packing type field, select Raschig
- 5. In the packing vendor type, select Generic
- 6. In the packing material type, select Ceramic
- 7. In the packing dimension, select (0.25-IN OR 6-MM)

Rating	le Ops Internals Rating	Column De									Internals	nput Complete				
wer	1	Ado	I New	Auto Section	Duplicate	Impor	rt Template	Export Temp	late Vie	ew Internals Sun	nmary					
_		Section	Start Stage	End Stage	Mode	Internal Type	Tray/Packing Type	Number of Passes	Packing Vendor	Packing Material	Packing Dimension	Tray Spacing / Section Packe Height [m]	d Diameter [m]	Details		
	-	CS-1	1_Main Tower	5_Main Tower	Interactive Sizing				GENERIC	CERAMIC	0.25-IN OR 6-		0 1.600			
					meracuve sizing	Packed	RASCHIG		o Li veni e	ccounc				View	X	
-		Calcul Sump – Diamete	ate Pressure Dro	lead in Pressure Dr op Across Sump		Packed	RASCHIG							View		

- 8. Click View
- 9. Select Packed height per stage
- 10.Set the height to (0.5 m)
- 11.Click (Reset)
- 12.Click (Run)

S-1@Main Tower	@COL1: Geometry	1									
metry Results	Messages										
king Geometry ametry ign Parameters king Constants tes	Name CS-1 Internal Type Packing Specif			End Stage	5_Main Tower	Status Active	Mode	Interactive Sizing	© Rating		
	Packing Type	RASCHIG	-								
	Vendor	GENERIC		lection Diameter	1.600 m						
	Material	CERAMIC	•	Packing Factor (>0)	5250 m2/m3						
	Dimension	0.25-IN OR 6-M	м -								
	Section Packe	d Height		2.500 m							
	Packed Heigh	t per Stage (HETP)		0.5000 m							
		OK									

- Convergence:
- 1. Click Reset
- 2. Click Run
- Read the column height and diameter.
- Compositions:
- 1. Worksheet
- 2. Compositions
- 3. Read Co₂ compositions

関 Column: T-10	0 / COL1 Fluid Pkg: Basis-1 / Sour PR					-	- 0	×
Design Parame	eters Side Ops Internals Rating Wo	rksheet Performance Flowsheet Read	tions Dynamics					
Worksheet		solvent	gas	vap_out	Liq_out			
Conditions	Methane	0.0000	0.8000	0.9987	0.0684			
Properties	CO2	0.0000	0.2000	0.0013	0.0275			
Compositions PF Specs	C3=Carbonate	1.0000	0.0000	0.0001	0.9042			
								E
Delete	Column Environment	Run Reset		Converged		Update Outlets	Ignored	

- Save the case:
- 1. File menu
- 2. Select save as
- 3. Give the name (compressor)

References:

Separation Columns

Recovery of natural-gas liquids (NGL) from natural gas is quite common in natural gas processing. Recovery is usually done to:

- Produce transportable gas (free from heavier hydrocarbons which may condense in the pipeline).
- Meet a sales gas specification.
- Maximize liquid recovery (when liquid products are more valuable than gas).

HYSYS can model a wide range of different column configurations. In this simulation, an NGL Plant will be constructed, consisting of three columns:

- De-Methanizer (operated and modelled as a Reboiled Absorber column)
- De-Ethanizer (Distillation column)
- De-Propanizer (Distillation column)

Learning Outcomes: At the end of this chapter, the user will be able to:

- Add columns using the Input Experts.
- Add extra specifications to columns.

Prerequisites: Before beginning this chapter, the users need to know how to:

- Navigate the PFD
- Add Streams in the PFD or the Workbook
- Add and connect Unit Operations

12.10 Process Overview

Figure 12-1

12.10 Column Overviews

DC1: De-Methanizer

DC2: De-Ethanizer

Figure 12-3

DC3: De-Propanizer

Figure 12-4

12.10 Defining the Simulation Basis

- 1. Start a new case.
- Select the Peng Robinson EOS.
 Add the components: N₂, CO₂, C₁ C₈.
- 4. Enter the Simulation Environment.

12.4 **Adding the Feed Streams**

1. Add a Material Stream with the following data:

In this cell	Enter
Name	Feed1
Temperature	-95°C (-140°F)
Pressure	2275 kPa (330 psia)
Flowrate	1620 kgmole/h (3575 lbmole/hr)
Component	Mole Fraction
N ₂	0.0025
CO ₂	0.0048
C ₁	0.7041
C ₂	0.1921
C ₃	0.0706
i-C ₄	0.0112
n-C ₄	0.0085
i-C ₅	0.0036
n-C ₅	0.0020
C ₆	0.0003
C ₇	0.0002
C ₈	0.0001

2. Add another Material Stream with the following data:

In this cell	Enter
Name	Feed2
Temperature	-85°C (-120°F)
Pressure	2290 kPa (332 psia)
Flowrate	215 kgmole/h (475 lbmole/hr)
Component	Mole Fraction
N ₂	0.0057
CO ₂	0.0029
C ₁	0.7227
C ₂	0.1176
C ₃	0.0750
i-C ₄	0.0204
n-C ₄	0.0197
i-C ₅	0.0147
n-C ₅	0.0102
C ₆	0.0037
C ₇	0.0047
C ₈	0.0027

12.5 Adding De-Methanizer

The De-Methanizer is modelled as a reboiled absorber operation, with two feed streams and an energy stream feed, which represents a side heater on the column.

1. Add an **Energy** stream with the following values:

In this cell	Enter
Name	Ex Duty
Energy Flow	2.1e+06 kJ/h (2.0e+06 Btu/hr)

2. Double-click on the **Reboiled Absorber** icon on the Object Palette. The first Input Expert view appears.

3. Complete the view as shown below:

Implicit and the streams Implicit and the stream Implicit and the stream	1	O <u>v</u> hd Vapour DC1 Ovhd	general second		-	1	DC1	Column <u>N</u> ame
Feed2 2_Mair Ex Duty 4_Mair	Stg. Reflux .iquid inlet ^p ump-aroum	C Liqu	nal Side Draws	— 连 Option			ams —	ptional <u>I</u> nlet Stre
	Draw Stage		Stream Ty				2_Mair	Feed2
Stage Numbering DCI Reb Q DCI Btm	guid Outlet	Bottoms Liguid DC1 Btm	Bo	DC1 Reb Q		ıUp	A second seco	

Figure 12-5

- 4. Click the Next button to proceed to the next page.
- 5. Supply the following information to the Pressure Estimates page. If you are using field units, the values will be **330 psia** and **335 psia**, for the Top Stage Pressure and Reboiler Pressure, respectively.

Figure 12-6

- 6. Click the **Next** button to proceed to the next page.
- 7. Enter the temperature estimates shown below. In field units, the top stage temperature estimate will be **-125°F**, and the reboiler temperature estimate will be **80°F**.

Figure 12-7

- 8. Click the **Next** button to continue.
- 9. For this case, no information is supplied on the last page of the Input Expert, so click the **Done** button.

Figure 12-8

When you click the **Done** button, HYSYS will open the Column property view. Access the **Monitor** page on the **Design** tab.

Design	Optional Checks		Profile	Tempera	abure vs. Tra	y Position from	Тор
Connections	Input Summary	View Initial Estimates		9,000	\square		
Monitor Specs Specs Summary Subcooling	Iter Step Equ	uilibrium Heat / Spec	Image: Filler of the second secon	8,000 7,000 6,000 4,000 2,000 1,000 0 1	2 3 4	5 6 7	8 9 10
Notes	Specifications	Specified Value	Current Value	Wt. Error	Active	Estimate	Current
	Ovhd Prod Rate	<pre>concervalue <empty></empty></pre>	<pre>current value <empty></empty></pre>	<empty></empty>	Active		
	Dtms Prod Flate	<empty></empty>	<empty></empty>	<empty></empty>	Γ	1	
	Boilup Ratio	<empty></empty>	<empty></empty>	<empty></empty>			
	⊻iew	Add Spec <u>G</u> roup A	lictive Upg	jate Inactive	Degr	ees of Free	edom 0

Figure 12-9

Before you converge the column, make sure that the specifications are as shown above. You will have to enter the value for the Ovhd Prod Rate specification. The specified value is **1338** kgmole/h (2950 lbmole/hr). Once this value is entered, the column will start running and should converge.

SEPARATION COLUMNS

Design	Optional Checks		Profile	Tempera	ature us . Tray	Position from	тор
Connections	Input Summary	View Initial Estimates		20.00			+1
Monitor	Iter Step Equ	uilibrium Heat / Spec	C Temp	-20.00			
Specs	1 1.0000	0.046431 0.427867	C Press	-40.00			
		0.002999 0.005085	C Flows	-60.00			
Specs Summary		0.000279 0.002086 0.000016 0.000572		-80.00			
Subcooling		0.000018 0.000572	_	-100.0 I	2 3 4	5 6 7	8 9 10
	Btms Prod Rate Boilup Ratio	<pre>empty></pre>	497 1.90	<empty> <empty></empty></empty>		ম	
	Ovhd Prod Rate Btms Prod Rate Boilup Ratio	1338 kgmole/h J <empty> <empty></empty></empty>	1.34e+003 497 1.90	-0.0000 <empty> <empty></empty></empty>		ব ব	
		Add Spec	Active Upg	late Inactive	Degre	ees of Free	dom 0
	eters Side Ops Rating	Worksheet Performanc	e Flowsheet	Reactions [)ynamics		

Figure 12-10

What is the mole fraction of Methane in DC1 Ovhd?

Although the column is converged, it is not always practical to have flow rate specifications. These specifications can result in columns which cannot be converged or that produce product streams with undesirable properties if the column feed conditions change.

An alternative approach is to specify either component fractions or component recoveries for the column product streams.

1. Go to the Specs page on the Design tab of the Column property view.

Design	Column Specifications		Specification Details	1 7 A 1
Connections	Ovhd Prod Rate Btms Prod Rate	iew	Spec Name Ovhd Prod Rate	I ✓ Active ↓ Use As Estimate
Monitor	Boilup Ratio Add		Converged ?	'es 🔽 <u>C</u> urrent
Specs		Delete	Dry Fl	
Specs Summary			Spec Type	
Subcooling			Fixed/Ranged Spec	Fixed
Notes			Primary/Alternate Spec	Primary
	Update Specs from	Dunamics	Values	
		1 D'Yridinics	Specification Value	1338 kgmole/h
	Default Basis Molar	-	Current Calculated Value	1338 kgmole/h
	D (Freedom 0	Errors	
	Degrees of	Freedom Jo	Weighted Tolerance	1.000e-002
			Weighted Calculated Error	-3.294e-006
	Switch To Alterna	128	Absolute Tolerance	1.000 kgmole/h
	owitch To Alterna	ne apecs	Absolute Calculated Error	4.408e-003 kgmole/h
-				
Design Parame	eters Side Ops Rating W	orksheet Performar	nce Flowsheet Reactions Dyn	amics

Figure 12-11

- 2. Click the Add button in the Column Specifications group to create a new specification.
- 3. Select Column Component Fraction from the list that appears.

💐 Add Specs - DC1 (CO 🔀
Column Specification Types
Column Cold Properties Spec Column Component Flow Column Component Fraction Column Component Ratio Column Component Recovery Column Cut Point Column Draw Rate Column DT (Heater/Cooler) Spec Column Dt Spec Column Duty Ratio Column Duty Ratio Column Gap Cut Point Column Gap Cut Point Column Red Ratio Spec Column Reboil Ratio Spec Column Reflux Feed Ratio Spec Column Reflux Fraction Spec
Add Spec(s)

Figure 12-12

- 4. Click the Add Spec(s) button.
- 5. Complete the spec as shown in the following figure.

Name	C1 in Overhead
Stage	1Main TS
Flow Basis	Mole Fraction
Phase	Vapour
Spec Value	0.9600
Co <u>m</u> ponents:	Methane
	Component >>
Target Type	C Stream 💽 Stage
= Parameters	Summary Spec Type

Figure 12-13

6. When you are done, close the view.

The Monitor page of the Column property view shows 0 Degrees of Freedom even though you have just added another specification. This is due to the fact that the specification was added as an estimate, not as an active specification.

7. Go to the **Monitor** page. Deactivate the **Ovhd Prod Rate** as an active specification and activate the **Comp Fraction** specification which you created.

Design	Optional Checks		Profile	40.00 Tempera	emperature vs. Tray Position from Top		
Connections	Input Summary	View Initial Estimates		20.00			
Monitor	Iter Step Equi	librium Heat / Spec	🔤 💽 Temp	0.0000		+++	
Specs	1 1.0000 0	.042832 0.510286 .000185 0.007909	C Press	-20.00			
Specs Summary	3 1.0000 0	.000017 0.000898		-30.00			
Subcooling	4 1.0000 0	.000002 0.000252		-100.0	234	5 6 7	8 9 10
	Ovhd Prod Rate	1338 kgmole/h	1.35e+003	0.0090	Г		
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current
	Btms Prod Rate	1338 Kgmole/h <empty></empty>	1.35e+003 485	0.0090 <empty></empty>		<u>भ</u> घ	H
	Boilup Ratio	<empty></empty>	2.00	<empty></empty>	<u> </u>	v	
	C1 in Overhead	0.9600	0.960	0.0004	V	N N	ন
	View 4	Add Spec Group A	.ctive Upg	ate Inactive	Deau	ees of Free	dom 0

Figure 12-14

What is the flowrate of the overhead product, DC1 Ovhd?

Once the column has converged, you can view the results on the Performance tab.

Performance	Reflux Ratio	1.051	Flows	C Energy	Basis Molag	C Mass (⊂ Liq <u>V</u> ol
Summary	Reboil Ratio	1.997	, House a Efforde				
Column Profiles		Temperature	Pressure	Net Liquid	Net Vapour	Net Feed	Net Draws
Feeds/Products	2	[C]	[kPa]	[kgmole/h]	[kgmole/h]	[kgmole/h]	[kgmole/h]
	1_Main TS	-87.13	2275	1419.23		1620.0	1350.0
Plots	2_Main TS	-64.36	2279	1359.94	1149.24	215.00	
	3Main TS	-28.03	2283	1462.90	874.944		
	4_Main TS	-6.489	2287	1421.92	977.905		
	5_Main TS	1.060	2291	1491.54	936.924		
	6Main TS	3.944	2294	1520.51	1006.55		
	7_Main TS	5.193	2298	1531.30	1035.52		
	8Main TS	6.003	2302	1531.43	1046.31		
	9Main TS	7.160	2306	1515.60	1046.44		
	10Main TS	10.16	2310	1453.30	1030.61		
	Reboiler	20.01	2310		968.304		484.99
Design Parame	eters Side Ops	Rating Works	heet Performa	nce Flowshee	et Reactions	Dynamics	

Figure 12-15

12.6 Adding a Pump

The pump is used to move the De-Methanizer bottom product to the De-Ethanizer.

Install a pump and enter the following information:

In this cell	Enter
Connections	
Inlet	DC1 Btm
Outlet	DC2 Feed
Energy	Р-100-НР
Worksheet	
DC2 Feed Pressure	2790 kPa (405 psia)

12.7 De-Ethanizer

The De-Ethanizer column is modeled as a distillation column, with 16 stages, 14 trays in the column, plus the reboiler and condenser. It operates at a pressure of 2760 kPa (400 psia). The objective of this column is to produce a bottom product that has a ratio of ethane to propane of 0.01.

1. Double-click on the **Distillation Column** button on the Object Palette and enter the following information.

Distillation Column icon

In this cell	Enter		
Connections			
Name	DC2		
No. of Stages	14		
Feed Stream/Stage	DC2 Feed/6		
Condenser Type	Partial		
Overhead Vapour Product	DC2 Ovhd		
Overhead Liquid Product	DC2 Dist		
Bottom Product	DC2 Btm		
Reboiler Duty	DC2 Reb Q		
Condenser Duty	DC2 Cond Q		
Pressures			
Condenser	2725 kPa (395 psia)		
Condenser Delta P	35 kPa (5 psi)		
Reboiler	2792 kPa (405 psia)		
Temperature Estimates			
Condenser	-4°C (25°F)		
Reboiler	95°C (200°F)		
Specifications			
Overhead Vapour Rate	320 kgmole/h (700 lbmole/hr)		
Distillate Rate	0 kgmole/h		
Reflux Ratio	2.5 (Molar)		

2. Click the **Run** button to run the column.

What is the flowrate of C_2 *and* C_3 *in* DC2 *Btms?*

*C*₂_____, *C*₃_____, *Ratio of C*₂/*C*₃_____

- 3. On the Specs page, click the Add button to create a new specification.
- 4. Select **Column Component Ratio** as the specification type and provide the following information:

In this cell	Enter
Name	C2/C3
Stage	Reboiler
Flow Basis	Mole Fraction
Phase	Liquid
Spec Value	0.01
Numerator	Ethane
Denominator	Propane

5. On the **Monitor** tab, deactivate the **Ovhd Vap Rate** specification and activate the C_2/C_3 specification which you created.

What is the flowrate of DC2 Ovhd? _____

12.8 Adding a Valve

A valve is required to reduce the pressure of the stream DC2 Btm before it enters the final column, the De-Propanizer.

Add a Valve operation and provide the following information:

In this cell	Enter
Connections	
Feed Stream	DC2 Btm
Product Stream	DC3 Feed
Worksheet	
DC3 Feed Pressure	1690 kPa (245 psia)

12.9 De-Propanizer

The De-Propanizer column is represented by a distillation column consisting of 25 stages, 24 trays in the column plus the reboiler. (Note that a total condenser does not count as a stage). It operates at 1620 kPa (235 psia). There are two process objectives for this column. One is to produce an overhead product that contains no more than 1.50 mole percent of $i-C_4$ and $n-C_4$ and the second is that the concentration of propane in the bottom product should be less than 2.0 mole percent.

1. Add a distillation column and provide the following information:

In this cell	Enter		
Connections			
Name	DC3		
No. of Stages	24		
Feed Stream/Stage	DC3 Feed/11		
Condenser Type	Total		
Overhead Liquid Product	DC3 Dist		
Bottom Product	DC3 Btm		
Reboiler Duty	DC3 Reb Q		
Condenser Duty	DC3 Cond Q		
Pressures			
Condenser	1585 kPa (230 psia)		
Condenser Delta P	35 kPa (5 psi)		
Reboiler	1655 kPa 240 psia)		
Temperature Estimates			
Condenser	38°C (100°F)		
Reboiler	120°C (250°F)		
Specifications			
Distillate Rate	100 kgmole/h (240 lbmole/hr)		
Reflux Ratio	1.0 (Molar)		

2. Run the column.

What is the mole fraction of C_3 *in the overhead and bottoms products?*

_and _

3. Create two new Component Fraction specifications for the column.

Hamid, M. K. A. "Hysys: An introduction to chemical engineering simulation." Apostila de Hamid (2007).

In this cell	Enter
i-C4 and n-C4 in Distillate	
Name	iC4 and nC4
Stage	Condenser
Flow Basis	Mole Fraction
Phase	Liquid
Spec Value	0.015
Components	i-C4 and n-C4
C3 in Reboiler Liquid	
Name	C3
Stage	Reboiler
Flow Basis	Mole Fraction
Phase	Liquid
Spec Value	0.02
Component	C3

- 4. Deactivate the Distillate Rate and Reflux Ratio specifications.
- 5. Activate the iC_4 , and nC_4 , and C_3 specifications which you created.

12.10 Save Your Case

- 1. Go to the **File** menu.
- 2. Select Save As.
- 3. Give the HYSYS file the name Separation Columns then press the OK button.

Hamid, M. K. A. "Hysys: An introduction to chemical engineering simulation." Apostila de Hamid (2007).

MATLAB basics

1.3 Plotting Functions

- *<u>Plot(x,y)</u>*: draws a graph of y versus x.
- The labels can be added to the x-axes and y-axes:
 >> xlabel ('vertical')
 >> ylabel ('horizontal')
- Titles can be added to the plot as:
 >> title ('2D Plotting')

<u>Ex</u>: Draw a sinusoidal curve for the angle values ranging between 0 and 2π and add the title of "Sinusoidal curve plot using MATLAB" with a label of (sin(x)) on the y-axis and (Angle) on the x-axis.

<u>Sol:</u>

```
>> x=0:0.01:2*pi;
>> y=sin(x);
>> plot (x,y);
>> title('Sinusoidal curve plot using MATLAB');
>> xlabel ('Angle');
>> ylabel ('Sine (x)');
```


The text and notes for certain points on the curve or inside the figure are added at the given point as:

>> text(1, -0.5, '{Sinewave Example}') The sentence of "Sinewave example" will be located at (1,-0.5).

The axis limits of the graph can be optimized according to the expected maximum and minimum limits as:

```
>> axis([xmin xmax ymin ymax])
>> axis([0 7 -1 1])
```

The grid of the figure is turned on and off as:

```
>> grid off
>> grid on
```


More than one x-y vectors pairs giving multiple graphs can be combined in a single graph as:

>> plot(x,y1,x,y2,x,y3)

The legends are placed in order to identify each graphs as:

```
>> legend('y1', 'y2',' y3')
```

Ex: Draw the following functions for 200 points of t ranging between -5cos(30°) and 5cos(60°) :

- 1. A = |t| 10t + 30
- 2. $B = e^t + \ln(20)$
- 3. $C = t^3 + t^2 2$

Put the label (A,B,C) on the y-axis and (t vector) on the x-axis and a title of (figure with multiple curves). Add a legend to the figure to recognize them.

<u>Sol:</u>

```
>> t=linspace (-5*cos(30/180*pi), 5*cos(60/180*pi), 200);
```

- >> A=abs(t)-10*t+30;
- >> B=exp(t)+log(20);
- >> C=t.^3+t.^2-2;
- >> plot(t,A,t,B,t,C);
- >> grid on;

```
>> xlabel('t vector');
```

>> ylabel('A,B,C');

```
>> title ('Graph figure with multiple curves');
```

>> legend ('A', 'B', 'C');

The line color, line style and the marker type are customized by: >> plot(x,y,'color style marker')

Col	ors	Sty	yle	Marke	er type
C	cyan	-	Solid	+	
М	magenta		Dashed	О	
Y	yellow	:	Dotted	*	
R	red		Dash-dot	х	
G	green			S	square
В	blue			d	Diamond
W	white			^	Up
					triangle
К	black			v	Down
					triangle
				>	Right
					triangle
				<	Left
					triangle

Giving theses details are according to the following table

Ex: draw the following function:

$$y = e^{x^2} + \tan\left(0.15\pi\right)$$

For 20 values of x between 0 and 2 . Put the label (Y) on the y-axis and (x vector) on the x-axis and a title of (line customization). Make the curve line green and dotted with square marker type.

<u>Sol:</u>

>> x=linspace(0,2,20);
>> y=exp(x.^2)+tan(0.15*pi);
>> plot(x,y,'g:s')
>> grid on
>> title('line customization')
>> ylabel('Y')
>> xlabel('X vector')

It is possible to add more plots to an existing graph using (hold on) so that the new plot will be added to the current one. In order to recognize the new one, plot with different color any avoid using the default colors.

>> plot(x,y,'g:s') >> y=exp(x); >> hold on >> plot (x,y,'r+');

The figure window can be divided into an array of (m x n) of smaller size windows while every small window has one or more graph. Theses windows are addressed from 1 to the total number of windows in the array starting from the top left one and moving from left to right.

<u>Ex</u>: write the required MATLAB expressions to plot the figures shown below:

<u>Sol:</u>

>> x=-5:0.1:5; >> y1=x.^2; >> y2=sin(x); >> y3=cos(x); >> y4=tan(x); >> subplot(2,2,1); plot(x,y1); grid on; title('plot1') >> subplot(2,2,2); plot(x,y2); grid on; title('plot2') >> subplot(2,2,3); plot(x,y3); grid on; title('plot3') >> subplot(2,2,4); plot(x,y4); grid on; title('plot4')

<u>H.W:</u> Plot the following figure:

H.W: Write a MATLAB program to plot x1, x2, x3 functions shown in the figure (1) knowing that (t) is regularly spaced vector between (0 to 10 with 512 elements). When: x1=sin(t), x2=cos(t), x3=sin(t)*cos(t)

3D Plotting:

Figures with three dimensions are plotted in MATLAB using **plot3** function

Plot3 (x,y,z, LineSpec) Produce plots according to the given coordinates in 3-D space using the specified line style, marker and color. It is possible to plot multiple plots on the same figure using **Plot3 (x1, y1, z1, x2, y2, z2)**.

Ex: Draw a 3-D plot for 100 points between -5 and 5 for :

$$a = tsin(4t)$$
$$b = tcos(4t)$$

Use red line

<u>Sol:</u>

>> t=linspace(-5,5,100);

>> a=t.*sin(4*t);

>> b=t.*cos(4*t);

>> plot3 (a,b,t, 'r'); grid on

Ex: plot the following figure:

Sol:

>> t=-40:0.01:40;

>> a=sin(t);

>> b=cos(t);

>> plot3(t,a,b,'r--'); xlabel('t=-40:0.01:40'), ylabel('sin(t)'), zlabel('cos(t)'); grid on

H.w.: Plot the following figure

mesh(X,Y,Z): produce mesh plot as a 3-D surface. The plot is given by matrix z as heights of a grid in the x-y plane. The plot edges are colored according to the heights given by z.

Ex: Use meshgrid function to generate three matrices with the same size using the following limits and equations:

$$z = \frac{\cos(r)}{r}$$
$$r = \sqrt{(x^2 + y^2)}$$
$$[x, y] = -\pi: 0.2: \pi$$

Then plot them using mesh function.

Sol:

```
>> [x,y]=meshgrid (-pi:0.2:pi);
```

```
>> r=sqrt(x.^2+y.^2);
```

>> z=cos(r)./r;

>> mesh(x,y,z)

<u>Sol:</u>

- >> [a,b]=meshgrid(-10:0.2:10);
- >> c=a.^2+b.^2;
- >> mesh(a,b,c); xlabel('amin=-10, amax=10'); ylabel('bmin=-10, bmax=10');
 zlabel('c=a.^2+b.^2')

surf (x,y,z) : produce a 3-D plot as three dimensional surface. The plot is given by matrix z as heights of a grid in the x-y plane. The plot edges are colored according to the heights given by z.

Ex: Generate three matrices with the same size using the following limits and equations:

$$z = x^2 e^{(-x^2 - y^2)}$$

[x, y] = $-\pi$: 0.2: π

Then plot them using surf function.

Sol:

>> [x,y]=meshgrid(-pi:0.2:pi);

>> z=x.^2*exp((-x.^2-y.^2));

>> surf(x,y,z)

H.W: Plot the figure below:

Bar charts

Bar (x,y)

Ex: for x=0.1 0.2 0.3 0.4 ... 1 and y=4 8 2 1.5 7 5.3 1.2 0.9 4 4, draw bar chart.

Sol:

>> x=0.1:0.1:1;

>> y=[4 8 2 1.5 7 5.3 1.2 0.9 4 4];

>> bar (x,y); grid on

Contour line

A contour line of a function of two variables is a curve along which the function has a constant value. It is a cross-section of the three-dimensional graph. Two data sets x and y are needed. This is done by calling the meshgrid command.

Ex: For $-5 \le x \le 5$ and $-3 \le y \le 3$ with increment of 0.1 for both the values and

g=f(x,y)=x2+y2. Draw a contour line.

Sol:

>> [x,y] = meshgrid(-5:0.1:5,-3:0.1:3);

>> g = x.^2 + y.^2;

>> contour(x,y,g);

Loglog(x,y): produces a log-log of x vs y.

Semilogx(x,y): produces a semi-log of x vs y with logarithmic scale on x axis. Semilogy(x,y): produces a semi-log of x vs y with logarithmic scale on y axis.

Conditional statements

If Statement

The conditional statements are necessary to execute a series of MATLAB expressions with certain conditions.

if (condition) (MATLAB expression) End

The condition can be written using the MATLAB logic operations as follows:

Function	Description			
==	Equal			
<	Less than			
>	Greater than			
<=	Less than or equal			
>=	Greater than or equal			
~=	Not equal			
&	And			
	Or			
~	not			

The expression is executed only if the result of the logic operation is true.

This can be extended to have multiple conditions with multiple expressions as follows:

if (condition) (MATLAB expression) elseif (condition) (MATLAB expression) elseif (condition) (MATLAB expression)

. else (MATLAB expression) End

The above conditions will be checked in sequence with their related expressions.

Ex: >> a = 3; b = 5; >> if a<b j = -1

```
end
j= -1
<u>Ex:</u>
>> a =10;b = 10;
>> if a < b
j = -1
elseif a > b
j = 2
else
j = 3
end
j= 3
Ex:
>> x=10; y=7;
>> if x < 7 & y < 7
z = -x * y
elseif x == 7 | y == 7
z = 0
else
z=x^2
end
z = 0
```

Repetitive Statement

For loop statement

It is used to repeat a series of MATLAB expressions in a predetermined way. **For** statement generate a vector while MATLAB loop with each element in the vector.

For variable = expression statement end <u>Ex:</u> >> for j=1:4 v(j) = j;end >> V v = 1 2 3 4 Ex: >> for i=1:4 for j=1:4 $t(i,j) = i^*j;$ end end >> t t = 1 2 3 4 2 4 68 3 6 9 12 4 8 12 16

Ex: Find summation of even numbers between 0 and 1000

>> sum = 0; >> for i = 0 : 2 : 1000 sum = sum + i; end

>> sum

sum = 250500

While loop statement

It is used to repeat a series of MATLAB expressions in a conditional way. With whilestatement, MATLAB will repeat the statement as long as the given condition is met.

while condition statements end

<u>Ex:</u>

>> x=1; >> while x <10 x=x+1; end >> x x = 10

<u>Ex:</u>

```
>> x=10;
>> while x > 1
x = x/2;
end
>> x
x = 0.6250
```

<u>Ex:</u>

```
>> sum = 0;
>> x = 1;
>> while x < 4
sum = sum + 1/x;
x = x + 1;
end
>> sum
sum = 1.8333
```

Break statement

It is needed to limit the number of iterations or needed to avoid infinite loops. It is useful also to break the iterations with a certain condition.

Ex: >> n = 0; >> x=100 ; >> while x > 1 x = x/2; n=n+1; if n > 50 break end end >> x

x = 0.7813

Ex: Use loop in 20 iterations to calculate y in equation y=xsin(0.3x)? >> for x=1:20 y=x*sin(0.3*x) end

H.W: Write a MATLAB expressions to compute the sum of integers ranging from 1 to 5000.

<u>Ex</u>: Give an approximation value for π according to:

$$\pi \approx 4 \sum_{k=0}^{n} \frac{(-1)^k}{2k+1}$$

What is the error using 100/1000/10000 terms? Give a comparison with the value of **pi** which is given in MATLAB.

Sol:

```
>> summation=0;
>> for k=0:100
summation= summation+ 4* ((-1)^k)/(2*k+1);
end
>> error=summation-pi
```

error = 0.0099

H.W.: Try again with 1000/10000 terms.

<u>Ex</u>: What is the greatest result (Sum) less than 1000 that can be obtained from the following equation:

$$Sum = 1^2 + 2^2 + 3^2 + \dots + n^2$$

<u>Sol:</u>

```
>> n=1;
>> Sum(n)=0;
>> while Sum(n)<1000
Sum(n+1)=Sum(n)+n^1;
n=n+1;
end
>> Sum(n-1)
ans = 990
```

<u>Ex:</u> Build the following matrix using for loops and if statements in relationship between the positions of rows and columns: $1 \quad 0 \quad 0 \quad 0$

> 0 0 1

P.C.I.				A =	1 0 0	0 1 0	0 0 1
0					0	0	0
<u>Sol:</u>							
>> foi		4					
for j=′	1:4						
if i==j							
A(i,j)=	:1;						
else							
A(i,j)=	:0;						
end							
end							
end							
>> A							
A =							
7 - 1	0	0	0				
	0	0	0				
0	1	0	0				
0	0	1	0				
0	0	0	1				

<u>H.W</u>: Build the following matrices using for loops and if statements in relationship between the positions of rows and columns:

	2	3	4	5		$e^{1\pi}$	$e^{2\pi}$	$e^{3\pi}$	$e^{4\pi}$
Λ.	_3	4	5	6	B -	$e^{2\pi}$	$e^{4\pi}$	$e^{6\pi} e^{9\pi}$	$e^{8\pi}$
Α.	- 4	5	5 6	7	D-	$e^{3\pi}$	$e^{6\pi}$	$e^{9\pi}$	$e^{12\pi}$
	5	6	7	8		$e^{4\pi}$	$e^{8\pi}$	$e^{12\pi}$	$e^{16\pi}$

Computer Applications in Chemical Engineering 9-1

Flash Vaporization A flash Vaporization unit is probably one of the most important a pplication in chemical engineering thermodynamics. A flash process is one in which a fluid stream of Known overall composition and flow rate passes through a throttle, turbine or compressor and into a vessel (flash drum) where liquid and vapor phase are separated before passing through the outlet streams. such process may be operated under many different sets of conditions including the following: I. Constant temperature and pressure (iso thermal flash). 2. Constant entholpy and pressure (iso thermal flash). 3. Constant entropy and pressure (isonthalpic flash).

If the vaporizer is designed so that there is enough contact time for transfer of mass and heat between liquid and vapor, then a condition of equilibrium is reached, and the distribution of each component is given by its equilibrium constant (K). The equilibrium value of K for the jth component is defined by:

$$K_{j} = \frac{\chi_{2j}}{\chi_{3j}}$$

Thus, K is the ratio of the mole fraction in the vapor to the mole fraction in the liquid. In general, the value of K depends on the temperature, pressure, and product composition. Isothermal flash constant Tand P)

In this process, the feed, at temperature T and Pressure P, passes through a throttle and enters the flash vessel, where liquid and vapor phases may separate. The operating pressure P of the unit is controlled some way and heat is supplied or removed at rate Q through a heat exchanger so as to maintain isothermal conditions at temperature T. The molar flow rate Fi of the feed to the unit is specified, together with the overall composition (mole fractions X_{ij}) and the temperature and pressure at which the unit operates. The objectives of the calculation is to determine the compositions (X₂) and X_{3j}) and the molar flow rates (Fz and F3) of the vapor and liquid streams leaving the unit.

Applying material balance over the unit gives:

$$\chi_{ij}F_1 = \chi_{2j}F_2 + \chi_{3j}F_3 \quad j=1,2,...,N_c$$
 (1)
Equation (1) may be rearranged:

$$\chi_{2j} = \frac{\chi_{ij}F_i - \chi_{3j}F_3}{F_2}$$
 ---- (2)

or
$$\chi_{3j} = \frac{\chi_{ij}F_i - \chi_{2j}F_2}{F_3}$$
 ---- (3)

Recall that:
$$\chi_{2j} = K_j \chi_{3j}$$
(4)

9-2

9-3

where
$$\alpha$$
 is defined by: $\alpha = \frac{F_3}{F_2}$ ----(11)

Equation (10) is called the flash equation and it contains one unknown (x). Once x is known, F_2 and F_3 are calculated by combining eq. (11) with the overall material balance equation ($F_1 = F_2 + F_3$), thus:

$$F_{2} = \frac{F_{1}}{1 + \alpha} - ---(12)$$

$$F_{3} = F_{1} - F_{2} - ---(13)$$

Then, equations (6) and (8) yield all the unknown compositions of the liquid and vapor streams.

<u>Ex</u> Calculate the vapor and liquid flow rates and stream compositions that exit from a flash vessel at equilibrium et 150°F and 50 Psia. Given:

Component	No.	Mole fraction	k value (150°F and 50 psia)
C ₂	1	0.0079	16.2
C_3	2	0.1321	5.2
i-C4	3	0.0849	2.6
n-C ₄	4	0.269	1.98
i-C ₅	5	0.0589	0.91
n-C ₅	6	0.1321	0.72
C_6	7	0.3151	0.28

Script file (myfile.m) % Isothermal Flash Calculations function f=flashtp(alpha) Number of components global x k % NC f=sum(x(1,:).*(1-k)./(alpha+k));Vap-liq equilibrium constant % k(j) % x(i,j) Mole fraction of component j in stream i clear global x k Nc=7;f(1) = 100;x=zeros(3,Nc);x(1,:)=[0.0079 0.1321 0.0849 0.269 0.0589 0.1321 0.3151]; k=[16.2 5.2 2.6 1.98 0.91 0.72 0.28];alpha_guess=0.5; alpha=fzero('flashtp',alpha_guess); f(2)=f(1)/(1+alpha); f(3) = f(1) - f(2);x(2,:) = (f(1)/f(2)) * (k.*x(1,:)./(k+f(3)/f(2)));x(3,:) = (f(1)/f(2)) * (x(1,:)./(f(3)/f(2)+k));% Displaying results fprintf('Value of alpha is equal to : $f \n\n', alpha$) output=[[1:3]' f' x]; disp (output) MATLAB Session: >> mvfile Value of alpha is equal to : 0.821687 0.3151 0.1321 0.0589 0.2690 0.0079 0.1321 0.0849 1.0000 100.0000 0.1459 0.0564 0.1124 0.1175 0.3463 0.2078 2.0000 54.8942 0.0137 0.5210 0.1561 0.0620 0.1749 0.0452 0.0400 45.1058 0.0008 3.0000

Note The disp function dispary the value of a variable without displaying its name.

Results using CHEMCAD simulation software

Flash Vaporization Unit

CHEMCAD 5.2.0

Page 1

Job Name: flashtp Date: 01/26/2008 Time: 19:53:54

Stream No.	1	2	3
Stream Name			
Temp F	150.0000*	150.0000	150.0000
Pres psia	50.0000*	50.0000	50.0000
Enth MMBtu/h	-6.3303	-3.1628	-3.1674
Vapor mole fraction	0.57260	1.0000	0.0000
Total lbmol/h	100.0000	57.2604	42.7396
Total lb/h	6756.7393	3534.7007	3222.0381
Total std L ft3/hr	177.0828	95.9329	81.1499
Total std V scfh	37947.86	21729.11	16218.75
Component mole fractio	ons		
Ethane	0.007900	0.013118	0.000909
Propane	0.132100	0.202302	0.038047
I-Butane	0.084900	0.115052	0.044504
N-Butane	0.269000	0.340223	0.173578
I-Pentane	0.058900	0.057046	0.061384
N-Pentane	0.132100	0.115863	0.153854
N-Hexane	0.315100	0.156396	0.527724

Home work

For the above example, perform a degree of freedom analysis to find the number of design variables.

 $\frac{Answer}{N_{v} = 31}$ $N_{e} = 17$ $N_{d} = 14$

Computer Applications in Chemical Engineering

10-1

Bubble and dew point calculations:

Mixtures do not have boiling points because the temperature of liquid and vapor rises during vaporization at constant pressure. Instead of boiling point, each mixture is charcterized by its bubble point and dew point. Bubble and dew points, like boiling point, depend on pressure. Liquid mixtures form their first bubble of vapor when the temperature is raised to the bubble point. Vapor mixtures form their first drop of liquid when temperature is lowered to the dew point. At intermediate temperatures above the bubble Point and below the dew point, liquid and vapor phases cocxist in equilibrium.

At equilibrium, the temperature and pressure are equal in both phases, liquid and vapor. Mole fraction constraints are:

$$\sum_{j=1}^{N_c} y_j = 1 \quad (j = 1, 2, ..., N_c) \quad --- (1)$$

$$\sum_{j=1}^{N_c} \mathcal{X}_j = 1 \quad (j = 1, 2, ..., N_c) \quad ...(2)$$

where x refers to liquid and y refers to vapor. For nonideal liquid mixture under atmospheric or lower pressure, the following equation applies:

$$P_{y_{i}} = P_{j}^{*} Y_{j} z_{j}$$
(3)

where P is the total pressure, P; is the vapor pressure of cach component and it is a function of temperature only,

$$\frac{10-2}{5}$$
 is the activity coefficient in the liquid phase mixture,
which is a function of temperature and liquid
composition. For ideal solutions, 8 is equal to 1.
Introducing K-values,
 $K_j = \frac{y_j}{x_j}$ --- (4)
where $K_j = \frac{P_j^* s_j}{p}$ ---- (5)

.

$$f(T) = \sum_{j=1}^{N_c} K_j z_j - 1 = 0 \qquad --- (6)$$

$$f(T) = \sum_{j=1}^{N_{e}} \frac{Y_{j}}{K_{j}} - 1 = 0$$
 --- (7)

$$\frac{EZ}{\log P^* = A - \frac{B}{C+T}} \begin{bmatrix} Calculate the bubble and dew point for sol. Benzeneand sol. Toluene mixture under atmosphericpressure knowing that the solution is ideal. (Usethe given composition as liquid composition for bubblepoint calculation and as vapor composition fordew point calculations).$$

1211.033

1343.943

BZ : 6.90565

Tol : 6.95334

<u>220.79</u> 219.377 $\frac{T_b(\mathcal{C})}{80.1}$

10-3

MATLAB script file (myfile.m) % Bubble and dew point calculations for ideal solution % under atmospheric pressure. liquid phase mole fractions 8 x function f=bubble1(T) vapor phase mole fractions 8 У qlobal A B C x P % A,B,C Antoine equation parameters pstar=10.^(A-B./(C+T)); pure component boiling point (deg C) % Tb K=pstar/P; 8 P Total pressure (mmHg) f=sum(K.*x)-1;clear global x y A B C P function f=dew1(T) A=[6.90565 6.95334]; global y A B C P B=[1211.033 1343.943]; pstar=10.^(A-B./(C+T)); C=[220.79 219.377]; K=pstar/P; Tb=[80.1 110.62]; f=sum(y./K)-1;P = 760;% Bubble point calculations starts here **x**=[0.5 0.5]; T guess=sum(x.*Tb); T bubble=fzero('bubble1',T_guess); fprintf('Mixture bubble point is: %f deg C n',T bubble) % Dew point calculations starts here y=[0.5 0.5]; T guess=sum(y.*Tb); T dew=fzero('dew1',T guess); fprintf('Mixture dew point is: %f deg C n',T_dew)

MATLAB Session: >> myfile Mixture bubble point is: 92.111799 deg C Mixture dew point is: 98.772842 deg C

EX Calculate the bubble and dew point temperature for the following substances under atmospheric pressure. Note that z's represent liquid composition for bubble point calculations and vapor composition for dew point calculations. Component properties are:

Component	No.	Mole fraction, z _j	Tb (°K)	T_C (°K)	$P_C(atm)$
Neopentane	1	0.35	282.65	433.8	31.6
Carbon tetrachloride	2	0.1	349.85	556.4	45.0
Cyclohexane	3	0.1	353.85	553	40.0
Benzene	4	0.1	353.25	562	48.6
Ethylbenzene	5	0.35	409.35	619.6	38.0

Vapor pressure should be calculated from the Rieddl correlation:

 $\log P_{j}^{*} = \log P_{cj} = 0.1183 \phi_{j} + 7 \log T_{rj} - (x_{j} - 7) \psi_{j}$

where:

$$\varphi_{j} = \frac{36}{Tr_{j}} + 42 \ln Tr_{j} - 35 - Tr_{j}^{6}$$

$$\varphi_{j} = 0.0364 \varphi_{j} - \log Tr_{j}$$

The coefficient &; is the Riedel Factor, values for these dremicals are:

Component	α_j
Neopentane	6.771
Carbon tetrachloride	6.742
Cyclohexane	6.844
Benzene	6.848
Ethylbenzene	7.330

liquid phase activity coefficients should be calculated from:

The following experimental data have been measured for the various pairs in the fire component mixture:

Liquid pair	A_{jk}	B_{ik} (°K)
1-2	0.018	149
1-3	0	88
1-4	0	274
1-5	0	274
2-3	-0.125	71
2-4	-0.045	53
2-5	-0.045	53
3-4	-0.797	394
3-5	-0.797	394
4-5	0	0

Fix and Bix are constants different for each binary liquid pair. Cjk which is the binary coefficient depends on tenperature should be calculated from:

$$C_{jk} = A_{jk} + \frac{B_{jk}}{T}$$

10-4

```
MATLAB script file:
% Bubble and dew point calculations for non-ideal solution
% Tb
        boiling point temp (deg K)
% TC
        critical temp (deg K)
% Pc
        critical pressure (atm)
                                                                 function f=bubble2(T)
% alpha Riedel correlation factor
                                                                 global x P
8 х
        mole fractions in liquid phase
                                                                 k=pstar(T).*gamma(T)/P;
8 у
        mole fractions in vapor phase
                                                                 f=sum(k.*x)-1;
% Nc
        Number of components
% A,B binary interaction constants
γС
        binary coefficient
8 P
        total pressure
                                                                 function f=dew2(T)
clear
                                                                 global y P
global z A B Nc Pc Tc P alpha
                                                                 k=pstar(T).*gamma(T)/P;
Nc=5:
                                                                 f=sum(y./k)-1;
z = [0.35 \ 0.1 \ 0.1 \ 0.1 \ 0.35];
Tb=[282.65 349.85 353.85 353.25 409.35];
Tc=[433.8 556.4 553 562 619.6];
Pc=[31.6 45 40 48.6 38];
alpha=[6.771 6.742 6.844 6.848 7.33];
A=zeros(Nc,Nc);
B=zeros(Nc,Nc);
A(1,2)=0.018; A(2,3)=-0.125; A(2,4)=-0.045; A(2,5)=-0.045; A(3,4)=-0.797; A(3,5)=-
0.797;
B(1,2:5) = [149 \ 88 \ 274 \ 274]; B(2,3:5) = [71 \ 53 \ 53]; B(3,4:5) = [394 \ 394];
P=1;
T_guess=sum(z.*Tb);
x=z;
T bubble=fzero('bubble2',T guess);
fprintf('Bubble point is: %f deg K \n', T bubble)
y=z;
T dew=fzero('dew2',T guess);
fprintf('Dew point is: %f deg K \n',T dew)
```

MATLAB Session:

>> myfile Bubble point is: 303.895993 deg K Dew point is: 381.877751 deg K

```
function f=gamma(T)
global x A B Nc
C=A+B/T; v=0;
for j=1:Nc
    sum1=0;
    sum2=0;
    for k=1:Nc
        if j~=k
             sum1=sum1+C(j,k) * x(k) * (1-x(j));
        end
    end
    for m=1:Nc
        for n=1:Nc
             if (j~=m & j~=n & n>m)
                 sum2=sum2+C(m,n) * x(m) * x(n);
             end
        end
    end
    g(j)=exp(sum1-sum2);
end
f=g;
```

```
function f=pstar(T)
global Tc Pc alpha
Tr=T./Tc;
phi=36./Tr+42*log(Tr)-35-Tr.^6;
psi=0.0364*phi-log10(Tr);
f=10.^(log10(Pc)-0.1183*phi+7*log10(Tr)...
-(alpha-7).*psi);
```

10-5

MATLAB relational operators

These are operators with two numerical or string operands that yield either a true (1) or fake (0) result depending on the relationship between the two operand. The following symbols are used for MATLAR relational operators:

operator	operation (logical test)
= =	is equal to
$\sim =$	is not equal to
>	is greater than
>=	is greater or equal to
<	is less than
2=	is less or equal to

MATLAB logical operators: There are operators with one or two logical operands that yield a logical result. The following symbols are used for MATLAB logical operators. operator operation & logical AND logical OR logical Exclusive OR XOR logical NOT \sim

Computer Applications in Chemical Engineering

Adiabatic flame temperature

The temperature that results from a combustion process that occurs adiabatically with no work or change in Kinetic or potential energy involved is commonly referred to as the adiabatic flame temperature. Because of the assumptions of no work and no changes in Kinetic or potential energy, this is the maximum temperature that can be achieved for the given reactants.

EX Prepare a computer program that computes the flame temperature for complete combustion in air of the hydrocarbon CkHe according to the reaction: $C_{k}H_{l}+\left[k+\frac{l}{4}\right]O_{2} \rightarrow kCO_{2}+\frac{l}{2}H_{2}O$ Assume that the fuel and Or are fed to the flame chamber in stoichiometric ratio at room temperature and atmospheric pressure. Use the program to compute the adiabatic flame temperature of Hz, CHy, CzHz, CzHy, and CzHz.

solution

JQ/JT

<u>||_ |</u>

1. Material balance equations:

(a) For reacting species,
C:
$$KF_1 = F_3 Z_{33}$$
 --- (1)

H:
$$\lambda F_{1} = 2F_{3} \varkappa_{34}$$
 ---(2)

(b) Inerts,
$$(2\chi_{22} = F_3 (2\chi_{33} + \chi_{34}))$$
 ---(3)

$$J_2: F_2 X_{25} = F_3 X_{35} --- (4)$$

$$x_{33} + x_{34} + x_{35} = 1$$
 --- (5)

3. Energy balance equation:

$$F_1h_1 + F_2h_2 - F_3h_3 - \frac{dQ}{dT} = 0$$
 --- (6)

$$h_{1} = h_{1}(T_{1}, P_{1}) \qquad --- (7)$$

$$h_{2} = h_{2}(T_{2}, P_{2}, 2C_{22}) \qquad --- (8)$$

$$h_{3} = h_{2}(T_{2}, P_{3}, 2C_{32}, X_{33}) \qquad --- (9)$$

$$n_3 = n_3(1_3, r_3, x_{33}, x_{34})$$
 ----(1)

The material balance portion of the problem can be
solved separately, solving eq(1) to eq(5) gives:
$$\chi_{33} = \frac{K}{B} \qquad \chi_{35} = \frac{\sum(1 - \chi_{22})/\chi_{22} \sum[K + L/4]}{B}$$
$$\chi_{34} = \frac{L}{2B} \qquad F_3 = BF_1$$

$$F_2 = \frac{F_1}{\chi_{22}} \left(\varkappa + \frac{\ell}{4} \right)$$

where $\beta = \kappa + \frac{l}{2} + \left(\frac{l - \chi_{12}}{\chi_{22}}\right) \left(\kappa + \frac{l}{4}\right)$

=
$$K + \frac{l}{2} + 3.76 \left(K + \frac{l}{4} \right)$$

Notice that B have three terms in the expression for
number of moles of CO_2 , H_1O , and W_2 respectively.

For a reference temperature To = 25°C = 298.15°K at 1 atm,

No

11-2

$$h_{2} = \sum x_{2j} \Delta h_{j}^{f} + \int_{T_{0}}^{T_{2}} \overline{\zeta}_{p_{2}} dT$$

$$= 0 \qquad T_{0}$$

$$h_{3} = \sum x_{3j} \Delta h_{j}^{f} + \int_{T_{0}}^{T_{3}} \overline{\zeta}_{p_{3}} dT$$
Note that h_{3} can be calculated from eq (6).

$$\sum \sum x_{3j} \Delta h_{j}^{f} + \int_{T_{0}}^{T_{3}} \overline{\zeta}_{p_{3}} dT - h_{3} = 0 \qquad ---(10)$$

where

$$\overline{C}_{P_3} = \sum_{j=3}^{N_c} \pi_{sj} (a_j + b_j T + c_j T^2 + d_j T^{-1/2})$$

 $= \overline{a_j} + \overline{b_3} T + \overline{c_3} T^2 + \overline{d_3} T^{-1/2} - --(11)$

Molal average coefficients (ā, b, c, and d,) are calculated from colfficients for the pure gaser given below:

Component	a_j	$b_j \times 10^2$	Cj X 10 ⁵	d_j
O ₂	6.732	0.1505	-0.01791	0
CO_2	18.036	-0.004474	0	-158.08
H_2O	6.970	0.3464	-0.04833	0
N_2	6.529	0.1488	-0.02271	0

The heat of formation for CO2 and HiO and some other hydrocarbons are listed below:

Component	Δh_f (cal/mol)
CO ₂	-94050
H_2O	-57800
C_2H_2	54194
C_3H_8	-24820

% for C(k)H(l) hydrocarbon fuel assuming complete combusion 8 % NC Number of components ક્ર х component mole fractions 8 F Flow rates <u>ዓ</u> ፐ Temperature % Ρ Pressure % h Enthalpy % hf Heat of formation No. of carbon element in hydrocarbon 8 k No. of hydrogen element in hydrocarbon 8 1 % dq Heat lost during the combustion process clear global a3 b3 c3 d3 T0 h hf x Nc x(1,1)=1; x(2,2)=0.21; x(2,5)=1-x(2,2);T0=298.15;T(1)=T0;T(2)=T0; P(1:3) = 1; Nc = 5;F(1)=100;dq=0; k=input('No. of carbon element in hydrocarbon (k): '); l=input('No. of hydrogen element in hydrocarbon (l):'); beta=k+1/2+((1-x(2,2))/x(2,2))*(k+1/4);x(3,3)=k/beta; $x(3,4) = 1/(2 \pm 2);$ x(3,5) = (((1-x(2,2))/x(2,2))*(k+1/4))/beta;F(3) = beta * F(1);F(2) = F(1) * (k+1/4) / x (2,2);hf(1)=input('Enter heat of formation for fuel: '); hf(2:Nc) = [0 -94050 -57800 0];a=[18.036 6.97 6.529]; b=[-0.004474 0.3464 0.1488]*1e-2; function f=flame1(T) c=[0 -0.04833 -0.02271]*1e-5; global a3 b3 c3 d3 T0 h hf x Nc d=[-158.08 0 0]; $f=a3*(T-T0)+b3*(T^2-T0^2)/2+c3*(T^3-T0^3)/3...$ a3=sum(x(3,3:Nc).*a);+2*d3*(T^0.5-T0^0.5)... b3=sum(x(3,3:Nc).*b);+sum(x(3,3:Nc).*hf(3:Nc))-h(3);c3=sum(x(3,3:Nc).*c);d3=sum(x(3,3:Nc).*d);h(1)=hf(1); h(2)=0;h(3) = (h(1) *F(1) + h(2) *F(2) - dq) /F(3);T guess=(h(3) - sum(x(3, 3:Nc).*hf(3:Nc)))/a3+T0;T(3)=fzero('flame1',T_guess); % Displaying results disp(' St. No. F т Ρ h х 1) disp(' _____ _____ _____ _____ _____ output=[[1:3] ' F' T' P' h' x]; disp (output) MATLAB Session: >> myfile No. of carbon element in hydrocarbon (k): 0 No. of hydrogen element in hydrocarbon (1):2 Enter heat of formation for fuel: 0 St No F т Ρ h -------------------1 0 100 1 0 0 0 0 298.15 1 0.79 2 238.1 0 0 0.21 0 0 298.15 1 3 ٥ ٥ 0.34711 0.65289 288.1 2529.2 0 n >> myfile No. of carbon element in hydrocarbon (k): 2 No. of hydrogen element in hydrocarbon (1):2 Enter heat of formation for fuel: 54194 St. No. F Ρ h т х 54194 1 0 0 0 0 100 298.15 1 1 0.79 2 1190.5 298.15 1 0 0.21 0 0 0 4368.8 0.080614 0.75816 0 0.16123 3 1240.5 2903.8 1 0

Script file (myfile.m)

% Calculation of the adiabatic flame temperature

Calculation of adiabatic flame temperature of C₂H₂ using CHEMCAD simulation software

۲

4

Stream No.	1	2	3	4		
Stream Name						
Temp K	298.1500*	298.1500*	298.1080	2895.5973		
Pres atm	1.0000*	1.0000*	1.0000	1.0000		
Enth cal/hr	2.4560E+009	-8.6415E+005	2.4552E+009	2.4552E+009		
Vapor mole fraction	1.0000	1.0000	1.0000	1.0000		
Total lbmol/hr	100.0000	1190.4760	1290.4760	1240.4760		
Total lb/hr	2603.8000	34346.2422	36950.0430	36950.0000		
Total std L ft3/hr	67.8302	636.0056	703.8358	721.7128		
Total std V scfh	35903.22	427419.19	463322.41	445370.78		
Component mole fractions						
Acetylene	1.000000	0.00000	0.077491	0.00000		
Oxygen	0.00000	0.210000	0.193727	0.00000		
Carbon Dioxide	0.00000	0.00000	0.00000	0.161228		
Water	0.00000	0.00000	0.00000	0.080614		
Nitrogen	0.00000	0.790000	0.728782	0.758157		

AShebanee

1. MATLAB Basics:

1.1 Introduction: MATLAB is a High performance language used mainly for engineering and science applications. It can achieve efficiently many technical computations like:

- Integration
- Solving the differential equations
- Solving the algebric equations
- Data representing and visualization
- Statistics
- Curve fitting

Moreover, MATLAB is widely used as a computational tool in a range of applications including: Mersity Dur

- Signal processing and Communications
- Image and video processing
- Control systems
- Test and measurements
- **Computational finance** •

1.2 Starting MATLAB: you can start MATLAB by double-clicking on the MATLAB shortcut icon (MATLAB 7.0.4) on your Windows desktop. Once you start MATLAB, the MATLAB desktop window appears. This window that contains other windows can be listed as (see Fig1.1):

- Command window
- Command History
- Workspace
- Help •
- Current directory

1.3 Quitting MATLAB: Type "quit" in the command window or select File: Exit MATLAB

2

<u>1.4 Commonly used Operators:</u>

Operator	Description
+	Addition
-	Subtraction
*	Scalar and matrix multiplication
•*	Array multiplication
^	Scalar and matrix exponentiation
.^	Array exponentiation
/	division
./	Array division
:	generates uniformly spaced elements
()	Encloses functions arguments and array indices
[]	enclosures acray elements
•	Decimal point
	Cine-continuation
,	Separates elements in a row
;	Separates columns

Name	Description
ans	Last answer
i, j 📈	Imaginary unit
Inf	Infinity
Nan	Not a number
Pi	π

MATLAB

1.5 Functions:

Trigonometric

Function	Description		
sin (x)	Sine of (x) in radian		
cos (x)	Cosine of (x) in radian		
tan (x)	Tangent of (x) in radian		
asin (x)	Inverse sine , result is an angle in radian		
acos (x)	Inverse cosine , result is an angle in radian		
atan (x)	Inverse tangent, result is an angle in radian		
exp (x)	e ^x		
log (x)	ln (x)		
log10 (x)	Log ₁₀ (x)		
sqrt (x)	Square root		
abs (x)	Absolute value		
sign (x)	Signal of x		
max (x)	Maximum value		
min (x)	Minimum value		
ceil (x)	Round towards +∞		
floor (x)	N Round towards -∞		
round (x)	Round to nearest integer		
rem (x)	Reminder after division		
angle (x)	Phase angle		
conj (x)	Complex conjugate		

conj (x)	Complex conjugate
Logic operator	
Function	Description
	Equal
SC/	Less than
	Greater than
<	Less than or equal
>=	Greater than or equal
	Not equal
&	And
	Or
~	not

1.6 Vectors

Vectors is a one-dimensional array of elements so that they can be row vectors or column vectors:

V=[3 12 8 -5] (row vector), or V=[3; 12; 8; -5] (column vector)

The elements of any vector can be addressed as:

- V(i) where i is the position of the targeted element.
- V(2:4) giving the elements of positions: second to fourth.

1.6.1 Vectors operations

Given that:

A=[7, 11, 5, 8, 12], B=[4, 10, 3, 6, 13]

Run: A+B , A-B , A*5 , B' , [A,B] , |B| , [A(1)² A(2)² A(2)³]

1.7 Matrix:

Matrix is a two-dimensional array of elements.

	1	2	5	12
m=	8	7	3	16
	11	4	6	20
	15	0	9	21

The elements of the matrix is addressed as:

- 1-Shebanee m (i,k) where i and k are the positions of the row and column respectively
 m (:, 2) giving the second column;
- m (:, 2) giving the second column:
- •
- m (:,2:4) giving the columns second to fourth; Meritik = 02 5 12 7 3 16 4 6 20) 9 2'
- m (2:3, 3:4) giving a part of the matrix containing the rows: second to third, and columns: • third to fourth:
 - 3 16 6 20

1.7.1 Matrix processing:

It is possible to delete a row or column of a matrix as:

Delete the fourth row

System of linear equations

For the following systems of linear equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

Can be solved in MATLAB by expressing them in matrices forms as a first step as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$a * x = b$$
$$a * x = b$$
$$a_{12} = \begin{bmatrix} a_{13} \\ a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$a * x = b$$

where :

Matlab-Engine

$$a = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad . \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} \quad . \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Once these matrices are given in workspace, x_1 , x_2 and x_3 can be calculated as:

$$x = inv(a) * b$$

Ex: Solve the following linear equations by using MATLAB expression:

$$x_1 + x_2 + x_3 = 3$$

$$2x_1 - x_2 - 2x_3 = 6$$

$$4x_1 + 2x_2 + 3x_3 = 7$$

Solution:

>> a=[1 1 1; 2 -1 -2; 4 2 3]; b= [3; 6; 7];

>> x=inv(a)*b

x =

2.0000

4.0000

-3.0000

<u>H.W-1</u>: Solve the following system of linear equations:

stem of linear equations:

$$x_1 + x_2 + 2 x_3 = 8$$

 $-1x_1 - 2x_2 + 3x_3 = 1$
 $3x_1 - 7x_2 + 4x_3 = 10$
stem of linear equations:

H.W-2: Solve the following system of linear equations:

$$6x_1 - 2x_2 + x_3 = 11$$

$$x_1 + 2x_2 - 5x_3 = -1$$

$$-2x_1 + 7x_2 + 2x_3 = 5$$

Solution:

Substituting , R_1 , R_2 , R_3 and R_4 as well as T_i and T_o in a and b respectively as: >> a=[0.036 1 0 0; 4.01 -1 1 0; 0.408 0 -1 1; 0.038 0 0 -1]; b= [20; 0; 0; 10]; >> x=inv(a)*b x =

6.6785

19.7596

-7.0214

-9.7462

Water Heiner Heiner Heiner Hinterin Dutter Hinterin Dutter Hinteringen Hinteringen