Titration curves

Graphs of PH versus the volume of reagent added in a titration are known as titration curves.

Strong acid- strong base:

Note the following features of the titration:
1-The PH changes slowly at first, until the equivalence point is approached.

2-In the region of the equivalence point there is a rapid change in PH . There is a nearly vertical rise in the region from pH 4 to 10.

3- After the equivalence point is passed, the curve flattens out, as excess of NaOH is added.

The curve will become as :
EX/ compute the pH for additions of $0,10,20$, and 30 ml 0.1 M NaOH to 100 ml 0.025 M HCl . Use the computed values and the pH of 7.00 at the equivalence point to plot the titration curve.

Solution /
1-Before any NaoH added or initial pH
[acid] $=0.025 \mathrm{M}$
$\mathrm{pH}=-\log [$ acid $]=-\log [\mathrm{H}+]=-\log 0.025=-(-1.6)=1.6$

2-After addition of 10.0 ml of NaOH

No. mmols acid $=0.025 \mathrm{mmol} / \mathrm{ml} \times 100 \mathrm{ml}=2.5 \mathrm{mmol}$
No.mmols acid(reacted)=n.moles $\mathrm{NaoH}=10.0 \mathrm{ml} \times 0.1 \mathrm{mmole} / \mathrm{ml}=1.0$ mmol

No.mmols acid (unreacted) $=2.5-1.0=1.5 \mathrm{mmol}$
Volume $($ solution $)=100+10=110 \mathrm{ml}$
[acid] unreacted $=\left[\mathrm{H}^{+}\right]=1.5 \mathrm{mmol} / 110 \mathrm{mmol}=0.0136 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.0136$

$$
=-(-1.866)=1.866
$$

3- At equivalence point after addition 25 ml of NaoH
At the equivalence point:
$\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}=\left[\mathrm{OH}^{-}\right]=10^{-7}$
$\mathrm{n}_{\mathrm{HCl}}-\mathrm{n}_{\mathrm{NaOH}}=0 \rightarrow$ eq.point
$\mathrm{PH}=7 \rightarrow$ Bromothymol blue
4- After addition excess of $\mathrm{NaOH}, 30 \mathrm{ml} \mathrm{NaOH}$ added
no. $\mathrm{mmols} \mathrm{NaOH}($ react $)=$ no. mmols acid $=2.5 \mathrm{mmol}$
no. $\mathrm{mmols} \mathrm{NaOH}($ added $)=30.0 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=3.0 \mathrm{mmol}$
no. $\mathrm{mmols}(\mathrm{NaOH})$ unreacted (excess) $=3.0-2.5=0.5 \mathrm{mmol}$
volume of solution $=100+30=130 \mathrm{ml}$
[base]excess $=\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{mmol} / 130 \mathrm{ml}=0.0038$
$\mathrm{pOH}=-\log [\mathrm{OH}-]=-\log 0.0038$
$=-(-2.415)=2.415$
$\mathrm{pH}=14-2.415=11.585$

Weak acid - strong base

The curve will be become as :
EX/ compute the pH of 25.0 ml 0.1 M acetic acid at addition of $0,5,10,12.5,20,25$, and 30 ml 0.1 M NaOH ? ka $=1.8 \times 10^{-5}$, pka $=4.76$

Solution /
1-before added any NaOH or initial pH
$\mathrm{pH}=1 / 2(\mathrm{pka}-\log \mathrm{Ma})$
$\mathrm{pH}=1 / 2(4.76-\log 0.1)$
$\mathrm{pH}=1 / 2(4.76+1)=1 / 2(5.76)$
$=2.88$
2-After addition 5.0 ml NaOH
$\mathrm{pH}=\mathrm{pka}-\log \mathrm{mmoles}$ acid (unreacted) +log mmoles salt/ NaOH
No. mmoles $\mathrm{HCl}=25.0 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=2.5 \mathrm{mmol}$
No. $\mathrm{mmoles} \mathrm{NaOH}=5.0 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=0.5 \mathrm{mmol}$
No. mmoles $\mathrm{HCl}($ unreacted $)=2.5-0.5=2.0 \mathrm{mmol}$

$$
\begin{aligned}
\mathrm{pH} & =4.76-\log 2.0+\log 0.5 \\
& =4.76-0.30-0.30=4.16
\end{aligned}
$$

3- After addition of 12.5 ml of NaOH

$$
\text { لذلك فان : } \text { لحالة يتم معادلة نصف الحامض وان تركيز الحامض يصبح مساويا الى تركيز الملح }
$$

PH = pka
$\mathrm{PH}=4.76$
No. $\mathrm{mmoles} \mathrm{HCl}=25 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=2.5 \mathrm{mmol}$
No. mmoles NaOH (salt) $=12.5 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=1.25 \mathrm{mmol}$
No. mmol HCl (unreacted) $=2.5-1.25==1.25 \mathrm{mmol}$
$\mathrm{pH}=$ pka $-\log$ mmoles acid unreacted $+\log$ mmoles salt (NaOH)
$=4.76-\log 1.25+\log 1.25$
$\mathrm{pH}=4.76$
4- At eq .point (after addition of 25.0 ml of NaOH)
No.mmoles acid $=2.5 \mathrm{mmol}$
No.mmoles $\mathrm{NaOH}=25.0 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=2.5 \mathrm{mmol}$
No .mmoles acid (unreacted $)=2.5-2.5=0$ this is eq . point

$$
\begin{aligned}
& \text { ملاحظة:- عندما يكون عدد مو لات القاعدة المضافة مساوية لعدد مولات الحامض الاصلي فان } \\
& \text { تلك هي نقطة النكافؤ ، و المحلول في هذه الحالة يحتوي على خلات الصوديوم فقط لذلك يمكن } \\
& \text { بالشكل التالي : }
\end{aligned}
$$

$\mathrm{pH}=1 / 2(\mathrm{pkw}+\mathrm{pka}+\log \mathrm{Ms})$
pkw $=14 \quad$ from $k w=1 \times 10^{-14}$
pka $=4.76 \quad$ from $k a=1.8 \times 10^{-5}$
$\mathrm{Ms}=[$ salt $]=($ no.mmols NaOH$) /($ total volume $)=(25.0 \mathrm{ml} \times 0.1 \mathrm{M}) /$ $25+25$

$$
=2.5 / 50=0.05 \mathrm{M}
$$

$$
\begin{aligned}
\mathrm{pH} & =1 / 2(14+4.76+\log 0.05) \\
& =1 / 2(14+4.76-1.30) \\
& =8.73 \rightarrow \text { phenolphthalein }
\end{aligned}
$$

5- After eq . point (excess of NaOH) addition of 25.1 of NaOH No. $\mathrm{mmoles} \mathrm{HCl}=25 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=2.5 \mathrm{mmol}$

No. mmoles $\mathrm{NaOH}=25.1 \mathrm{ml} \times 0.1 \mathrm{mmol} / \mathrm{ml}=2.51 \mathrm{mmol}$
No.mmol NaOH excess $=2.51-2.5=0.01 \mathrm{mmol}$
Volume $=(25+25.1) \mathrm{ml}=50.1 \mathrm{ml}$
$\left[\mathrm{OH}^{-}\right]=0.01 \mathrm{mmol} / 50.1 \mathrm{ml}=0.0001996 \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 1.996 \times 10^{-4}=3.7$
$\mathrm{pH}=14-3.7=10.3$

