## Reinforced Concrete Design

## Notation:

$a \quad=$ depth of the effective compression block in a concrete beam
$A \quad=$ name for area
$A_{g}=$ gross area, equal to the total area ignoring any reinforcement
$A_{s} \quad=$ area of steel reinforcement in concrete beam design
$A_{s}^{\prime} \quad=$ area of steel compression
reinforcement in concrete beam design
$A_{s t}=$ area of steel reinforcement in concrete column design
$A_{v} \quad=$ area of concrete shear stirrup reinforcement
$A C I=$ American Concrete Institute
$b$ = width, often cross-sectional
$b_{E} \quad=$ effective width of the flange of a concrete T beam cross section
$b_{f} \quad=$ width of the flange
$b_{w} \quad=$ width of the stem (web) of a concrete T beam cross section
$c \quad=$ distance from the top to the neutral axis of a concrete beam (see $x$ )
$c c \quad=$ shorthand for clear cover
$C \quad=$ name for centroid
= name for a compression force
$C_{c}=$ compressive force in the compression steel in a doubly reinforced concrete beam
$C_{s} \quad=$ compressive force in the concrete of a doubly reinforced concrete beam
$d \quad=$ effective depth from the top of a reinforced concrete beam to the centroid of the tensile steel
$d^{\prime}=$ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel
$d_{b} \quad=$ bar diameter of a reinforcing bar
$D=$ shorthand for dead load
$D L=$ shorthand for dead load
$E \quad=$ modulus of elasticity or Young's modulus
$=$ shorthand for earthquake load
$E_{c} \quad=$ modulus of elasticity of concrete
$E_{s} \quad=$ modulus of elasticity of steel
$f \quad=$ symbol for stress
$f_{c} \quad=$ compressive stress
$f_{c}^{\prime}=$ concrete design compressive stress
$f_{p u} \quad=$ tensile strength of the prestressing reinforcement
$f_{s} \quad=$ stress in the steel reinforcement for concrete design
$f_{s}^{\prime}=$ compressive stress in the compression reinforcement for concrete beam design
$f_{y} \quad=$ yield stress or strength
$f_{y t} \quad=$ yield stress or strength of transverse reinforcement
$F \quad=$ shorthand for fluid load
$F_{y} \quad=$ yield strength
$G \quad=$ relative stiffness of columns to beams in a rigid connection, as is $\Psi$
$h \quad=$ cross-section depth
$H \quad=$ shorthand for lateral pressure load
$h_{f} \quad=$ depth of a flange in a T section
$I_{\text {transformed }}=$ moment of inertia of a multimaterial section transformed to one material
$k \quad=$ effective length factor for columns
$\ell_{b} \quad=$ length of beam in rigid joint
$\ell_{c} \quad=$ length of column in rigid joint
$l_{d} \quad=$ development length for reinforcing steel
$l_{d h} \quad=$ development length for hooks
$l_{n} \quad=$ clear span from face of support to face of support in concrete design
$L \quad=$ name for length or span length, as is $l$
$=$ shorthand for live load
$L_{r} \quad=$ shorthand for live roof load
$L L \quad=$ shorthand for live load
$M_{n} \quad=$ nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design
$M_{u}=$ maximum moment from factored loads for LRFD beam design

| $n$ | $=$ modulus of elasticity transformation coefficient for steel to concrete | $\begin{aligned} w_{L L}= & \text { load per unit length on a beam from } \\ & \text { live load } \end{aligned}$ |
| :---: | :---: | :---: |
| n.a. pH | $\begin{aligned} & =\text { shorthand for neutral axis (N.A.) } \\ & =\text { chemical alkalinity } \end{aligned}$ | $w_{\text {self }} w t=$ name for distributed load from self weight of member |
| $P$ $P_{o}$ | $=$ name for load or axial force vector <br> $=$ maximum axial force with no | $\begin{aligned} w_{u}= & \text { load per unit length on a beam from } \\ & \text { load factors } \end{aligned}$ |
|  | concurrent bending moment in a reinforced concrete column | $\begin{array}{ll} W & =\text { shorthand for wind load } \\ x & =\text { horizontal distance } \end{array}$ |
| $P_{n}$ | $=$ nominal column load capacity in concrete design | $=$ distance from the top to the neutral axis of a concrete beam (see c) |
| $P_{u}$ | $=$ factored column load calculated from load factors in concrete design | $y \quad=$ vertical distance |
| $R$ | $\begin{aligned} = & \text { shorthand for rain or ice load } \\ = & \text { radius of curvature in beam } \\ & \text { deflection relationships }(\text { see } \rho) \end{aligned}$ | block height, $a$, based on concrete strength, $f_{c}^{\prime}$ <br> $\Delta \quad=$ elastic beam deflection |
| $R_{n}$ | $\begin{aligned} & =\text { concrete beam design ratio = } \\ & M_{u} / b d^{2} \end{aligned}$ | $\begin{array}{ll} \varepsilon & =\text { strain } \\ \mathcal{E}_{\mathrm{t}} & =\text { strain in the steel } \end{array}$ |
| $s$ | $=$ spacing of stirrups in reinforced concrete beams | $\begin{array}{ll} \varepsilon_{\mathrm{y}} & =\text { strain at the yield stress } \\ \lambda & =\text { modification factor for lightweigl } \end{array}$ |
| $S$ | $=$ shorthand for snow load | concrete |
| $t$ | = name for thickness | $\phi \quad=$ resistance factor |
| $T$ | $\begin{aligned} & =\text { name for a tension force } \\ & =\text { shorthand for thermal load } \end{aligned}$ | $\phi_{c}=$ resistance factor for compression |
| $U$ | = factored design value | $\gamma \quad=$ density or unit weight |
| $V_{c}$ | = shear force capacity in concrete | $\rho \quad=$ radius of curvature in beam |
| $V_{s}$ | $=$ shear force capacity in steel shear stirrups | deflection relationships (see R) |
| $V_{u}$ | $=$ shear at a distance of $d$ away from the face of support for reinforced concrete beam design | $\begin{aligned} & \text { beam design }=\mathrm{A}_{5} / \mathrm{bd} \\ & \rho_{\text {balanced }} \text { = balanced reinforcement ratio in } \\ & \text { concrete beam design } \end{aligned}$ |
| $w_{c}$ $w_{D L}$ | $\begin{aligned} & \text { = unit weight of concrete } \\ & =\text { load per unit length on a beam from } \\ & \text { dead load } \end{aligned}$ | $v_{c}=$ shear strength in concrete design |

## Reinforced Concrete Design

Structural design standards for reinforced concrete are established by the Building Code and Commentary (ACI 318-14) published by the American Concrete Institute International, and uses strength design (also known as limit state design).
$f^{\prime}{ }_{c}=$ concrete compressive design strength at 28 days (units of psi when used in equations)

## Materials

Concrete is a mixture of cement, coarse aggregate, fine aggregate, and water. The cement hydrates with the water to form a binder. The result is a hardened mass with "filler" and pores. There are various types of cement for low heat, rapid set, and other properties. Other minerals or cementitious materials (like fly ash) may be added.

ASTM designations are
Type I: $\quad$ Ordinary portland cement (OPC)
Type II: Moderate heat of hydration and sulfate resistance
Type III: High early strength (rapid hardening)
Type IV: Low heat of hydration
Type V: Sulfate resistant
The proper proportions, by volume, of the mix constituents determine strength, which is related to the water to cement ratio (w/c). It also determines other properties, such as workability of
 fresh concrete. Admixtures, such as retardants, accelerators, or superplasticizers, which aid flow without adding more water, may be added. Vibration may also be used to get the mix to flow into forms and fill completely.

Slump is the measurement of the height loss from a compacted cone of fresh concrete. It can be an indicator of the workability.

Proper mix design is necessary for durability. The pH of fresh cement is enough to prevent reinforcing steel from oxidizing (rusting). If, however, cracks allow corrosive elements in water to penetrate to the steel, a corrosion cell will be created, the steel will rust, expand and cause further cracking. Adequate cover of the steel by the concrete is important.

Deformed reinforcing bars come in grades $40,60 \& 75$ (for 40 ksi, 60 ksi and 75 ksi yield strengths). Sizes are given as \# of $1 / 8^{\prime \prime}$ up to \#8 bars. For \#9 and larger, the number is a nominal size (while the actual size is larger).

Reinforced concrete is a composite material, and the average density is considered to be $150 \mathrm{lb} / \mathrm{ft}^{3}$. It has the properties that it will creep (deformation with long term load) and shrink (a result of hydration) that must be considered.

## Construction

Because fresh concrete is a viscous suspension, it is cast or placed and not poured. Formwork must be able to withstand the hydraulic pressure. Vibration may be used to get the mix to flow around reinforcing bars or into tight locations, but excess vibration will cause segregation, honeycombing, and excessive bleed water which will reduce the water available for hydration and the strength, subsequently.

After casting, the surface must be worked. Screeding removes the excess from the top of the forms and gets a rough level. Floating is the process of working the aggregate under the surface
and to "float" some paste to the surface. Troweling takes place when the mix has hydrated to the point of supporting weight and the surface is smoothed further and consolidated. Curing is allowing the hydration process to proceed with adequate moisture. Black tarps and curing compounds are commonly used. Finishing is the process of adding a texture, commonly by using a broom, after the concrete has begun to set.

## $\underline{\text { Behavior }}$

Plane sections of composite materials can still be assumed to be plane (strain is linear), but the stress distribution is not the same in both materials because the modulus of elasticity is different. ( $f=\mathrm{E} \cdot \varepsilon$ )


$$
f_{1}=E_{1} \varepsilon=-\frac{E_{1} y}{R} \quad f_{2}=E_{2} \varepsilon=-\frac{E_{2} y}{R}
$$

where $R$ (or $\rho$ ) is the radius of curvature
In order to determine the stress, we can define $n$ as

$$
\text { the ratio of the elastic moduli: } \quad n=\frac{E_{2}}{E_{1}}
$$

$n$ is used to transform the width of the second material such that it sees the equivalent element stress.

## Transformed Section y and I

In order to determine stresses in all types of material in the beam, we transform the materials into a single material, and calculate the location of the neutral axis and modulus of inertia for that material.

ex: When material 1 above is concrete and material 2 is steel
to transform steel into concrete $n=\frac{E_{2}}{E_{1}}=\frac{E_{\text {steel }}}{E_{\text {concrete }}}$
to find the neutral axis of the equivalent concrete member we transform the width of the steel by multiplying by $n$
to find the moment of inertia of the equivalent concrete member, $\mathrm{I}_{\text {transformed }}$, use the new geometry resulting from transforming the width of the steel
concrete stress: $\quad f_{\text {concrete }}=-\frac{M y}{I_{\text {transformed }}}$
steel stress: $\quad f_{\text {steel }}=-\frac{M y n}{I_{\text {transformed }}}$

## Reinforced Concrete Beam Members



Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.


Typical stress-strain curve for concrett,


Ultimate strength analysis. (A rectangulat stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

## Strength Design for Beams

Strength design method is similar to LRFD. There is a nominal strength that is reduced by a factor $\phi$ which must exceed the factored design stress. For beams, the concrete only works in compression over a rectangular "stress" block above the n.a. from elastic calculation, and the steel is exposed and reaches the yield stress, $\mathrm{F}_{\mathrm{y}}$

For stress analysis in reinforced concrete beams

- the steel is transformed to concrete
- any concrete in tension is assumed to be cracked and to have no strength
- the steel can be in tension, and is placed in the bottom of a beam that has positive bending moment
- 

The neutral axis is where there is no stress and no strain. The concrete above the n.a. is in compression. The concrete below the n.a. is considered ineffective. The steel below the n.a. is in tension.


Figure 8.5: Bending in a concrete beam withou: and with steel reinforcing.

Because the n.a. is defined by the moment areas, we can solve for $x$ (or $c$ ) knowing that d is the distance from the top of the concrete section to the centroid of the steel:
$b x \cdot \frac{x}{2}-n A_{s}(d-x)=0$

x can be solved for when the equation is rearranged into the generic format with $\mathrm{a}, \mathrm{b}$ \& c in the binomial equation: $\quad a x^{2}+b x+c=0 \quad$ by $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

## T-sections

If the n.a. is above the bottom of a flange in a T section, x is found as for a rectangular section.

If the n.a. is below the bottom of a flange in a T section, x is found by including the flange and the stem of the web ( $\mathrm{b}_{\mathrm{w}}$ ) in the moment area calculation:


$$
b_{f} h_{f}\left(x-h_{f} / 2\right)+\left(x-h_{f}\right) b_{w} \frac{\left(x-h_{f}\right)}{2}-n A_{s}(d-x)=0
$$

Load Combinations (Alternative values are allowed)
$1.4 D$

$$
\begin{aligned}
& 1.2 D+1.6 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\
& 1.2 D+1.6\left(L_{r} \text { or } S \text { or } R\right)+(1.0 L \text { or } 0.5 W) \\
& 1.2 D+1.0 W+1.0 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\
& 1.2 D+1.0 E+1.0 L+0.2 S \\
& 0.9 D+1.0 W \\
& 0.9 D+1.0 E
\end{aligned}
$$

| Bar size, no. | Nominal <br> diameter, in. | Nominal area, <br> in. $^{2}$ | Nominal weight, <br> lb/ft |
| :---: | :---: | :---: | :---: |
| 3 | 0.375 | 0.11 | 0.376 |
| 4 | 0.500 | 0.20 | 0.668 |
| 5 | 0.625 | 0.31 | 1.043 |
| 6 | 0.750 | 0.44 | 1.502 |
| 7 | 0.875 | 0.60 | 2.044 |
| 8 | 1.000 | 0.79 | 2.670 |
| 9 | 1.128 | 1.00 | 3.400 |
| 10 | 1.270 | 1.27 | 4.303 |
| 11 | 1.410 | 1.56 | 5.313 |
| 14 | 1.693 | 2.25 | 7.650 |
| 18 | 2.257 | 4.00 | 13.600 |

Internal Equilibrium
$\mathrm{C}=$ compression in concrete $=$
stress x area $=0.85 f^{\prime} c^{b a}$
$\mathrm{T}=$ tension in steel $=$
stress x area $=A_{s} f_{y}$

$C=T$ and $M_{n}=T(d-a / 2)$
where $\quad \mathrm{f}^{\prime}{ }_{\mathrm{c}}=$ concrete compression strength
$\mathrm{a}=$ height of stress block
$\beta_{1}=$ factor based on $\mathrm{f}^{\prime}{ }_{c}$
$\mathrm{c}=$ location to the neutral axis
$\mathrm{b}=$ width of stress block
$\mathrm{f}_{\mathrm{y}}=$ steel yield strength
$\mathrm{A}_{\mathrm{s}}=$ area of steel reinforcement
d = effective depth of section
$=$ depth to n.a. of reinforcement
With $\mathrm{C}=\mathrm{T}, A_{S} f y=0.85 f^{\prime} c^{\prime} b a$
so $a$ can be determined with $a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\beta_{1} c$

## Criteria for Beam Design

For flexure design:
$M_{u} \leq \phi M_{n} \quad \phi=0.9$ for flexure (when the section is tension controlled)
so for design, $M_{u}$ can be set to $\phi M_{n}=\phi T(d-a / 2)=\phi A_{S} f_{y}(d-a / 2)$

## Reinforcement Ratio

The amount of steel reinforcement is limited. Too much reinforcement, or over-reinforcing will not allow the steel to yield before the concrete crushes and there is a sudden failure. A beam with the proper amount of steel to allow it to yield at failure is said to be under reinforced.

The reinforcement ratio is just a fraction: $\rho=\frac{A_{s}}{b d}$ (or p ). The amount of reinforcement is limited to that which results in a concrete strain of 0.003 and a minimum tensile strain of 0.004 .

When the strain in the reinforcement is 0.005 or greater, the section is tension controlled. (For smaller strains the resistance factor reduces to 0.65 because the stress is less than the yield stress in the steel.) Previous codes limited the amount to $0.75 \rho_{\text {balanced }}$ where $\rho_{\text {balanced }}$ was determined from the amount of steel that would make the concrete start to crush at the exact same time that the steel would yield based on strain $\left(\varepsilon_{y}\right)$ of 0.002 .

The strain in tension can be determined from $\varepsilon_{t}=\frac{d-c}{c}(0.003)$. At yield, $\varepsilon_{y}=\frac{f_{y}}{E_{s}}$.

The resistance factor expressions for transition and compression controlled sections are:

$$
\begin{array}{ll}
\phi=0.75+\left(\varepsilon_{t}-\varepsilon_{y}\right) \frac{0.15}{\left(0.005-\varepsilon_{y}\right)} \text { for spiral members } & \text { (not less than } 0.75 \text { ) } \\
\phi=0.65+\left(\varepsilon_{t}-\varepsilon_{y}\right) \frac{0.25}{\left(0.005-\varepsilon_{y}\right)} \text { for other members } & \text { (not less than } 0.65 \text { ) }
\end{array}
$$

## Flexure Design of Reinforcement

One method is to "wisely" estimate a height of the stress block, $a$, and solve for $A_{s}$, and calculate a new value for $a$ using $M_{u}$.

1. guess $a$ (less than n.a.)
2. $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
3. solve for $a$ from

$$
\begin{aligned}
& \text { setting } M_{u}=\phi A_{s} f_{y}(d-a / 2): \\
& a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)
\end{aligned}
$$

4. repeat from 2. until $a$ found from step 3 matches $a$ used in step 2.

## Design Chart Method:

1. calculate $R_{n}=\frac{M_{n}}{b d^{2}}\left(R_{n}=\frac{M_{u}}{\phi b d^{2}}\right)$
2. find curve for $f^{\prime}{ }_{c}$ and $f_{y}$ to get $\rho$
3. calculate $A_{s}$ and $a$, where:

$$
A_{s}=\rho b d \text { and } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Any method can simplify the size of d using $\mathrm{h}=1.1 \mathrm{~d}$

## Maximum Reinforcement

Based on the limiting strain of 0.005 in the steel, $c=0.375 d$ so

$$
a=\beta_{l}(0.375 d) \text { to find } \mathrm{A}_{\mathrm{s}-\max }
$$

## ( $\beta_{1}$ is shown in the table above)

Maximum Reinforcement Ratio $\rho$ for Singly Reinforced Rectangular Beams (tensile strain $=0.005$ ) for which $\phi$ is permitted to be 0.9

| $f_{c}^{\prime}{ }_{c}=3000 \mathrm{psi}$ |  |  |  |  |  |  | $f^{\prime}{ }_{c}=3500 \mathrm{psi}$ | $f^{\prime}{ }_{c}^{\prime}=4000 \mathrm{psi}$ | $f^{\prime}{ }_{c}=5000 \mathrm{psi}$ | $f^{\prime}{ }_{c}=6000 \mathrm{psi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{y}$ | $\beta_{1}=0.85$ | $\beta_{1}=0.85$ | $\beta_{1}=0.85$ | $\beta_{1}=0.80$ | $\beta_{1}=0.75$ |  |  |  |  |  |
| $40,000 \mathrm{psi}$ | 0.0203 | 0.0237 | 0.0271 | 0.0319 | 0.0359 |  |  |  |  |  |
| $50,000 \mathrm{psi}$ | 0.0163 | 0.0190 | 0.0217 | 0.0255 | 0.0287 |  |  |  |  |  |
| $60,000 \mathrm{psi}$ | 0.0135 | 0.0158 | 0.0181 | 0.0213 | 0.0239 |  |  |  |  |  |
| $f_{c}^{\prime}=20 \mathrm{MPa}$ |  |  |  |  |  |  |  |  |  |  |
| $f^{\prime}{ }^{\prime}=25 \mathrm{MPa}$ | $f_{c}^{\prime}{ }_{c}=30 \mathrm{MPa}$ | $f^{\prime}{ }_{c}^{\prime}=35 \mathrm{MPa}$ | $f_{c}^{\prime}{ }_{c}=40 \mathrm{MPa}$ |  |  |  |  |  |  |  |
| $f_{y}$ | $\beta_{1}=0.85$ | $\beta_{1}=0.85$ | $\beta_{1}=0.85$ | $\beta_{1}=0.81$ | $\beta_{1}=0.77$ |  |  |  |  |  |
| 300 MPa | 0.0181 | 0.0226 | 0.0271 | 0.0301 | 0.0327 |  |  |  |  |  |
| 350 MPa | 0.0155 | 0.0194 | 0.0232 | 0.0258 | 0.0281 |  |  |  |  |  |
| 400 MPa | 0.0135 | 0.0169 | 0.0203 | 0.0226 | 0.0245 |  |  |  |  |  |
| 500 MPa | 0.0108 | 0.0135 | 0.0163 | 0.0181 | 0.0196 |  |  |  |  |  |



Figure 3.8.1 Strength curves ( $R_{n}$ vs $\rho$ ) for singly reinforced rectangular sections. Upper limit of curves is at $\rho_{\max }$. (tensile strain of 0.004 )

## Minimum Reinforcement

Minimum reinforcement is provided even if the concrete can resist the tension. This is a means to control cracking.
Minimum required: $A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right)$ but not less than: $A_{s}=\frac{200}{f_{y}}\left(b_{w} d\right)$
where $f_{c}^{\prime}$ is in psi, and $\lambda$ is for material:
This can be translated to $\rho_{\min }=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}$ but not less than $\frac{200}{f_{y}}$

## Lightweight Concrete

Lightweight concrete has strength properties that are different from normalweight concretes, and a modification factor, $\lambda$, must be multiplied to the strength value of $\sqrt{f_{c}^{\prime}}$. for concrete for some specifications (ex. shear). Depending on the aggregate and the lightweight concrete, the value of $\lambda$ ranges from 075 to $0.85,0.85$ or 0.85 to 1.0 . $\lambda$ is 1.0 for normalweight concrete.

## Cover for Reinforcement

Cover of concrete over/under the reinforcement must be provided to protect the steel from corrosion. For indoor exposure, 1.5 inch is typical for beams and columns, 0.75 inch is typical for slabs, and for concrete cast against soil, 3 inch minimum is required.


## Bar Spacing

Minimum bar spacings are specified to allow proper consolidation of concrete around the reinforcement. The minimum spacing is the maximum of 1 in , a bar diameter, or 1.33 times the maximum aggregate size.

## T-beams and T-sections (pan joists)

Beams cast with slabs have an effective width, $b_{E}$, that sees compression stress in a wide flange beam or joist in a slab system with positive bending.

For interior T-sections, $b_{E}$ is the smallest of
$L / 4, b_{w}+16 t$, or center to center of beams


Figure 9.3.1 Actual and equivalent stress distribution over flange width.
For exterior T-sections, $b_{E}$ is the smallest of
$b_{w}+L / 12, b_{w}+6 t$, or $b_{w}+1 / 2$ (clear distance to next beam)

When the web is in tension the minimum reinforcement required is the same as for rectangular sections with the web width $\left(b_{w}\right)$ in place of $b . M_{n}=C_{w}(d-a / 2)+C_{f}\left(d-h_{f} / 2\right) \quad\left(h_{f}\right.$ is height of flange or $\left.t\right)$ When the flange is in tension (negative bending), the
minimum reinforcement required is the greater value of $\quad A_{s}=\frac{6 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right) \quad$ or $\quad A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{f} d\right)$
where $f_{c}^{\prime}$ is in psi, $b_{w}$ is the beam width, and $b_{f}$ is the effective flange width


## Compression Reinforcement

If a section is doubly reinforced, it means there is steel in the beam seeing compression. The force in the compression steel that may not be yielding is

$$
C_{s}=A_{s}^{\prime}\left(f_{s}^{\prime}-0.85 f_{c}^{\prime}\right)
$$



The total compression that balances the tension is now:

$$
T=C_{c}+C_{s} .
$$

And the moment taken about the centroid of the compression stress is $M_{n}=T(d-a / 2)+C_{s}\left(a-d^{\prime}\right)$ where $A_{s}{ }^{\text {‘ }}$ is the area of compression reinforcement, and $d^{\prime}$ is the effective depth to the centroid of the compression reinforcement

Because the compression steel may not be yielding, the neutral axis $x$ must be found from the force equilibrium relationships, and the stress can be found based on strain to see if it has yielded.

