Dilution of solutions

A solution of known normality is frequently prepared from a more concentrated one of known strength by quantitative dilution.

$$
\mathrm{N}_{\text {conced }} \times \mathrm{V}_{\text {conced }}=\mathrm{N}_{\text {dil. }} \times \mathrm{V}_{\text {dil. }}
$$

Ex/What volume of 0.1500 N reagent is needed for the preparation of $500.0 \mathrm{ml}, 0.100 \mathrm{~N}$ solution?

Solution/

$$
\begin{aligned}
\mathrm{N}_{\text {conced }} \times \mathrm{V}_{\text {conced }} & =\mathrm{N}_{\text {dil }} . \times \mathrm{V}_{\text {dil }} \\
\mathrm{V}_{\text {conced }} & =\frac{\text { Ndil x Vdil }}{\text { Nconced }}
\end{aligned}=\frac{0.100 \mathrm{~N} X 500.0 \mathrm{ml}}{0.1500 \mathrm{~N}}=333.3 \mathrm{ml} .
$$

Ex/ Describe the preparation of 100 ml 6.0 M HCl from a concentrated
solution that has a specific gravity of 1.18 and is $37 \%(w / w) \mathrm{HCl}$?

Solution/

$$
\begin{aligned}
{[\mathrm{HCl}] } & =\frac{\text { sp.gr } \times \% 1000}{M \cdot w t} \\
& =\frac{1.18 \times 1000 \mathrm{gm} \text { reagent } \times 37 \mathrm{gm} \mathrm{HCl} \times 1 \mathrm{~mol} \mathrm{HCl}}{\text { L reagent } \times 100 \text { gm reagent } \times 36.5 \mathrm{gm} \mathrm{HCl}}
\end{aligned}
$$

$$
\mathrm{M}=12.0 \mathrm{~mol} / \mathrm{L}=12.0 \mathrm{M}
$$

No.mol HCl $=100 \mathrm{ml} \times 6.0 \mathrm{mmol} / \mathrm{ml}$

$$
\begin{aligned}
=600.0 \mathrm{mmol} \times \frac{1 \mathrm{~mol}}{1000 \mathrm{mmol}} & =0.6 \mathrm{~mol} \\
V_{\text {conced }} \text { reagent }=0.6 \mathrm{~mol} \times \frac{1 \mathrm{lreagent}}{12.0 \mathrm{~mol}} & =0.05 \mathrm{t} \times 1000 \mathrm{ml} / \mathrm{t} \\
& =50 \mathrm{ml}
\end{aligned}
$$

Thus dilute 50 ml of the concentrated reagent to 100 ml .

طريقة اخرى للحل

$$
\begin{aligned}
& \mathrm{M}_{\text {conced }} \times \mathrm{V}_{\text {conced }}=\mathrm{M}_{\text {dil. }} \times \mathrm{V}_{\text {dil. }} \\
& 12.0 \mathrm{M} \times \mathrm{V}_{\text {conced }}=6.0 \mathrm{M} \times 100 \mathrm{ml} \\
& \mathrm{~V}_{\text {conced }}=\frac{6.0 \mathrm{MX100ml}}{12.0 \mathrm{M}}=50 \mathrm{ml}
\end{aligned}
$$

Ex/ What volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent is needed for the preparation of $200.0 \mathrm{ml}, 0.3 \mathrm{~N}$ solution that has a specific gravity of 1.84 and is 98\%(w/w) $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Solution/

$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\frac{1.84 \mathrm{X} 1000 \mathrm{gm} \text { reagent } x 98 \mathrm{gm} \mathrm{H} 2 \mathrm{SO} 4 \mathrm{X} 1 \mathrm{eq} \mathrm{H} 2 \mathrm{SO} 4}{L \text { reagent } \times 100 \mathrm{gm} \text { reagent } x 49.0 \mathrm{gm} \mathrm{H} 2 \mathrm{SO} 4}$

$$
=36.8 \mathrm{eq} / \mathrm{L}=36.8 \mathrm{~N}
$$

No.eq $\mathrm{H}_{2} \mathrm{SO}_{4}=200.0 \mathrm{mt} \times 0.3 \mathrm{meq} / \mathrm{ml}$

$$
=60.0 \mathrm{meq}
$$

$\mathrm{V}_{\text {conced }}$ reagent $=60.0-$ meq $\times \frac{1 \mathrm{ml}}{36.8 \mathrm{meq} \mathrm{H} 2 \mathrm{SO4} 4}=1.63 \mathrm{ml}$
Dilute 1.63 ml of the concentrated reagent to 200.0 ml

Analysis of samples by titration with standard solution

Titrimetric methods include a large and powerful group of quantitative procedures that are based upon measuring the amount of a reagent of known concentration that is consumed by the analyte.

Volumetric titrimetry involves measuring the volume of a solution of known concentration that is needed to react essentially completely with the analyte.

Standard solution (standard titrant) : is a reagent of known concentration that is used to carry out a titrimetric analysis.

The equivalence point in titration is reached the amount of added titrant is chemically equivalent to the amount of analyte in the sample.

For example: the equivalence point in the titration of sodium chloride with silver nitrate occurs after exactly 1 mol of silver ion has been added for each mol of chloride ion in the sample.

The equivalence point in the titration of sulfuric acid with sodium hydroxide is reached after introduction of 2 mol of base for each mol of acid.

Acid and base samples are analyzed by titration with a standard solution.A weighed portion of sample is dissolved in water and standard acid or base is added to the proper end point. From the volume of reagent used and the weight of sample, the percentage putity of the sample is computed.

The basis for all computions dealing with normalities of solutions is the simple relation that the number of equivalents or milliequivalents of one reaction is equal to the number for the other reacteat thus

A reacts with B
Equivalents $A=$ Equivalents B

Milliequivalents $A=$ Milliequivalents B

Place white paper underneath flask
to view pink colour more clearly.
Monash Scientific 0397914442
Ex / A sample of impure calcite $\left(\mathrm{CaCO}_{3}\right)(100.1 \mathrm{gm} / \mathrm{mol})$ which weighs
0.4950 gm is dissolved in 50.00 ml of standard acid and the excess acid is titrated with 5.25 ml standard base; 1.00 ml of acid is equivalent to 0.005300 gm sodium carbonate; 1.050 ml acid $=1.00 \mathrm{ml}$ base.Calculate the percentage of calcium carbonate in the sample.

Solution/

$$
1 \mathrm{ml} \text { of acid } \equiv 0.005300 \mathrm{gm} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

$$
\mathrm{N} \text { of acid }=\frac{5.300 \mathrm{mg}}{53.00 \mathrm{mg} / \mathrm{meq}} \times \frac{1}{1 \mathrm{ml}}=0.1000 \mathrm{meq} / \mathrm{ml}
$$

Net volume acid required for titration of sample $=50.00-\left(5.25 \times \frac{1.050}{1.000}\right)$

$$
=44.49 \mathrm{ml}
$$

Milliequivalents acid $=$ Milliequivalents CaCO_{3}

$$
=44.49 \mathrm{ml} \times 0.100 \mathrm{meq} / \mathrm{ml}=4.449 \mathrm{meq}
$$

Milliequivalents $\mathrm{CaCO}_{3}=\frac{\text { weight of solute }}{\text { eq.wt }}$
Weight $\mathrm{CaCO}_{3}=$ Milliequivalents X eq.wt

$$
\begin{aligned}
& =4.449 \mathrm{meq} \times \frac{100.1 \mathrm{mg} / \mathrm{mmol}}{2 \mathrm{meq} / \mathrm{mmol}} \\
& =222.7 \mathrm{mg}
\end{aligned}
$$

Percentage CaCO_{3} in sample $=\frac{222.7}{495.0} \times 100=44.99 \%$
Ex/What must be the normality of sodium hydroxide solution if the volume in milliliters used for the titration of a 0.500 gm sample represents that percentage of acetic acid in the sample?

Solution/
1 eq acid $\equiv 1$ eq base
1 ml of $\mathrm{NaOH} \equiv 0.5 \mathrm{gm} \%$ acetic acid
1 ml of $\mathrm{NaOH} \equiv \frac{0.5 \mathrm{gm} \times 1000 \mathrm{mg} / \mathrm{gm}}{100}$
1 ml of $\mathrm{NaOH} \equiv 5.00 \mathrm{mg}$ acetic acid
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
N of $\mathrm{NaOH}=\frac{5.00 \mathrm{mg} / \mathrm{ml}}{40^{60.05 \mathrm{mg} / \mathrm{meq}}}=0.0833 \mathrm{meq} / \mathrm{ml}$
Ex/ What is the normality of hydrochloric acid solution having a sodium carbonate titer of a 5.00 mg per milliliter?

Solution/

$$
\begin{aligned}
& \mathrm{N} \text { of base } \equiv \mathrm{N} \text { ofacid } \\
& \text { I ml of acid } \equiv 5 \mathrm{mg} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}=\frac{w t}{e q \cdot w t} \times \frac{1}{\operatorname{volume}(\mathrm{ml})} \\
& \mathrm{N}=\frac{50 \mathrm{mg}}{\frac{106 \mathrm{mg} / \mathrm{mmol}}{2 \mathrm{meq} / \mathrm{mmol}}} \times \frac{1}{1 \mathrm{ml}}=0.094 \mathrm{meq} / \mathrm{ml}
\end{aligned}
$$

Titrations in the volumetric analysis

Titration : is an analytical procedure that allows us to measure the amount of a solution reagent of known concentration that is consumed by the analyte.

Titrant : is the solution reagent in buret.
Titrand : is the analyte in beaker.
End point : is the point in which the color of the indicator changes.
Indicator : is a substance (acid or base organic compound) that has one

Calculation of molarities from neutralization reaction (acidbase)

Ex/Exactly 50.00 ml of an HCl solution required 29.71 ml of 0.0193 M
$\mathrm{Ba}(\mathrm{OH})_{2}$ to reach an end point with bromocresol green indicator.
Calculate the molarity of the HCL.

Solution:

No.mmoles $\mathrm{HCl}=0.583 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH})_{z} \times \frac{2 \mathrm{mmol} \mathrm{HCl}}{1 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH})^{2}}$

$$
=1.166 \mathrm{mmol} \mathrm{HCl}
$$

$$
\mathrm{M}_{\mathrm{HCl}}=\frac{1.166 \mathrm{mmol} \mathrm{HCl}}{50.0 \mathrm{ml} \mathrm{HCl}}=0.0233 \mathrm{mmol} / \mathrm{ml}=0.0233 \mathrm{M}
$$

Ex/Ttration of a sample of an drug was analyzed for aspirin amonoprotic acid $\left(\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right)$ of 0.500 gm sample of the drug required 21.50 ml of 0.100 M NaOH for complete neutralization.

What percentage by mass of the drug was aspirin?
Solution/

$$
\begin{aligned}
& \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{NaC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& 1 \mathrm{mmol} \text { of } \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4} \equiv 1 \mathrm{mmol} \text { of } \mathrm{NaOH}
\end{aligned}
$$

No.mmoles $\mathrm{NaOH}=21.50 \mathrm{ml} \times 0.100 \mathrm{mmol} / \mathrm{ml}$

$$
=2.15 \mathrm{mmol} \times 10^{-3} \mathrm{~mol} / \mathrm{mmol}=2.15 \times 10^{-3}
$$

mol

$$
\begin{aligned}
1 \mathrm{~mol} \text { of } \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4} & \equiv 1 \mathrm{~mol} \mathrm{NaOH} \\
1 \mathrm{~mol} \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4} & \equiv 180 \mathrm{gm}
\end{aligned}
$$

Mass of aspirin $=2.15 \times 10^{-3} \mathrm{~mol} \times 180 \mathrm{gm} / \mathrm{mol}$

$$
=0.387 \mathrm{gm}
$$

$\%$ Aspirin $=\frac{0.387 \mathrm{gm}}{0.500 \mathrm{gm}} \times 100=77.4 \%$

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{Hcl} \longrightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 1 \mathrm{mmole} \text { of } \mathrm{Ba}(\mathrm{OH})_{2} \equiv 2 \mathrm{mmole} \text { of } \mathrm{Hcl} \\
& \text { Stoichiometric ratio }=\frac{2 \mathrm{mmole} \mathrm{Hcl}}{1 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH}) 2} \\
& \text { No.moles } \mathrm{Ba}(\mathrm{OH})_{2}=29.71 \mathrm{mt} \times 0.01963 \mathrm{mmol} / \mathrm{mt} \\
& =0.583 \mathrm{mmol}
\end{aligned}
$$

Ex/ Calculate the molarity of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution if 31.76 ml were needed to neutralize 46.25 ml of $0.1280 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Solution/

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

$1 \mathrm{mmol} \mathrm{H} \mathrm{SO}_{4} \equiv 1 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH})_{2}$
Stoichiometric ratio $=\frac{1 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH}) 2}{1 \mathrm{mmol} \mathrm{H} 2 \mathrm{SO} 4}$
No.mmoles $\mathrm{H}_{2} \mathrm{SO}_{4}=46.24 \mathrm{ml}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} \times 0.12801 \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{mlH}_{2} \mathrm{SO}_{4}$ $=5.92 \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}$
No.mmoles $\mathrm{Ba}(\mathrm{OH})_{2}=5.92 \mathrm{mmol}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH}) 2}{1 \mathrm{mmol} \mathrm{H} 2 \mathrm{SOH}}$
$=5.92 \mathrm{mmol} \mathrm{Ba}(\mathrm{OH})_{2}$
$\mathrm{M}_{\mathrm{Ba}(\mathrm{OH}) 2}=\frac{5.92 \mathrm{mmol}}{31.76 \mathrm{ml}}=0.1864 \mathrm{mmol} / \mathrm{ml}=0.1864 \mathrm{M}$

