Example 12

Example 7. Design the required shear reinforcement for the simple beam shown in Figure 13.18. Use $f_{c}^{\prime}=3 \mathrm{ksi}$ [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [276 MPa] and single U-shaped stirrups.

Example 13

For the simply supported concrete beam shown in Figure 5-61, determine the stirrup spacing (if required) using No. 3 U stirrups of Grade $60\left(f_{y}=60 \mathrm{ksi}\right)$. Assume $f^{\prime}{ }_{c}=3000 \mathrm{psi}$.

Figure 5-61: Simply supported concrete beam for Example 5-15.

$$
\begin{array}{lll}
f_{c}^{\prime}=3000 \mathrm{psi} . & \text { For \#3 bars, } & A_{s}=0.11 \mathrm{in.}^{2}, \\
F_{y}=60 \mathrm{ksi} . & \text { with 2 legs, then } & A_{\mathrm{v}}=0.22 \mathrm{in.}^{2}
\end{array}
$$

Solution:

$$
V_{u}=50 \mathrm{kips} \text { (neglecting weight of the beam) }
$$

$$
\begin{aligned}
\phi V_{c} & =\phi \lambda 2 \sqrt{f_{c}^{\prime}} b_{w} d \\
& =(0.75)(1) \frac{2 \sqrt{3000}(12)(32.5)}{1000}=32.0 \mathrm{kips}<V_{u} \quad \therefore \text { Need Stirrups }
\end{aligned}
$$

Note: If $V_{u}=\frac{1}{2} \varphi V_{c}$, minimum stirrups would still be required.

$$
\begin{aligned}
V_{u} & \leq \phi V_{c}+\phi V_{s} \\
& \therefore \phi V_{s}=V_{u}-\phi V_{c}=50-32.0=18.0 \mathrm{kips} \quad\left(<\phi 4 \sqrt{f_{c}^{\prime}} b_{w} d=64.1 \mathrm{kips}\right) \\
s_{\text {req'd }} & \leq \frac{\phi A_{v} F_{y} d}{\phi V_{s}}=\frac{(0.75)\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})(32.5 \mathrm{in})}{18.0 \mathrm{k}} \\
& =17.875 \mathrm{in} . \\
s_{\text {max }}= & \frac{d}{2}=\frac{32.5}{2}=16.2 \mathrm{in} . \quad \text { controls } \\
& =24 \mathrm{in} .
\end{aligned}
$$

$$
\left[\begin{array}{c}
s_{\text {req'd }} \\
\text { when } \phi V_{c}>V_{u}>\frac{\phi V_{c}}{2}
\end{array} \frac{A_{v} F_{y}}{50 b_{w}}=\frac{(0.22)(60,000)}{50(12)}=22.0 \text { in., but } 16 "(\mathrm{~d} / 2) \text { would be the maximum } \begin{array}{c}
\text { as well. }
\end{array}\right]
$$

\therefore Use \#3 U @ 16" max spacing

Example 14

Design the shear reinforcement for the simply supported reinforced concrete beam shown with a dead load of $1.5 \mathrm{k} / \mathrm{ft}$ and a live load of $2.0 \mathrm{k} / \mathrm{ft}$. Use 5000 psi concrete and Grade 60 steel. Assume that the point of reaction is at the end of the beam.

SOLUTION:

Find self weight $=1 \mathrm{ft} \times(27 / 12 \mathrm{ft}) \times 150 \mathrm{lb} / \mathrm{ft}^{3}=338 \mathrm{lb} / \mathrm{ft}=0.338 \mathrm{k} / \mathrm{ft}$
$\mathrm{w}_{\mathrm{u}}=1.2(1.5 \mathrm{k} / \mathrm{ft}+0.338 \mathrm{k} / \mathrm{ft})+1.6(2 \mathrm{k} / \mathrm{ft})=5.41 \mathrm{k} / \mathrm{ft}(=0.451 \mathrm{k} / \mathrm{in})$
$\mathrm{V}_{u(\max)}$ is at the ends $=\mathrm{w}_{\mathrm{u}} \mathrm{L} / 2=5.41 \mathrm{k} / \mathrm{ft}(24 \mathrm{ft}) / 2=64.9 \mathrm{k}$
$\mathrm{V}_{\mathrm{u}(\text { support })}=\mathrm{V}_{\mathrm{u}(\text { max })}-\mathrm{W}_{\mathrm{u}}($ distance $)=64.9 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(6 / 12 \mathrm{ft})=62.2 \mathrm{k}$
V_{u} for design is d away from the support $=\mathrm{V}_{\mathrm{u}}$ (support) $-\mathrm{W}_{\mathrm{u}}(\mathrm{d})=62.2 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(23.5 / 12 \mathrm{ft})=51.6 \mathrm{k}$

Concrete capacity:

We need to see if the concrete needs stirrups for strength or by requirement because $\mathrm{V}_{u} \leq \phi \mathrm{V}_{\mathrm{c}}+\phi \mathrm{V}_{\mathrm{s}}$ (design requirement) $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \lambda \sqrt{f_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=0.75(2)(1.0) \sqrt{5000} \mathrm{psi}(12 \mathrm{in})(23.5 \mathrm{in})=299106 \mathrm{lb}=29.9 \mathrm{kips}(<51.6 \mathrm{k}!)$

Stirrup design and spacing

We need stirrups: $A_{v}=V_{s} s / f_{y} d$
$\phi V_{s} \geq V_{u}-\phi V_{c}=51.6 k-29.9 k=21.7 k$
Spacing requirements are in Table 3-8 and depend on $\phi \mathrm{V}_{\mathrm{c}} / 2=15.0 \mathrm{k}$ and $2 \phi \mathrm{~V}_{\mathrm{c}}=59.8 \mathrm{k}$

$$
\begin{aligned}
& \text { Locating end points: } \\
& \begin{array}{l}
29.9 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \text { in } \mathrm{x}(\mathrm{a}) \\
\mathrm{a}=78 \mathrm{in} \\
15 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \mathrm{in} x \text { (b) } \\
\mathrm{b}=111 \mathrm{in} .
\end{array}
\end{aligned}
$$

 our maximum falls into the $\mathrm{d} / 2$ or $24^{\prime \prime}$, so $\mathrm{d} / 2$ governs with 11.75 in Our $10^{\prime \prime}$ is ok.

This spacing is valid until $\mathrm{V}_{\mathrm{u}}=\phi \mathrm{V}_{\mathrm{c}}$ and that happens at $(64.9 \mathrm{k}-29.9 \mathrm{k}) / 0.451 \mathrm{k} / \mathrm{in}=78$ in
We can put the first stirrup at a minimum of 2 in from the support face, so we need 10 " spaces for (78-2-6 in)/10 in = 7 even (8 stirrups altogether ending at 78 in)
After 78 " we can change the spacing to the required (but not more than the maximum of $\mathrm{d} / 2=11.75 \mathrm{in} \leq 24 \mathrm{in}$);

$$
\begin{aligned}
& \mathrm{s}=\mathrm{A}_{\mathrm{v}} f_{y t} / 50 \mathrm{~b}_{\mathrm{w}}=0.22 \mathrm{in}^{2}(60,000 \mathrm{psi}) / 50(12 \mathrm{in})= \\
& \quad 22 \text { in } \leq \mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{t}} / 0.75 \sqrt{f_{c}^{\prime}} \mathrm{b}_{\mathrm{w}}= \\
& 0.22 \mathrm{in}^{2}(60,000 \mathrm{psi}) /[0.75 \sqrt{5000} \mathrm{psi}(12 \mathrm{in})]=20.74 \mathrm{in}
\end{aligned}
$$

We need to continue to 111 in, so (111-78 in)/ 11 in $=3$ even

