
Simple Stresses and Strains

In this chapter general meaning of stress is explained. Expressions for stresses and strains is derived
with the following assumptions:

1. For the range of forces applied the material is elastic i.e. it can regain its original shape and
size, if the applied force is removed.

2. Material is homogeneous i.e. every particle of the material possesses identical mechanical
properties.

3. Material is isotropic i.e. the material possesses identical mechanical property at any point in
any direction.
Presenting the typical stress-strain curve for a typical steel, the commonly referred terms like

limits of elasticity and proportionality, yield points, ultimate strength and strain hardening are explained.
Linear elastic theory is developed to analyse different types of members subject to axial, shear,

thermal and hoop stresses.

When a member is subjected to loads it develops resisting forces. To find the resisting forces
developed a section plane may be passed through the member and equilibrium of any one part may
be considered. Each part is in equilibrium under the action of applied forces and internal resisting
forces. The resisting forces may be conveniently split into normal and parallel to the section plane.
The resisting force parallel to the plane is called shearing resistance. The intensity of resisting force
normal to the sectional plane is called intensity of Normal Stress  (Ref. Fig. 8.1).
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MEANING OF STRESS
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In practice, intensity of stress is called as ‘‘stress’’ only. Mathematically

Normal Stress = p = lim
∆

∆
∆A

R

A→ 0

= 
dR

dA
...(8.1)

where R is normal resisting force.
The intensity of resisting force parallel to the sectional plane is called Shearing Stress (q).

 Shearing Stress = q = lim
∆A → 0

 
∆
∆

Q

A
 = 

dQ

dA
...(8.2)

where Q is Shearing Resistance.
Thus, stress at any point may be defined as resistance developed per unit area. From equations

(8.1) and (8.2), it follows that
  dR = pdA

or    R = ∫ pdA ...(8.3a)
and   Q = ∫ qdA ...(8.3b)

At any cross-section, stress developed may or may not be uniform. In a bar of uniform cross-
section subject to axial concentrated loads as shown in Fig. 8.2a, the stress is uniform at a section
away from the applied loads (Fig. 8.2b); but there is variation of stress at the section  near the applied
loads (Fig. 8.2c).
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(b) Variation of Stresses Away from Ends

(a)

(c) Variation of Stresses Near Ends

Fig. 8.2

Similarly stress near the hole or at fillets will not be uniform as shown in Figs. 8.3 and 8.4. It
is very common that at some points in such regions maximum stress will be as high as 2 to 4 times
the average stresses.



236 MECHANICS OF SOLIDS
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Fig. 8.3. Stresses in a Plate with a Hole Fig. 8.4

When Newton is taken as unit of force and millimetre as unit of area, unit of stress will be
N/mm2. The other derived units used in practice are kN/mm2, N/m2, kN/m2 or MN/m2. A stress of
one N/m2 is known as Pascal and is represented by Pa.

Hence, 1 MPa = 1 MN/m2 = 1 × 106 N/(1000 mm)2 = 1 N/mm2.

Thus one Mega Pascal is equal to 1 N/mm2. In most of the standard codes published unit of stress
has been used as Mega Pascal (MPa or N/mm2

applied must be the same, say P.
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(a) Bar Subjected to Pulls

(b) Resisting Force Developed

Fig. 8.5. Tensile Stresses

The resisting forces acting on a section are shown in Fig. 8.5b. Now since the stresses are
uniform

 R = ∫ pdA = p ∫ dA = pA ...(8.4)
where A is the cross-sectional area.

UNIT OF STRESS

).  

AXIAL STRESS

Consider a bar subjected to force P as shown in Fig. 8.5. To maintain the equilibrium the end 

forces
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Considering the equilibrium of a cut piece of the bar, we get

 P

P

A
...(8.6)

Thus, in case of axial load ‘P’ the stress developed is equal to the load per unit area. Under
this type of normal stresses the bar is being extended. Such stress which is causing extension of the
bar is called tensile stress.

A bar subjected to two equal forces pushing the bar is shown in Fig. 8.6. It causes shortening
of the bar. Such forces which are causing shortening, are known as compressive forces and
corresponding stresses as compressive stresses.

P

P R

P

(a) Bar Subjected to Compressive Forces

Axis of the Bar

(b) Resisting Force Developed

Fig. 8.6. Compressive Stresses

Now R = ∫ pdA = p ∫ dA (as stress is assumed uniform)
For equilibrium of the piece of the bar

 P = R = pA

or  p = 
P

A
 as in equation 8.6

Thus, whether it is tensile or compressive, the stress developed in a bar subjected to axial forces,
is equal to load per unit area.

No material is perfectly rigid. Under the action of forces a rubber undergoes changes in shape and
size. This phenomenon is very well known to all since in case of rubber, even for small forces
deformations are quite large. Actually all materials including steel, cast iron, brass, concrete, etc.
undergo similar deformation when loaded. But the deformations are very small and hence we cannot
see them with naked eye. There are instruments like extensometer, electric strain gauges which can
measure extension of magnitude 1/100th, 1/1000th of a millimetre. There are machines like universal
testing machines in which bars of different materials can be subjected to accurately known forces of
magnitude as high as 1000 kN. The studies have shown that the bars extend under tensile force and
shorten under compressive forces as shown in Fig. 8.7. The change in length per unit length is known
as linear strain. Thus,

 Linear Strain = 
Change in Length

Original Length

STRAIN

 = R ...(8.5)
From equations (8.4) and (8.5), we get

 P = pA

or   p = 
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e = 
∆
L

...(8.7)
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Fig. 8.7

When changes in longitudinal direction is taking place changes in lateral direction also take
place. The nature of these changes in lateral direction are exactly opposite to that of changes in
longitudinal direction i.e., if extension is taking place in longitudinal direction, the shortening of
lateral dimension takes place and if shortening is taking place in longitudinal direction extension
takes place in lateral directions (See Fig. 8.7). The lateral strain may be defined as changes in the
lateral dimension per unit lateral dimension. Thus,

 Lateral Strain = 
Change in Lateral Dimension

Original Lateral Dimension

= 
′ − =b b

b

b

b

δ
...(8.8)

The stress-strain relation of any material is obtained by conducting tension test in the laboratories
on standard specimen. Different materials behave differently and their behaviour in tension and in
compression differ slightly.

Mild steel. Figure 8.8 shows a typical tensile test specimen of mild steel. Its ends are gripped into
universal testing machine. Extensometer is fitted to test specimen which measures extension over the
length L1, shown in Fig. 8.8. The length over which extension is mesured is called  gauge length.
The load is applied gradually and at regular interval of loads extension is measured. After certain
load, extension increases at faster rate and the capacity of extensometer  to measure extension comes
to an end and, hence, it is removed before this stage is reached and extension is measured from scale
on the universal testing machine. Load is increased gradually till the specimen breaks.

STRESS-STRAIN RELATION

Behaviour in Tension
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L1L1 L2L2
CupCone

Fig. 8.8. Tension Test Specimen Fig. 8.9. Tension Test Specimen after Breaking

Load divided by original cross-sectional area
is called as nominal stress or simply as stress.
Strain is obtained by dividing extensometer
readings by gauge length of extensometer (L1)
and by dividing scale readings by grip to grip
length of the specimen (L2). Figure 8.10 shows
stress vs strain diagram for the typical mild steel
specimen. The following salient points are
observed on stress-strain curve:

(a) Limit of Proportionality (A): It is the
limiting value of the stress up to which
stress is proportional to strain.

(b) Elastic Limit: This is the limiting value
of stress up to which if the material is
stressed and then released (unloaded) strain disappears completely and the original length
is regained. This point is slightly beyond the limit of proportionality.

(c) Upper Yield Point (B): This is the stress at which, the load starts reducing and the extension
increases. This phenomenon is called yielding of material. At this stage strain is about 0.125
per cent and stress is about 250 N/mm2.

(d) Lower Yield Point (C): At this stage the stress remains same but strain increases for some
time.

(e) Ultimate Stress (D): This is the maximum stress the material can resist. This stress is about
370–400 N/mm2. At this stage cross-sectional area at a particular section starts reducing very
fast (Fig. 8.9). This is called neck formation. After this stage load resisted and hence the
stress developed starts reducing.

(f) Breaking Point (E): The stress at which finally the specimen fails is called breaking point.
At this strain is 20 to 25 per cent.

If unloading is made within elastic limit the original length is regained i.e., the stress-strain curve
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follows down the loading curve shown in Fig. 8.6. If unloading is made after loading the specimen
beyond elastic limit, it follows a straight line parallel to the original straight portion as shown by line
FF′ in Fig. 8.10. Thus if it is loaded beyond elastic limit and then unloaded a permanent strain (OF)
is left in the specimen. This is called permanent set.

Stress-strain relation in aluminium and high strength steel. In these elastic materials  there is
no clear cut yield point. The necking takes place at ultimate stress and eventually  the breaking point
is lower than the ultimate point. The typical stress-strain diagram is shown in Fig. 8.11. The stress
p at which if unloading is made there will be 0.2 per cent permanent set is known as 0.2 per cent
proof stress and this point is treated as yield point for all practical purposes.
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Fig. 8.11. Stress-Strain Relation in Fig. 8.12. Stress-Strain Relation
Aluminium and High Strength Steel for Brittle Material

Stress-strain relation in brittle material. The typical stress-strain relation in a brittle material
like cast iron, is shown in Fig. 8.12.

In these material, there is no appreciable change in rate of strain. There is no yield point and
no necking takes place. Ultimate point and breaking point are one and the same. The strain at failure
is very small.

Percentage elongation and percentage reduction in area. Percentage elongation and percentage
reduction in area are the two terms used to measure the ductility of material.

(a) Percentage Elongation: It is defined as the ratio of the final extension at rupture to original
length expressed, as percentage. Thus,

Percentage Elongation = 
L L

L

′ −
 × 100 ...(8.9)

where L – original length, L′– length at rupture.

The code specify that original length is to be five times the diameter and the portion
considered must include neck (whenever it occurs). Usually marking are made on tension
rod at every ‘2.5 d’ distance and after failure the portion in which necking takes place is
considered. In case of ductile material percentage elongation is 20 to 25.

(b) Percentage Reduction in Area: It is defined as the ratio of maximum changes in the cross-
sectional area to original cross-sectional area, expressed as percentage. Thus,
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Percentage Reduction in Area = 
A A

A

− ′
 × 100 ...(8.10)

where A–original cross-sectional area, A′–minimum cross-sectional area. In case of ductile
material, A′ is calculated after measuring the diameter at the neck. For this, the two broken
pieces of the specimen are to be kept joining each other properly. For steel, the percentage
reduction in area is 60 to 70.

As there is chance to bucking (laterally bending) of long specimen, for compression tests short
specimens are used. Hence, this test involves measurement of smaller changes in length. It results
into lesser accuracy. However precise measurements have shown the following results:

(a) In case of ductile materials stress-strain curve follows exactly same path as in tensile test
up to and even slightly beyond yield point. For larger values the curves diverge. There will
not be necking in case of compression tests.

(b) For most brittle materials ultimate compresive stress in compression is much larger than in
tension. It is because of flows and cracks present in brittle materials which weaken the
material in tension but will not affect the strength in compression.

So far our discussion on direct stress is based on the value obtained by dividing the load by original
cross-sectional area. That is the reason why the value of stress started dropping after neck is formed
in mild steel (or any ductile material) as seen in Fig. 8.10. But actually as material is stressed its
cross-sectional area changes. We should divide load by the actual cross-sectional area to get true
stress in the material. To distinguish between the two values we introduce the terms nominal stress
and true stress and define them as given below:

 Nominal Stress = 
Load

Original Cross-sectional Area
...(8.11a)

True Stress = 
Load

Actual Cross-sectional Area
...(8.11b)

So far discussion was based on nominal stress.
That is why after neck formation started (after ultimate
stress), stress-strain curve started sloping down and the
breaking took place at lower stress (nominal). If we
consider true stress, it is increasing continuously as
strain increases as shown in Fig. 8.13.
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Fig. 8.13. Nominal Stress-Strain Curve
and True Stress-Strain Curve for Mild

Steel.

Behaviour of Materials under Compression

NOMINAL STRESS AND TRUE STRESS
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In practice it is not possible to design a mechanical component or structural component permitting
stressing up to ultimate stress for the following reasons:

1. Reliability of material may not be 100 per cent. There may be small spots of flaws.
2. The resulting deformation may obstruct the functional performance of the component.

3. The loads taken by designer are only estimated loads. Occasionally there can be overloading.
Unexpected impact and temperature loadings may act in the lifetime of the member.

4. There are certain ideal conditions assumed in the analysis (like boundary conditions). Actually
ideal conditions will not be available and, therefore, the calculated stresses will not be 100
per cent real stresses.

Hence, the maximum stress to which any member is designed is much less than the ultimate
stress, and this stress is called Working Stress. The ratio of ultimate stress to working stress is called
factor of safety. Thus

 Factor of Safety = Ultimate Stress

Working Stress
...(8.12)

In case of elastic materials, since excessive deformation create problems in the performance of
the member, working stress is taken as a factor of yield stress or that of a 0.2 proof stress (if yield
point do not exist).

Factor of safety for various materials depends up on their reliability. The following values are
commonly taken in practice:

1. For steel – 1.85

2. For concrete – 3
3. For timber – 4 to 6

Robert Hooke, an English mathematician conducted several experiments and concluded that stress
is proportional to strain up to elastic limit. This is called Hooke’s law. Thus Hooke’s law is, up to
elastic limit

p ∝ e ...(8.13a)

where p is stress and e is strain

Hence, p = Ee ...(8.13b)

where E is the constant of proportionality of the material, known as modulus of elasticity or Young’s
modulus, named after the English scientist Thomas Young (1773–1829).

However, present day sophisticated experiments have shown that for mild steel the Hooke’s law
holds good up to the proportionality limit which is very close to the elastic limit. For other materials,
as seen in art. 1.5, Hooke’s law does not hold good. However, in the range of working stresses,
assuming Hooke’s law to hold good, the relationship does not deviate considerably from actual
behaviour. Accepting Hooke’s law to hold good, simplifies the analysis and design procedure
considerably. Hence Hooke’s law is widely accepted. The analysis procedure accepting Hooke’s law
is known as Linear Analysis and the design procedure is known as the working stress method.

FACTOR OF SAFETY

HOOKE’S LAW
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From equation (8.6), Stress p = 
P

A

From equation (8.7), Strain, e = 
∆
L

From Hooke’s Law we have,

   E = 
Stress

Strain
= = =p

e

P A

L

PL

A

/

/∆ ∆

or   ∆ = 
PL

AE
. ...(8.14)

Example 8.1. A circular rod of diameter 16 mm and 500 mm long is subjected to a tensile force 40
kN. The modulus of elasticity for steel may be taken as 200 kN/mm2. Find stress, strain and elongation
of the bar due to applied load.

Solution:  Load P = 40 kN = 40 × 1000 N
E = 200 kN/mm2 = 200 × 103 N/mm2

L = 500 mm
 Diameter of the rod d = 16 mm

Therefore, sectional area   A = π πd 2

4 4
=  × 162

= 201.06 mm2

Stress p = 
P

A
= ×40 1000

201 06.
 = 198.94 N/mm2

 Strain e = 
p

E
=

×
198 94

200 103

.
= 0.0009947

 Elongation ∆ = 
PL

AE
= × ×

× ×
4.0 1000 500

201.06 200 103  = 0.497 mm

EXTENSION/SHORTENING OF A BAR

Consider the bars shown in Fig. 8.14
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Example 8.2. A Surveyor’s steel tape 30 m long has a cross-section of 15 mm × 0.75 mm. With this,
line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force
applied at the time of calibration, what is the actual length of the line?

Take modulus of elasticity for steel as 200 kN/mm2.

Solution:  A = 15 × 0.75 = 11.25 mm2

 P = 120 N, L = 30 m = 30 × 1000 mm

 E = 200 kN/mm2 = 200 × 103 N/mm2

Elongation ∆ = 
PL

AE
= × ×

× ×
120 30 1000

11.25 200 103  = 1.600 mm

Hence, if measured length is 30 m.

Actual length is 30 m + 1.600 mm = 30.001600 m

∴ Actual length of line AB = 
150

30
 × 30.001600 = 150.008 m

Example 8.3. A hollow steel tube is to be used to carry an axial compressive load of
160 kN. The yield stress for steel is 250 N/mm2. A factor of safety of 1.75 is to be used in the design.
The following three class of tubes of external diameter 101.6 mm are available.

Class Thickness
Light 3.65 mm

Medium 4.05 mm
Heavy 4.85 mm

Which section do you recommend?

Solution: Yield stress = 250 N/mm2

Factor of safety = 1.75
Therefore, permissible stress

p = 
250

1 75.
 = 142.857 N/mm2

 Load P = 160 kN = 160 × 103 N

but p = 
P

A

i.e.   142.857 = 160 103×
A

∴  A = 
160 10
142 857

3×
.

 = 1120 mm2

For hollow section of outer diameter ‘D’ and inner diameter ‘d’

 A = 
π
4

(D2 – d2) = 1120

π
4

(101.62 – d2) = 1120
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d2 = 8896.53 ∴ d = 94.32 mm

∴ t = 
D d− = −

2

101.6 94.32

2
 = 3.63 mm

Hence, use of light section is recommended.
Example 8.4. A specimen of steel 20 mm diameter with a gauge length of 200 mm is tested to
destruction. It has an extension of 0.25 mm under a load of 80 kN and the load at elastic limit is
102 kN. The maximum load is 130 kN.

The total extension at fracture is 56 mm and diameter at neck is 15 mm. Find

(i) The stress at elastic limit.

(ii) Young’s modulus.

(iii) Percentage elongation.

(iv) Percentage reduction in area.

(v) Ultimate tensile stress.

Solution:    Diameter d = 20 mm

  Area A = πd 2

4
 = 314.16 mm2

(i) Stress at elastic limit = 
Load at elastic limit

Area

= 
102 10

314.16

3×
 = 324.675 N/mm2

(ii) Young’s modulus E = 
Stress

Strain
within elastic limit

= P A

L

/

/

80 10 /314.16

0.25/200

3

∆
= ×

 = 203718 N/mm2

(iii) Percentage elongation = Final extension

Original length

 = 
56

200
 × 100 = 28

(iv) Percentage reduction in area

= 
Initial area Final area

Initial area

−
 × 100

= 

π π

π
4

20
4

15

4
20

2 2

2

× − ×

×
 × 100 = 43.75


