Example 1

Determine the design moment capacity for the reinforced concrete cross section shown Assume $f_{c}^{\prime}=3000 \mathrm{psi}$ and Grade 60 reinforcing steel.

Example 2 (a) Determine the ultimate moment capacity of a beam with dimensions $b=10 \mathrm{in}$. and $d_{\text {effective }}=15 \mathrm{in}$. and that has three No. 9 bars ($3.0 \mathrm{in} .^{2}$) of tension-reinforcing steel. Assume that $\quad h=18 \mathrm{in} ., F_{y}=40 \mathrm{ksi}$, and $f_{c}^{\prime}=5 \mathrm{ksi}$. (b) Assume also that the section is used as a cantilever beam 10 ft long, where the service loads are dead load $=400 \mathrm{lb} / \mathrm{ft}$ and live load $=300 \mathrm{lb} / \mathrm{ft}$. Is the beam adequate in bending? Calculate the ultimate moment capacity of the beam first.

Solution:

(a)

$$
\begin{aligned}
& a=A_{s} F_{y} / 0.85 f_{c}^{\prime} b=(3)(40,000) /(0.85)(5000)(10)=2.82 \mathrm{in} . \\
& \phi M_{n}=\phi A_{s} F_{y}[d-a / 2]=0.9(3)(40,000)[15-(2.82) /(2)]=1,466,640 \mathrm{in} .-\mathrm{lb}
\end{aligned}
$$

Check for overreinforcement, $c=0.375 \cdot 15=5.625$. Depth of stress block $a=0.80 \cdot 5.625$ in. $=$ $4.5 \mathrm{in} . A_{s, \text { max }}=(0.85)(5 \mathrm{ksi})(4.5 \mathrm{in}).(10 \mathrm{in}) /.(40 \mathrm{ksi})=4.78 \mathrm{in}^{2}{ }^{2}$ The beam is not over reinforced Check for minimum steel: $A_{s, \min }=\frac{3 \sqrt{f_{c}^{\prime}}}{F_{y}} b d=0.80 \mathrm{in}^{2}$, so beam is sufficiently
reinforced.

$$
\begin{equation*}
U=1.2 D+1.6 L=1.2(400)+1.6(300)=960 \mathrm{lb} / \mathrm{ft} \tag{b}
\end{equation*}
$$

$$
M_{u}=w_{u} L^{2} / 2=(960)\left(10^{2}\right) / 2=48,000 \mathrm{ft}-\mathrm{lb}=576,000 \mathrm{in} . \mathrm{lb}
$$

Since $\quad M_{u}=576,000<\phi M_{n}=1,466,640$, the beam is adequate in bending.

EXAMPLE

Determine the ultimate moment capacity of a beam of dimensions $b=250 \mathrm{~mm}$ and $d=350 \mathrm{~mm}$ and that has $300 \mathrm{~mm}^{2}$ of reinforcing steel. Assume that $F_{y}=400 \mathrm{MPa}$ and $f_{c}^{\prime}=25 \mathrm{MPa}$.

Solution:

$$
\begin{aligned}
a & =\frac{A_{s} F_{y}}{0.85 f_{c}^{\prime} b}=\frac{(300)(400)}{(0.85)(25)(250)}=22.6 \mathrm{~mm} \\
\phi M_{n} & =\phi A_{s} F_{y}\left(d-\frac{a}{2}\right)=0.9(300)(400)\left(350-\frac{22.6}{2}\right)=36.5 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Example 3

Example 1. The service load bending moments on a beam are $58 \mathrm{kip}-$ $\mathrm{ft}[78.6 \mathrm{kN}-\mathrm{m}$] for dead load and $38 \mathrm{kip}-\mathrm{ft}$ [$51.5 \mathrm{kN}-\mathrm{m}$] for live load. The beam is 10 in . [254 mm] wide, f_{c}^{\prime} is 3000 psi [27.6 MPa], and f_{y} is 60 ksi [414 MPa]. Determine the depth of the beam and the tensile reinforcing required.

Example 3 (continued)

Example 4

A simply supported beam 20 ft long carries a service dead load of $300 \mathrm{lb} / \mathrm{ft}$ and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

SOLUTION:

Find the design moment, Mu , from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. It is good practice to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.

Guess a size of 10 in $x 12 \mathrm{in}$. Self weight for normal weight concrete is the density of $150 \mathrm{lb} / \mathrm{ft}^{3}$ multiplied by the cross section area: self weight $=150 \mathrm{lo} / \mathrm{tt}^{3}(10 \mathrm{in})(12 \mathrm{in}) \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2}=125 \mathrm{lb} / \mathrm{ft}$
$W_{u}=1.2(300 \mathrm{lb} / \mathrm{ft}+125 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{ft}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 \mathrm{ft})^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
M_{n} required $=M_{u} / \phi=\frac{65,500^{l b-f t}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$
To use the design chart aid, find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, estimating that d is about 1.75 inches less than h :
$d=12$ in -1.75 in $-(0.375)=10.25$ in (NOTE: If there are stirrups, you must also subtract the diameter of the stirrup bar.)
$\mathrm{R}_{\mathrm{n}}=\frac{72,778^{\mathrm{lb}-\mathrm{ft}}}{(10 \mathrm{in})(1025 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=831 \mathrm{psi}$
ρ corresponds to approximately 0.023 (which is less than that for 0.005 strain of 0.0319), so the estimated area required, A_{s}, can be found:
$A_{s}=\rho b d=(0.023)(10 \mathrm{in})(10.25 \mathrm{in})=2.36 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\max }$ do not choose an area bigger than the maximum!)

Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from $3 \# 8$ bars
$\mathrm{d}=12$ in -1.5 in (cover) $-1 / 2(8 / 8$ in diameter bar) $=10$ in
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(10 \mathrm{in})=0.0237$ which is less than $\rho_{\max -0.005}=0.0319$ OK (We cannot have an over reinforced beam!!)
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s f y} / 0.85 \mathrm{f}^{\prime} \mathrm{cb}=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{sf}}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(10 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{tt}}\right)=63.2 \mathrm{k}-\mathrm{ft} \ngtr 65.5 \mathrm{k} \text {-ft needed (not OK) }
\end{aligned}
$$

So, we can increase d to 13 in , and $\phi \mathrm{M}_{\mathrm{n}}=70.3 \mathrm{k}$-ft (OK). Or increase As_{s} to 2 \# 10's ($2.54 \mathrm{in}^{2}$), for a $=2.39$ in and $\phi \mathrm{M}_{\mathrm{n}}$ of 67.1 k -ft (OK). Don't exceed $\rho_{\text {max }}$ or $\rho_{\text {max }-0.005}$ if you want to use $\phi=0.9$

Example 5

A simply supported beam 20 ft long carries a service dead load of $425 \mathrm{lb} / \mathrm{ft}$ (including self weight) and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

SOLUTION:

Find the design moment, Mu , from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. If self weight is not included in the service loads, you need to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.
$W_{u}=1.2(425 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{ft}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 \mathrm{ft})^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
M_{n} required $=M_{u} / \phi=\frac{65,500^{l b-f t}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$
To use the design chart aid, we can find $\mathrm{R}_{\mathrm{n}}=M_{n} / b d^{2}$, and estimate that h is roughly $1.5-2$ times the size of b , and $\mathrm{h}=1.1 \mathrm{~d}$ (rule of thumb): $d=h / 1.1=(2 b) / 1.1$, so $d \approx 1.8 b$ or $b \approx 0.55 d$.

We can find R_{n} at the maximum reinforcement ratio for our materials, keeping in mind $\rho_{\max }$ at a strain $=0.005$ is 0.0319 off of the chart at about 1070 psi, with $\rho_{\max }=0.037$. Let's substitute b for a function of d :
$\mathrm{R}_{\mathrm{n}}=1070 \mathrm{psi}=\frac{72,778^{l b-f t}}{(0.55 d)(d)^{2}} \cdot\left(12 \mathrm{in} / f_{t}\right) \quad$ Rearranging and solving for $\mathrm{d}=11.4$ inches
That would make balittle over 6 inches, which is impractical. 10 in is commonly the smallest width.
So if h is commonly 1.5 to 2 times the width, b, h ranges from 14 to 20 inches. ($10 \times 1.5=15$ and $10 \times 2=20$)
Choosing a depth of 14 inches, $\mathrm{d} \cong 14-1.5$ (clear cover) $-1 / 2(1$ " diameter bar guess) $-3 / 8$ in (stirrup diameter) $=11.625$ in.
Now calculating an updated $\mathrm{R}_{\mathrm{n}}=\frac{72,778 \mathrm{lb}-\mathrm{ft}}{(10 \mathrm{in})(11.625 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=646.2 \mathrm{psi}$
ρ now is 0.020 (under the limit at 0.005 strain of 0.0319), so the estimated area required, A_{s}, can be found:
$\mathrm{A}_{\mathrm{s}}=\rho b d=(0.020)(10 \mathrm{in})(11.625 \mathrm{in})=1.98 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\text {max- }-000}$ do not choose an area bigger than the maximum!)

Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from $3 \# 8$ bars. (or $2.0 \mathrm{in}^{2}$ from 2 \#9 bars. $4 \# 7$ bars don't fit...)
$d($ actually $)=14$ in. -1.5 in (cover) $-1 / 2(8 / 8$ in bar diameter $)-3 / 8$ in. (stirrup diameter $)=11.625 \mathrm{in}$.
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(11.625 \mathrm{in})=0.0203$ which is less than $\rho_{\text {max- }-0.005}=0.0319$ OK (We cannot have an over reinforced beam!!)

Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& a=A_{s f y} / 0.85 f^{\prime} c b=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi M_{\mathrm{n}}=\phi A_{s} \mathrm{ff}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(11.625 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{tr}}\right)=74.7 \mathrm{k}-\mathrm{ft}>65.5 \mathrm{k} \text {-ft needed }
\end{aligned}
$$

OK! Note: If the section doesn't work, you need to increase d or A_{s} as long as you don't exceed $\rho_{\text {max- } 0.005}$

