
In the preceding chapter we saw how the loads acting on a beam create
internal actions (or stress resultants) in the form of shear forces and
bending moments. In this chapter we go one step further and investigate
the stresses and strains associated with those shear forces and bending
moments. Knowing the stresses and strains, we will be able to analyze
and design beams subjected to a variety of loading conditions. 

The loads acting on a beam cause the beam to bend (or flex), thereby
deforming its axis into a curve. As an example, consider a cantilever beam
AB subjected to a load P at the free end (Fig. 5-1a). The initially straight axis
is bent into a curve (Fig. 5-1b), called the deflection curve of the beam. 

For reference purposes, we construct a system of coordinate axes
(Fig. 5-1b) with the origin located at a suitable point on the longitudinal
axis of the beam. In this illustration, we place the origin at the fixed sup-
port. The positive x axis is directed to the right, and the positive y axis is
directed upward. The z axis, not shown in the figure, is directed outward
(that is, toward the viewer), so that the three axes form a right-handed
coordinate system. 

The beams considered in this chapter (like those discussed in Chapter 4)
are assumed to be symmetric about the xy plane, which means that the y axis
is an axis of symmetry of the cross section. In addition, all loads must act in
the xy plane. As a consequence, the bending deflections occur in this same
plane, known as the plane of bending. Thus, the deflection curve shown in
Fig. 5-1b is a plane curve lying in the plane of bending. 

The deflection of the beam at any point along its axis is the
displacement of that point from its original position, measured in the y direc-
tion. We denote the deflection by the letter v to distinguish it from the coor-
dinate y itself (see Fig. 5-1b).*

When analyzing beams, it is often necessary to distinguish between pure
bending and nonuniform bending. Pure bending refers to flexure of a
beam under a constant bending moment. Therefore, pure bending occurs
only in regions of a beam where the shear force is zero (because 
V � dM/dx; see Eq. 4-6). In contrast, nonuniform bending refers to
flexure in the presence of shear forces, which means that the bending
moment changes as we move along the axis of the beam. 

As an example of pure bending, consider a simple beam AB loaded
by two couples M1 having the same magnitude but acting in opposite
directions (Fig. 5-2a). These loads produce a constant bending moment
M � M1 throughout the length of the beam, as shown by the bending
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FIG. 5-1 Bending of a cantilever beam:
(a) beam with load, and (b) deflection
curve

FIG. 5-2 Simple beam in pure bending 
(M � M1)

*In applied mechanics, the traditional symbols for displacements in the x, y, and z direc-
tions are u, v, and w, respectively.
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moment diagram in part (b) of the figure. Note that the shear force V is
zero at all cross sections of the beam. 

Another illustration of pure bending is given in Fig. 5-3a, where
the cantilever beam AB is subjected to a clockwise couple M2 at the
free end. There are no shear forces in this beam, and the bending
moment M is constant throughout its length. The bending moment is
negative (M � �M2), as shown by the bending moment diagram in
part (b) of Fig. 5-3. 

The symmetrically loaded simple beam of Fig. 5-4a is an example of
a beam that is partly in pure bending and partly in nonuniform bending,
as seen from the shear-force and bending-moment diagrams (Figs. 5-4b
and c). The central region of the beam is in pure bending because the
shear force is zero and the bending moment is constant. The parts of
the beam near the ends are in nonuniform bending because shear forces
are present and the bending moments vary. 

FIG. 5-4 Simple beam with central region
in pure bending and end regions in
nonuniform bending

FIG. 5-3 Cantilever beam in pure bending
(M � �M2)
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In the following two sections we will investigate the strains and
stresses in beams subjected only to pure bending. Fortunately, we can
often use the results obtained for pure bending even when shear forces
are present, as explained later (see the last paragraph in Section 5.8).

When loads are applied to a beam, its longitudinal axis is deformed into
a curve, as illustrated previously in Fig. 5-1. The resulting strains and
stresses in the beam are directly related to the curvature of the deflection
curve.

To illustrate the concept of curvature, consider again a cantilever
beam subjected to a load P acting at the free end (see Fig. 5-5a on the
next page). The deflection curve of this beam is shown in Fig. 5-5b. For
purposes of analysis, we identify two points m1 and m2 on the deflection
curve. Point m1 is selected at an arbitrary distance x from the y axis and
point m2 is located a small distance ds further along the curve. At each of
these points we draw a line normal to the tangent to the deflection curve,
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that is, normal to the curve itself. These normals intersect at point O�,
which is the center of curvature of the deflection curve. Because most
beams have very small deflections and nearly flat deflection curves, point
O� is usually located much farther from the beam than is indicated in the
figure.

The distance m1O� from the curve to the center of curvature is 
called the radius of curvature r (Greek letter rho), and the curvature
k (Greek letter kappa) is defined as the reciprocal of the radius of curva-
ture. Thus,

(5-1)

Curvature is a measure of how sharply a beam is bent. If the load on a
beam is small, the beam will be nearly straight, the radius of curvature
will be very large, and the curvature will be very small. If the load is
increased, the amount of bending will increase—the radius of curvature
will become smaller, and the curvature will become larger. 

From the geometry of triangle O�m1m2 (Fig. 5-5b) we obtain

r du � ds (a)

in which du (measured in radians) is the infinitesimal angle between the
normals and ds is the infinitesimal distance along the curve between
points m1 and m2. Combining Eq. (a) with Eq. (5-1), we get

(5-2)

This equation for curvature is derived in textbooks on calculus and holds
for any curve, regardless of the amount of curvature. If the curvature is
constant throughout the length of a curve, the radius of curvature will
also be constant and the curve will be an arc of a circle. 

The deflections of a beam are usually very small compared to its
length (consider, for instance, the deflections of the structural frame of an
automobile or a beam in a building). Small deflections mean that the
deflection curve is nearly flat. Consequently, the distance ds along the
curve may be set equal to its horizontal projection dx (see Fig. 5-5b).
Under these special conditions of small deflections, the equation for the
curvature becomes
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FIG. 5-5 Curvature of a bent beam:
(a) beam with load, and (b) deflection
curve



Both the curvature and the radius of curvature are functions of the
distance x measured along the x axis. It follows that the position O� of the
center of curvature also depends upon the distance x.

In Section 5.5 we will see that the curvature at a particular point
on the axis of a beam depends upon the bending moment at that point
and upon the properties of the beam itself (shape of cross section
and type of material). Therefore, if the beam is prismatic and the
material is homogeneous, the curvature will vary only with the
bending moment. Consequently, a beam in pure bending will have con-
stant curvature and a beam in nonuniform bending will have varying
curvature.

The sign convention for curvature depends upon the orientation
of the coordinate axes. If the x axis is positive to the right and the y axis
is positive upward, as shown in Fig. 5-6, then the curvature is positive
when the beam is bent concave upward and the center of curvature is
above the beam. Conversely, the curvature is negative when the beam
is bent concave downward and the center of curvature is below the
beam.

In the next section we will see how the longitudinal strains in a bent
beam are determined from its curvature, and in Chapter 9 we will see
how curvature is related to the deflections of beams. 
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FIG. 5-6 Sign convention for curvature



In the preceding section we investigated the longitudinal strains ex in a
beam in pure bending (see Eq. 5-4 and Fig. 5-7). Since longitudinal
elements of a beam are subjected only to tension or compression, we can
use the stress-strain curve for the material to determine the stresses from
the strains. The stresses act over the entire cross section of the beam and
vary in intensity depending upon the shape of the stress-strain diagram
and the dimensions of the cross section. Since the x direction is longitudinal
(Fig. 5-7a), we use the symbol sx to denote these stresses. 

The most common stress-strain relationship encountered in
engineering is the equation for a linearly elastic material. For such
materials we substitute Hooke’s law for uniaxial stress (s � Ee) into 
Eq. (5-4) and obtain 

(5-7)

This equation shows that the normal stresses acting on the cross section
vary linearly with the distance y from the neutral surface. This stress
distribution is pictured in Fig. 5-9a for the case in which the bending
moment M is positive and the beam bends with positive curvature. 

When the curvature is positive, the stresses sx are negative (com-
pression) above the neutral surface and positive (tension) below it. In the
figure, compressive stresses are indicated by arrows pointing toward the
cross section and tensile stresses are indicated by arrows pointing away
from the cross section. 

In order for Eq. (5-7) to be of practical value, we must locate the origin
of coordinates so that we can determine the distance y. In other words, we
must locate the neutral axis of the cross section. We also need to obtain a
relationship between the curvature and the bending moment—so that we
can substitute into Eq. (5-7) and obtain an equation relating the stresses to
the bending moment. These two objectives can be accomplished by deter-
mining the resultant of the stresses sx acting on the cross section. 

In general, the resultant of the normal stresses consists of two
stress resultants: (1) a force acting in the x direction, and (2) a bending
couple acting about the z axis. However, the axial force is zero when a
beam is in pure bending. Therefore, we can write the following equations
of statics: (1) The resultant force in the x direction is equal to zero, and
(2) the resultant moment is equal to the bending moment M. The first
equation gives the location of the neutral axis and the second gives the
moment-curvature relationship. 

Location of Neutral Axis

To obtain the first equation of statics, we consider an element of area dA
in the cross section (Fig. 5-9b). The element is located at distance y from
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FIG. 5-9 Normal stresses in a beam of 
linearly elastic material: (a) side view of
beam showing distribution of normal
stresses, and (b) cross section of beam
showing the z axis as the neutral axis of
the cross section
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the neutral axis, and therefore the stress sx acting on the element is given
by Eq. (5-7). The force acting on the element is equal to sx dA and is
compressive when y is positive. Because there is no resultant force acting
on the cross section, the integral of sxdA over the area A of the entire
cross section must vanish; thus, the first equation of statics is



A
sxdA � � 


A
EkydA � 0 (a)

Because the curvature k and modulus of elasticity E are nonzero
constants at any given cross section of a bent beam, they are not involved
in the integration over the cross-sectional area. Therefore, we can drop
them from the equation and obtain 

(5-8)

This equation states that the first moment of the area of the cross section,
evaluated with respect to the z axis, is zero. In other words, the z axis
must pass through the centroid of the cross section.*

Since the z axis is also the neutral axis, we have arrived at the
following important conclusion: The neutral axis passes through the
centroid of the cross-sectional area when the material follows Hooke’s
law and there is no axial force acting on the cross section. This
observation makes it relatively simple to determine the position of the
neutral axis.

As explained in Section 5.1, our discussion is limited to beams for
which the y axis is an axis of symmetry. Consequently, the y axis also
passes through the centroid. Therefore, we have the following additional
conclusion: The origin O of coordinates (Fig. 5-9b) is located at the
centroid of the cross-sectional area.

Because the y axis is an axis of symmetry of the cross section, it
follows that the y axis is a principal axis (see Chapter 12, Section 12.9,
for a discussion of principal axes). Since the z axis is perpendicular to the
y axis, it too is a principal axis. Thus, when a beam of linearly elastic
material is subjected to pure bending, the y and z axes are principal
centroidal axes.

Moment-Curvature Relationship 

The second equation of statics expresses the fact that the moment resultant
of the normal stresses sx acting over the cross section is equal to the
bending moment M (Fig. 5-9a). The element of force sxdA acting on the
element of area dA (Fig. 5-9b) is in the positive direction of the x axis
when sx is positive and in the negative direction when sx is negative.
Since the element dA is located above the neutral axis, a positive stress



A

y dA � 0

*Centroids and first moments of areas are discussed in Chapter 12, Sections 12.2 and 12.3.
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sx acting on that element produces an element of moment equal to
sx y dA. This element of moment acts opposite in direction to the posi-
tive bending moment M shown in Fig. 5-9a. Therefore, the elemental
moment is 

dM � �sx y dA

The integral of all such elemental moments over the entire cross-
sectional area A must equal the bending moment: 

M � � 

A
sx y dA (b)

or, upon substituting for sx from Eq. (5-7), 

M � 

A
kEy2 dA � kE 


A
y2 dA (5-9)

This equation relates the curvature of the beam to the bending moment M.
Since the integral in the preceding equation is a property of the cross-

sectional area, it is convenient to rewrite the equation as follows: 

M � kEI (5-10)

in which

(5-11)

This integral is the moment of inertia of the cross-sectional area with
respect to the z axis (that is, with respect to the neutral axis). Moments of
inertia are always positive and have dimensions of length to the fourth
power; for instance, typical USCS units are in.4 and typical SI units are
mm4 when performing beam calculations.*

Equation (5-10) can now be rearranged to express the curvature in
terms of the bending moment in the beam: 

(5-12)

Known as the moment-curvature equation, Eq. (5-12) shows that the
curvature is directly proportional to the bending moment M and inversely
proportional to the quantity EI, which is called the flexural rigidity of the
beam. Flexural rigidity is a measure of the resistance of a beam to
bending, that is, the larger the flexural rigidity, the smaller the curvature
for a given bending moment. 

Comparing the sign convention for bending moments (Fig. 4-5)
with that for curvature (Fig. 5-6), we see that a positive bending moment
produces positive curvature and a negative bending moment produces
negative curvature (see Fig. 5-10). 
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FIG. 5-10 Relationships between signs of
bending moments and signs of
curvatures

*Moments of inertia of areas are discussed in Chapter 12, Section 12.4.
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Flexure Formula

Now that we have located the neutral axis and derived the moment-
curvature relationship, we can determine the stresses in terms of the
bending moment. Substituting the expression for curvature (Eq. 5-12)
into the expression for the stress sx (Eq. 5-7), we get 

(5-13)

This equation, called the flexure formula, shows that the stresses are
directly proportional to the bending moment M and inversely propor-
tional to the moment of inertia I of the cross section. Also, the stresses
vary linearly with the distance y from the neutral axis, as previously
observed. Stresses calculated from the flexure formula are called
bending stresses or flexural stresses.

If the bending moment in the beam is positive, the bending stresses
will be positive (tension) over the part of the cross section where y is neg-
ative, that is, over the lower part of the beam. The stresses in the upper
part of the beam will be negative (compression). If the bending moment
is negative, the stresses will be reversed. These relationships are shown
in Fig. 5-11.

Maximum Stresses at a Cross Section 

The maximum tensile and compressive bending stresses acting at any
given cross section occur at points located farthest from the neutral axis.
Let us denote by c1 and c2 the distances from the neutral axis to the
extreme elements in the positive and negative y directions, respectively
(see Fig. 5-9b and Fig. 5-11). Then the corresponding maximum normal
stresses s1 and s2 (from the flexure formula) are 
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FIG. 5-11 Relationships between
signs of bending moments and
directions of normal stresses:
(a) positive bending moment,
and (b) negative bending
moment
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A simple beam AB of span length L � 22 ft (Fig. 5-14a) supports a uniform load
of intensity q � 1.5 k/ft and a concentrated load P � 12 k. The uniform load
includes an allowance for the weight of the beam. The concentrated load acts at
a point 9.0 ft from the left-hand end of the beam. The beam is constructed of
glued laminated wood and has a cross section of width b � 8.75 in. and height 
h � 27 in. (Fig. 5-14b). 

Determine the maximum tensile and compressive stresses in the beam due
to bending. 
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FIG. 5-14 Example 5-3. Stresses in a 
simple beam

Solution
Reactions, shear forces, and bending moments. We begin the analysis by

calculating the reactions at supports A and B, using the techniques described in
Chapter 4. The results are

RA � 23.59 k RB � 21.41 k

Knowing the reactions, we can construct the shear-force diagram, shown
in Fig. 5-14c. Note that the shear force changes from positive to negative
under the concentrated load P, which is at a distance of 9 ft from the left-hand
support.

continued
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Next, we draw the bending-moment diagram (Fig. 5-14d) and determine the
maximum bending moment, which occurs under the concentrated load where the
shear force changes sign. The maximum moment is

Mmax � 151.6 k-ft

The maximum bending stresses in the beam occur at the cross section of max-
imum moment.

Section modulus. The section modulus of the cross-sectional area is calcu-
lated from Eq. (5-18b), as follows:

S � �
b
6
h2

� � �
1
6

� (8.75 in.)(27 in.)2 � 1063 in.3

Maximum stresses. The maximum tensile and compressive stresses st and
sc, respectively, are obtained from Eq. (5-16a):

st � s2 � �
M

S
max� � � 1710 psi

sc � s1 � ��
M

S
max� � �1710 psi

Because the bending moment is positive, the maximum tensile stress occurs at
the bottom of the beam and the maximum compressive stress occurs at the top.

(151.6 k-ft)(12 in./ft)
���

1063 in.3



The beam ABC shown in Fig 5-15a has simple supports at A and B and an over-
hang from B to C. The length of the span is 3.0 m and the length of the overhang
is 1.5 m. A uniform load of intensity q � 3.2 kN/m acts throughout the entire
length of the beam (4.5 m). 

The beam has a cross section of channel shape with width b � 300 mm and
height h � 80 mm (Fig. 5-16a). The web thickness is t � 12 mm, and the average
thickness of the sloping flanges is the same. For the purpose of calculating the
properties of the cross section, assume that the cross section consists of three rec-
tangles, as shown in Fig. 5-16b.

Determine the maximum tensile and compressive stresses in the beam due
to the uniform load.

Solution
Reactions, shear forces, and bending moments. We begin the analysis of this

beam by calculating the reactions at supports A and B, using the techniques
described in Chapter 4. The results are

RA � 3.6 kN RB � 10.8 kN

From these values, we construct the shear-force diagram (Fig. 5-15b). Note that
the shear force changes sign and is equal to zero at two locations: (1) at a dis-
tance of 1.125 m from the left-hand support, and (2) at the right-hand reaction.

Next, we draw the bending-moment diagram, shown in Fig. 5-15c. Both the
maximum positive and maximum negative bending moments occur at  the cross
sections where the shear force changes sign. These maximum moments are

Mpos � 2.025 kN�m Mneg � �3.6 kN�m

respectively.
Neutral axis of the cross section (Fig. 5-16b). The origin O of the yz coor-

dinates is placed at the centroid of the cross-sectional area, and therefore the 
z axis becomes the neutral axis of the cross section. The centroid is located by
using the techniques described in Chapter 12, Section 12.3, as follows. 

First, we divide the area into three rectangles (A1, A2, and A3). Second, we
establish a reference axis Z-Z across the upper edge of the cross section, and we
let y1 and y2 be the distances from the Z-Z axis to the centroids of areas A1 and
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FIG. 5-15 Example 5-4. Stresses in a
beam with an overhang
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A2, respectively. Then the calculations for locating the centroid of the entire
channel section (distances c1 and c2) are as follows:

Area 1: y1 � t/2 � 6 mm
A1 � (b – 2t)(t) � (276 mm)(12 mm) � 3312 mm2

Area 2: y2 � h/2 � 40 mm
A2 � ht � (80 mm)(12 mm) � 960 mm2

Area 3: y3 � y2 A3 � A2

c1 � �
	
	
y
A
iA

i

i� � 

� � 18.48 mm

c2 � h 2 c1 � 80 mm 2 18.48 mm � 61.52 mm

Thus, the position of the neutral axis (the z axis) is determined. 
Moment of inertia. In order to calculate the stresses from the flexure

formula, we must determine the moment of inertia of the cross-sectional area
with respect to the neutral axis. These calculations require the use of the 
parallel-axis theorem (see Chapter 12, Section 12.5). 

Beginning with area A1, we obtain its moment of inertia (Iz)1 about the z axis
from the equation

(Iz)1 � (Ic)1 � A1d2
1 (c)

In this equation, (Ic)1 is the moment of inertia of area A1 about its own centroidal axis: 

(Ic)1 � �
1
1
2
� (b�2t)(t)3 � �

1
1
2
� (276 mm)(12 mm)3 � 39,744 mm4

and d1 is the distance from the centroidal axis of area A1 to the z axis:

d1 � c1 � t/2 � 18.48 mm � 6 mm � 12.48 mm

(6 mm)(3312 mm2) � 2(40 mm)(960 mm2)
�����

3312 mm2 � 2(960 mm2)

y1A1 � 2y2A2
��
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FIG. 5-16 Cross section of beam 
discussed  in Example 5-4. (a) Actual
shape, and (b) idealized shape  for use
in analysis (the thickness of the  beam 
is exaggerated for clarity)



Therefore, the moment of inertia of area A1 about the z axis (from Eq. c) is 

(Iz)1 � 39,744 mm4 � (3312 mm2)(12.48 mm2) � 555,600 mm4

Proceeding in the same manner for areas A2 and A3, we get

(Iz)2 � (Iz)3 � 956,600 mm4

Thus, the centroidal moment of inertia Iz of the entire cross-sectional area is

Iz � (Iz)1 � (Iz)2 � (Iz)3 � 2.469 � 106 mm4

Section moduli. The section moduli for the top and bottom of the beam,
respectively, are 

S1 � �
c
Iz

1
� � 133,600 mm3 S2 � �

c
Iz

2
� � 40,100 mm3

(see Eqs. 5-15a and b). With the cross-sectional properties determined, we can
now proceed to calculate the maximum stresses from Eqs. (5-14a and b). 

Maximum stresses. At the cross section of maximum positive bending
moment, the largest tensile stress occurs at the bottom of the beam (s2) and the
largest compressive stress occurs at the top (s1). Thus, from Eqs. (5-14b) and 
(5-14a), respectively, we get 

st � s2 � �
M
S
p

2

os
� � �

4
2
0
.0
,1
2
0
5
0
k
m
N�

m
m

3�� 50.5 MPa

sc � s1 � � �
M
S
p

1

os
� � � �

1
2
3
.
3
0
,
2
6
5
00

kN
m

�

m
m

3�� �15.2 MPa

Similarly, the largest stresses at the section of maximum negative moment are 

st � s1 � � �
M

S
n

1

eg
� � � � 26.9 MPa

sc � s2 � � � �89.8 MPa

A comparison of these four stresses shows that the largest tensile stress in the
beam is 50.5 MPa and occurs at the bottom of the beam at the cross section of
maximum positive bending moment; thus, 

(st)max � 50.5 MPa

The largest compressive stress is �89.8 MPa and occurs at the bottom of the
beam at the section of maximum negative moment: 

(sc)max � �89.8 MPa

Thus, we have determined the maximum bending stresses due to the uniform
load acting on the beam. 

�3.6 kN�m
��
40,100 mm3

Mneg
�

S2

�3.6 kN�m
��
133,600 mm3
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