AL-MUTHANNA UNIVERSITY COLLEGE OF ENGINEERING DEPARTMENT OF ARCHITECTURE

Mathematics

Class 1

Syllabus

- Functions; Domain and Range
- Intervals
- Inequalities
- Functions
- Parametric Functions
- Limits and Continuity
- Derivatives
- Application of Derivatives
- Conical Sections.

- The temperature at which water boils depends on the elevation above sea level (the boiling point drops as you ascend).
- The area of a circle depends on the radius of the circle.
- The distance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, **say y, depends on the** *value of* another variable quantity, which we might call x.

We say that "y is a function of x" and write this symbolically as

$$y = f(x)$$
 ("y equals f of x").

- *f* represents the function
- x is the independent variable representing the input value of f
- y is the dependent variable or output value of f at x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.

- The set D of all possible input values (X) is called the **domain** of the function.
- The **range** may not include every element in the set (Y).
- A value of f(x) as x varies throughout D is called the range of the function.
- mostly, Range and domain are sets of real numbers interpreted as points of a coordinate line.

- The set D of all possible input values (X) is called the **domain** of the function.
- The **range** may not include every element in the set (Y).
- A value of f(x) as x varies throughout D is called the range of the function.
- mostly, Range and domain are sets of real numbers interpreted as points of a coordinate line.

A function f is like a machine that produces an output value f(x) in its range whenever we feed it an input value x from its domain (Figure 1.1.). The function keys on a calculator give an example of a function as a machine.

Example :- Let's verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of x for which the formula makes sense.

Νο	Function	Domain (x)	Range (y)
1	$y = x^2$	$(-\infty,\infty)$	[0, <i>q</i>)
2	y = 1/x	$(-\infty,0) \cup (0,\infty)$	$(-\infty,0) \cup (0,\infty)$
3	$y = \sqrt{x}$	[0,∞)	[0,∞)
4	$y = \sqrt{4-x}$	(−∞, 4]	[0,∞)
5	$y = \sqrt{1 - x^2}$	[-1,1]	[0, 1]

Solution:-

•The formula $y = x^2$ gives a real *y*-value for any real number *x*.

The range of y = x2 is $[0, \infty)$ because the square of any real number is nonnegative.

•The formula y = 1/x gives a real *y*-value for every *x* except x = 0 because if x =0 result will be ∞ . Thus, range of y = 1/x, the set of reciprocals of all nonzero real numbers.

Solution:-

- 1. The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$.
- 2. In $y = \sqrt{4 x}$, the quantity 4 x cannot be negative. That is, $4 x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 x}$ is $[0, \infty)$, the set of all nonnegative numbers.
- 3. The formula y = √1 x² gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, 1 x² is negative and its square root is not a real number. The values of 1 x² vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of √1 x² is [0, 1].
- 4. The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$.
- 5. In $y = \sqrt{4 x}$, the quantity 4 x cannot be negative. That is, $4 x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 x}$ is $[0, \infty)$, the set of all nonnegative numbers.

Solution:-

- 1. The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$.
- 2. In $y = \sqrt{4 x}$, the quantity 4 x cannot be negative. That is, $4 x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 x}$ is $[0, \infty)$, the set of all nonnegative numbers.
- 3. The formula y = √1 x² gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, 1 x² is negative and its square root is not a real number. The values of 1 x² vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of √1 x² is [0, 1].
- 4. The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$.
- 5. In $y = \sqrt{4 x}$, the quantity 4 x cannot be negative. That is, $4 x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 x}$ is $[0, \infty)$, the set of all nonnegative numbers.