Engineering of Structures

Equilibrium of a particle

When the resultant of all the acting forces is equal to ZERO, the particle is in equilibrium. This means:

$$
R=\sum F=0 \rightarrow \sum F_{x}=0 \rightarrow \sum F_{y}=0
$$

For example:
Prove that the particle \mathbf{A} is in equilibrium.
$\sum F_{x}=\mathbf{3 0 0}-\mathbf{4 0 0} \sin \mathbf{3 0}-\mathbf{2 0 0} \sin 30=0$
$\sum F_{y}=400 \cos 30-200 \cos 30-173.2=0$

A is in equilibrium

Example 1: Determine the tension in cables BA and BC necessary to support 60 Kg cylinder.

$$
\begin{align*}
& \pm \Sigma F_{x}=0 ; \quad T_{C} \cos 45^{\circ}-\left(\frac{4}{5}\right) T_{A}=0 \tag{1}\\
& +\uparrow \Sigma F_{y}=0 ; \quad T_{C} \sin 45^{\circ}+\left(\frac{3}{5}\right) T_{A}-60(9.81) \mathrm{N}=0 \tag{2}
\end{align*}
$$

Equation (1) can be written as $T_{A}=0.8839 T_{C}$. Substituting this into Eq. (2) yields

$$
T_{C} \sin 45^{\circ}+\left(\frac{3}{5}\right)\left(0.8839 T_{C}\right)-60(9.81) \mathrm{N}=0
$$

So that

$$
T_{C}=475.66 \mathrm{~N}=476 \mathrm{~N}
$$

Substituting this result into either Eq. (1) or Eq. (2), we get

$$
T_{A}=420 \mathrm{~N}
$$

Ans.

Example 2: The $\mathbf{2 0 0} \mathrm{Kg}$ crate is supported by the ropes $A B$ and $A C$. Each rope is withstand a maximum force of 10 KN before it breaks. If AB always remains horizontal, determine the smallest θ to which the crate can be supported before one of the ropes breaks.
$F_{D}=200(9.81) \mathrm{N}=1962 \mathrm{~N}<10 \mathrm{kN}$.
$\pm \Sigma F_{x}=0 ; \quad-F_{C} \cos \theta+F_{B}=0 ; \quad F_{C}=\frac{F_{B}}{\cos \theta}$

$+\uparrow \Sigma F_{y}=0 ; \quad F_{C} \sin \theta-1962 \mathrm{~N}=0$
rope $A C$ will reach the maximum tensile force of 10 kN
Substituting $F_{C}=10 \mathrm{kN}$ into Eq. (2), we get
$\left[10\left(10^{3}\right) \mathrm{N}\right] \sin \theta-1962 \mathrm{~N}=0$
$\theta=\sin ^{-1}(0.1962)=11.31^{\circ}=11.3^{\circ}$
$10\left(10^{3}\right) \mathrm{N}=\frac{F_{B}}{\cos 11.31^{\circ}} \quad F_{B}=9.81 \mathrm{kN}$

Example 3: Determine the required length of cord AC so that the $8 \mathbf{K g}$ lamp can be suspended in the position shown. The undeformed length of spring $A B$ is 0.4 m and the spring has stiffness of $300 \mathrm{~N} / \mathrm{m}$

The lamp has a weight $W=8(9.81)=78.5 \mathrm{~N}$

$$
\begin{array}{ll}
\text { さ } \Sigma F_{x}=0 ; & T_{A B}-T_{A C} \cos 30^{\circ}=0 \\
+\uparrow \Sigma F_{y}=0 ; & T_{A C} \sin 30^{\circ}-78.5 \mathrm{~N}=0 \\
\text { Solving, we obtain } & \\
& T_{A C}=157.0 \mathrm{~N} \\
& T_{A B}=135.9 \mathrm{~N}
\end{array}
$$

The stretch of spring $A B$ is therefore

$$
\begin{aligned}
T_{A B}=k_{A B} s_{A B} ; \quad 135.9 \mathrm{~N} & =300 \mathrm{~N} / \mathrm{m}\left(s_{A B}\right) \\
s_{A B} & =0.453 \mathrm{~m}
\end{aligned}
$$

so the stretched length is

$$
\begin{aligned}
l_{A B} & =l_{A B}^{\prime}+s_{A B} \\
l_{A B} & =0.4 \mathrm{~m}+0.453 \mathrm{~m}=0.853 \mathrm{~m}
\end{aligned}
$$

The horizontal distance from C to B, requires,
$2 \mathrm{~m}=I_{A C} \cos 30^{\circ}+0.853 \mathrm{~m} \quad I_{A C}=1.32 \mathrm{~m}$

HW1: If the 1.5 m long cord $A B$ can withstand a maximum force of 3500 N . Calculate the force in cord BC and the distance y so that the 200 kg crate can be supported.

$F_{B C}=2.90 \mathrm{kN}, y=0.841 \mathrm{~m}$

HW2: Determine the tension in cables $A B, B C$ and $C D$, necessary to support the 10 kg and 15 kg traffic light at B and C, respectively. Also, find the angle θ.

Couples

Couple can be defined as the moment produced by two equal,
 opposite and non-collinear forces.

$$
\begin{gathered}
M_{o}=F(a+d)-F(a) \\
M_{o}=F(a)+F(d)-F(a) \\
M_{o}=F(d)
\end{gathered}
$$

Example 1: Compute the combined moment of two 180 N forces about point O and point A .

$$
\begin{aligned}
240 \mathrm{~mm}
\end{aligned}
$$

Example 2: Replace the 800 lb force acting at point A by a force couple system at point O and point B.

Example 3: The force-couple system was applied to the small shaft at the centre of rectangular plate. Replace this system by a single force and specify the coordinate of the point at the y-axis through which the line of action of this resultant force passes.

$$
\begin{aligned}
+M=F d: 375 & =5000 d \\
d & =0.075 \mathrm{~m} \\
\therefore y & =-75 \mathrm{~mm}
\end{aligned}
$$

Example 4: What force F must be exerted by the ground on each of the main braked wheels at A and B to counteract the turning effect of the two propeller thrusts?

$$
\curvearrowleft \sum M=500(14)-F(8)=0
$$

$$
F=875 \mathrm{lb}
$$

Example 5: What thrust P must each tug exert on the ship to counteract the turning effect of the two ship's propellers F ? Knowing that $\mathrm{F}=300 \mathrm{KN}$

The combined drive wheels of a front-wheel-drive automobile are acted on by $7000-\mathrm{N}$ normal reaction force and a friction force \mathbf{F}, both of which are exerted by the road surface. If it is known that the resultant of these two forces makes a 15° angle with the vertical, determine the equivalent force-couple system at the car mass center G. Treat this as a two-dimensional problem.

HW1: Calculate the magnitude of the acting force F. Knowing that the applied couple at point B is $4000 \mathrm{lb} . \mathrm{ft}$

Ans. $F=12,000 \mathrm{lb}$

HW2: Determine the couple force at point 0 .

Ans. $M=21.7 \mathrm{~N} . \mathrm{m} \mathrm{CCW}$

