AL-MUTHANNA UNIVERSITY
 COLLEGE OF ENGINEERING
 DEPARTMENT OF ARCHITECTURE

Mathematics

Class 1

Syllabus

- Functions; Domain and Range
- Intervals
- Inequalities
- Functions
- Parametric Functions
- Limits and Continuity
- Derivatives
- Application of Derivatives
- Conical Sections.

Functions; Domain and Range

- The temperature at which water boils depends on the elevation above sea level (the boiling point drops as you ascend).
- The area of a circle depends on the radius of the circle.
- The distance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another variable quantity, which we might call x.

Functions; Domain and Range

We say that " y is a function of x " and write this symbolically as

$$
y=f(x) \text { ("y equals } f \text { of } x ") \text {. }
$$

- $\quad f$ represents the function
- $\quad \mathrm{x}$ is the independent variable representing the input value of f
- $\quad \mathrm{y}$ is the dependent variable or output value of f at x .

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

Functions; Domain and Range

- The set D of all possible input values (X) is called the domain of the function.
- The range may not include every element in the set (Y).
- A value of $f(\mathrm{x})$ as x varies throughout D is called the range of the function.
- mostly, Range and domain are sets of real numbers interpreted as points of a coordinate line.

Functions; Domain and Range

- The set D of all possible input values (X) is called the domain of the function.
- The range may not include every element in the set (Y).
- A value of $f(\mathrm{x})$ as x varies throughout D is called the range of the function.
- mostly, Range and domain are sets of real numbers interpreted as points of a coordinate line.

Functions; Domain and Range

A function f is like a machine that produces an output value $f(x)$ in its range whenever we feed it an input value x from its domain (Figure 1.1. The function keys on a calculator give an example of a function as a machine.

FIGURE 1.1 A diagram showing a function as a kind of machine.

Functions; Domain and Range

Example :- Let's verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of x for which the formula makes sense.

No	Function	Domain (x)	Range (y)
1	$y=x^{2}$	$(-\infty, \infty)$	$[0, q)$
2	$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
3	$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
4	$y=\sqrt{4-x}$	$(-\infty, 4]$	$[0, \infty)$
5	$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

Solution:-
-The formula $y=x 2$ gives a real y-value for any real number x.
The range of $y=x 2$ is $[0, \infty)$ because the square of any real number is nonnegative .
-The formula $y=1 / x$ gives a real y-value for every x except $x=0$ because if $\mathrm{x}=0$ result will be ∞. Thus, range of $y=1 / x$, the set of reciprocals of all nonzero real numbers.

Functions; Domain and Range

Solution:-

1. The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$.
2. In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.
3. The formula $y=\sqrt{1-x^{2}}$ gives a real y-value for every x in the closed interval from -1 to 1 . Outside this domain, $1-x^{2}$ is negative and its square root is not a real number. The values of $1-x^{2}$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1-x^{2}}$ is [0, 1].
4. The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$.
5. In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.

Functions; Domain and Range

Solution:-

1. The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$.
2. In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.
3. The formula $y=\sqrt{1-x^{2}}$ gives a real y-value for every x in the closed interval from -1 to 1 . Outside this domain, $1-x^{2}$ is negative and its square root is not a real number. The values of $1-x^{2}$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1-x^{2}}$ is [0, 1].
4. The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$.
5. In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.
