Structural Engineering

Structures III / 3rd year of Architecture Engineering Department/ College of Engineering/Al-Muthanna University

Syllabus

Structures III / Year 3 / First Semester

Week No.	Subject
1+2	Introduction about the structures, types of applied forces and load distribution on structural members
3+4+5	Determinant and indeterminate structures
7+6	Introduction about concrete design and stress-strain curves for concrete and steel
8+9+10+11	Analysis and design of the reinforced concrete beams under flexural loading
12+13+14	Design of the reinforced concrete beams under shear

Recommended Text Books

Recommended Text Books

For Steel Structures LOAD & RESISTANCE FACTOR DESIGN Volume I Structural Members. Specifications, & Codes Volume II Connections Second Edition

Design Process in Structural Engineering

- Select material for construction.
- Determine appropriate structural system for a particular case.
- Determine forces acting on a structure.
- Calculate size of members and connections to avoid failure (collapse) or excessive deformation.

STRUCTURES

- **Structures** = Things with a definite size and shape, which serve a definite purpose or function.
- To perform its function, every part of the structure must resist **forces** (stresses such as pushes or pulls) that could change its shape or size.
- The structure must also be able to support a **load**.
- **Load** = The weight carried or supported by a structure.

TYPES OF STRUCTURES

• Natural Structures: Structures not made by people.

• Examples: feathers, sand dunes...

- Manufactured Structures: Structures that have been built by people.
- Examples: buildings, bridges, umbrellas, airplane

CLASSIFYING STRUCTURES BY DESIGN...

• **Design** = How a structure is put together, how it is shaped and the materials used in the structure.

1) Mass Structure

A mass structure can be made by piling up or forming similar materials into a particular shape or design.

Examples:

MASS STRUCTURES...

Natural Mass Structures

Manufactured Mass Structures

TYPES OF STRUCTURES - CONTINUED...

2) Frame Structures

Frame structures have a skeleton made from very strong materials, which supports the weight of the roof and covering materials.

- Some frame structures are simple and consist only of a frame. Examples: ladders, spider webs...
- Some frame structures are more complex with added parts. Examples: bicycles, umbrellas...

FRAME STRUCTURES...

TYPES OF STRUCTURES - CONTINUED...

• Shell Structures

Shell Structures are objects that use a thin, carefully shaped outer layer of material to

Examples of Typical Structures

Forces Acting in Structures

- Forces induced by gravity
 - Dead Loads (permanent): self-weight of structure and attachments
 - Live Loads (transient): moving loads (e.g. occupants, vehicles)
- Forces induced by wind
- Forces induced by earthquakes
- Forces induced by rain/snow
- Fluid pressures
- Others

Forces Acting in Structures

Vertical: Gravity

Lateral: Wind, Earthquake

Global Stability

Sliding

Overturning

Forces in Structural Elements

Forces in Structural Elements (cont.)

Typical Structural Systems (1)

Typical Structural Systems (2)

Forces in Truss Members

Typical Structural Systems (3)

Frame

Typical Structural Systems (4)

Flat Plate

Typical Structural Systems (5)

Folded Plate

Mechanism of Load Transfer between elements of structure

A typical building frame

Types of Supports

pin support

Pin support

(5)

Pin support

pin-connected joint

Pin support

Smooth pin

Spherical Sliding Bearing

Smooth pin

Smooth hinge

Smooth hinge

Roller support

Smooth hinge

Roller support

fixed-connected joint

Fixed support

only beam reinforcement shown

Fixed support

Fixed support

Fixed support

Examples of gusset plates.

The application of loads to a structure causes the structure to deform. Due to the deformation, various forces are produced in the components that rise the structure. **Calculating the magnitude of these forces, and the deformations that caused them is referred to as** <u>Structural Analysis.</u>

<u>Structural design</u>: includes the arrangement and proportioning of structures and their parts so they will satisfactorily support the loads to which they may be subjected.