EXP:-
Graph the fuction

$$
y=-x^{2}
$$

(1) Domain

$$
y=-x^{2} \quad D F=R \quad \text { si }(-\infty,+\infty)
$$

(2) Range

$$
\begin{aligned}
& \text { ange } \\
& y=-x^{2} \rightarrow x^{2}=-y \longrightarrow x= \pm \sqrt{-y}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=-x^{2} \rightarrow x \quad x=-1 \text { interval }[-\infty, 0] \\
& -y \geqslant 0 \Rightarrow y \leq 0 \quad
\end{aligned}
$$

(3) Graph

A	$y=-x^{2}$
0	0
1	-1
2	-4
3	-9
-1	-1
-2	-4
-3	-9

vertex

$$
\begin{array}{ll}
x=\frac{-b}{2 a} & y=a x^{2}+b x+c \\
x=\frac{-0}{2 \times 0}=0 & y=-x^{2}+0-0 \\
y=0 & \\
(0,0) \text { retex }
\end{array}
$$

EVP:- Graph the fuction

$$
\begin{aligned}
& y=|x-1|+2 \\
& |x-1|=\left\{\begin{array}{lll}
+(x-1) & x-1 \geqslant 0 & x \geqslant 1 \\
-(x-1) & x-1<0 & x<1
\end{array}\right. \\
& y=\left\{\begin{array}{ll}
+(x-1)+2 \\
+(x-1)+2
\end{array}= \begin{cases}x+1 & x \geqslant 1 \\
2-x & x<1\end{cases} \right.
\end{aligned}
$$

$$
\begin{aligned}
& y=x+1 \quad x \geqslant 1 \\
& -x \\
& 1 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
$$

$$
\begin{array}{c|ll}
y=3-x & x<1 \\
y & y= \\
\hline 0 & 3 \\
-1 & 4 \\
-2 & 5
\end{array}
$$

(-2)

Exp:

$$
|y|-|x|=1
$$

sol:-

$$
\begin{aligned}
|y| & =1+|x| \\
\text { L. } y & = \begin{cases}1+x & \text { when } x \geqslant 0 \\
1-x & \text { when } x<0\end{cases}
\end{aligned}
$$

$$
y=1+x \text { when } x \geqslant 0
$$

x	y
0	1
1	2
2	3

$$
y=1-x \text { when } x<0
$$

$$
\begin{aligned}
& y^{\prime}-y=1+|x| \\
& y=\left\{\begin{array}{l}
-x-1 \\
x-1
\end{array}\right.
\end{aligned}
$$

when $x \geqslant 0$
 when $x<0$

$y=-x-1$ when $x \geqslant 6 \quad y=x-1$ when $x<0$

x	y
0	-1
1	-2
2	-3

$$
\begin{array}{ll}
\frac{x}{-1} & \frac{y}{-2} \\
-2 & -3
\end{array}
$$

1.8.4 Trigonometric Functions

The six basic trigonometric functions are
Sine $\quad \sin x=a / c$
Cosine $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{b} / \boldsymbol{c}$
Tangent $\boldsymbol{\operatorname { t a n }} \boldsymbol{x}=\boldsymbol{a} / \boldsymbol{b}=\boldsymbol{\operatorname { s i n }} \boldsymbol{x} / \boldsymbol{c o s} \boldsymbol{x}$
Cotangent $\cot x=b / a=\cos x / \sin x$
Secant $\quad \sec x=c / b=1 / \cos x$
Cosecant $\csc x=c / a=1 / \sin x$

Adjacent b

Identifies

Trigonometric Identities - part 1

Reciprocal Identities		Half Angle Identities	Double Angle Identities$\sin (2 \theta)=2 \sin \theta \cos \theta$
		($\begin{aligned} & \text {) } 1-\cos \theta\end{aligned}$	
		$\left(\frac{2}{2}\right) \sqrt{2}$	(2 2) $=\cos ^{2} \theta-\sin ^{2} \theta$
$\cos \theta=\frac{1}{\sec \theta}$	$\sec \theta=\frac{1}{\cos \theta}$	$\cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos \theta}{2}}$	$\begin{aligned} & =2 \cos ^{2} \theta-1 \\ & =1-2 \sin ^{2} \theta \end{aligned}$
$\tan \theta=\frac{1}{\cot \theta}$	$\cot \theta=\frac{1}{\tan \theta}$	$\tan \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$	$\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Sum to Product Identities	Product to Sum Identities	$\cos (-\theta)=\cos \theta$
$\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)$	$\tan (-\theta)=-\tan \theta$
$\sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$	$\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)$	$\csc (-\theta)=-\csc \theta$
$\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)$	$\sec (-\theta)=\sec \theta$
$\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$	$\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)$	$\cot (-\theta)=-\cot \theta$

- The graphs of the sine, cosine and tangent functions are shown in Figure 1.20.

(a) $f(x)=\sin x$

(b) $f(x)=\cos x$

$$
y=\tan x
$$

Figure 1.20

Hyperbolic Functions

(a)

(b)

Hyperbolic cosine: $\cosh x=\frac{e^{x}+e^{-x}}{2}$ Hyperbolic cotangent:

(e)

(c)

Hyperbolic tangent:

$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$

Hyperbolic cosecant:
Hyperbolic secant:
$\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} \quad \operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$

1.8.5 Exponential Functions

Exponential functions formula is

$$
f(x)=a^{x}, \quad \text { where } a>0 \text { and } a \neq 1, a=\text { constant value }
$$

- Domain $(-\infty, \infty)$ and range $(0, \infty)$.
- In fact, natural exponential function (e^{x}), where e is constant number, $\mathrm{e}=2.71828$
- An exponential function never assumes the value 0 , as shown in Figure 1.21.

(a)

(b)

Figure 1.21
Ilustrative example: Graph the function $y=\frac{1}{2} e^{-x}-1$ and state the domain and range.
Solution We start with the graph of $y=e^{x}$ from Figure below, and reflect about the y-axis to get the graph of $y=e^{-x}$ in. Figure (b). (Notice that the graph crosses the y-axis with a slope of -1). Then we compress the graph vertically by a factor of 2 to obtain the graph of $y=\frac{1}{2} e^{-x}$ in Figure (c). Finally, we shift the graph downward one unit to get the desired graph in Figure (d). The domain is Rand the range is $(-1, \infty)$.

(a) $y=e^{x}$

(b) $y=e^{-x}$

(c) $y=\frac{1}{2} e^{-x}$

(d) $y=\frac{1}{2} e^{-x}-1$

Rules for Exponents

If $a>0$ and $b>0$, the following rules hold true for all real numbers x and y.

1. $a^{x} \cdot a^{y}=a^{x+y}$
2. $\frac{a^{x}}{a^{y}}=a^{x-y}$
3. $\left(a^{x}\right)^{y}=\left(a^{y}\right)^{x}=a^{x y}$
4. $a^{x} \cdot b^{x}=(a b)^{x}$
5. $\frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$

Example : We illustrate the flowing functions using the rules for exponents

1. $3^{1.1} \cdot 3^{0.7}=3^{1.1+0.7}=3^{1.8}$
2. $\frac{(\sqrt{10})^{3}}{\sqrt{10}}=(\sqrt{10})^{3-1}=(\sqrt{10})^{2}=10$
3. $\left(5^{\sqrt{2}}\right)^{\sqrt{2}}=5^{\sqrt{2} \cdot \sqrt{2}}=5^{2}=25$
4. $7^{\pi} \cdot 8^{\pi}=(56)^{\pi}$
5. $\left(\frac{4}{9}\right)^{1 / 2}=\frac{4^{1 / 2}}{9^{1 / 2}}=\frac{2}{3}$

1.8.6 Logarithmic Functions

The functions describe as $f(x)=\log _{a} x \quad$ where $a \neq 1$, is a positive constant

- It is the inverse functions of the exponential functions
- In each case the domain is $(0, \infty)$ and the range is $(-\infty, \infty)$. as shown in Figure 1.19.

Figure 1.19

* NATURAL LOGARITHMS

The logarithm with base is called the natural logarithm and has a special notation:

$$
\log _{e} x=\ln x
$$

$$
\ln e=1
$$

x	$y=\ln x$
0	∞
1	0
2	0.693
3	1.098
4	1.386
5	1.609
-1	∞
0.9	-0.105
0.5	-0.693
0.2	-1.609
0.1	-2.302

Example: Classify the following functions as one of the types of functions that we have discussed.
(a) $f(x)=5^{x}$
(b) $g(x)=x^{5}$
(c) $h(x)=\frac{1+x}{1-\sqrt{x}}$
(d) $u(t)=1-t+5 t^{4}$
(a) $f(x)=5^{x}$ is an exponential function. (The x is the exponent.)
(b) $g(x)=x^{5}$ is a power function. (The x is the base.) We could also consider it to be a polynomial of degree 5 .
(c) $h(x)=\frac{1+x}{1-\sqrt{x}}$ is an algebraic function.
(d) $u(t)=1-t+5 t^{4}$ is a polynomial of degree 4 .

1.8.7 Algebra of functions

Let f is a function of x then we get $f(x)$ and g is a function of x also we get $g(x)$

Df is the domain of $f(x)$
Dg is the domain of $g(x)$
Then:
$\mathrm{f}+\mathrm{g}=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ and $\mathrm{Df} \cap \mathrm{Dg}$
$\mathrm{f}-\mathrm{g}=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
$\mathrm{f} . \mathrm{g}=\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$
and the domain is as same before

if f / g then $D f \cap \operatorname{Dg}$ but $g(x) \neq 0$
if g / f then $\mathrm{Dg} \cap \operatorname{Df}$ but $\mathrm{f}(\mathrm{x}) \neq 0$
and $\operatorname{Df}_{0} \mathrm{~g}=\{\mathrm{x}: \mathrm{x} \in \operatorname{Dg}, \mathrm{g}(\mathrm{x}) \in \mathrm{Df}\}$
where $\quad f_{0} g(x)=f(g(x)) \quad$ also called the composition of f and g
Example: Find $\mathrm{f}_{0} \mathrm{~g}$ and $\mathrm{g}_{0} \mathrm{f}$ if $\boldsymbol{f}(\mathrm{x})=\sqrt{1-x}$ and $\mathrm{g}(\mathrm{x})=\sqrt{5+x}$
Solution:-
$\left(\mathrm{f}_{\mathrm{o}} \mathrm{g}\right) \mathrm{x}=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(\sqrt{5+x})=\sqrt{1-\sqrt{5+x}}$
$(1-x) \geq 0$ then $x \leq 1$ Df: $x \leq 1$
$5+x \geq 0$ then $x \geq-5$ Dg: $x \geq-5$
$D f_{0} g=\{x: x \geq-5, \sqrt{5+x} \leq 1\}=\{x:-5 \leq x \leq-4\}$

Example: If $f_{(x)}=\sqrt{x}$ and $g_{(x)}=\sqrt{1-x}$
Find:
$f+g$, f-g, g-f, $f_{o} g, f / g, g / f$ then graph $f_{o} g$ and also $f+g$. Solution $f_{(x)}=\sqrt{x}$ domain $x \geq 0 g_{(x)}=\sqrt{1-x}$ domain $x \leq 1$
$f+g=(f+g) x=\sqrt{x}+\sqrt{1-x} \quad$ domain $0 \leq x \leq 1$ or
$[0,1] \mathrm{f}-\mathrm{g}=\sqrt{x}-\sqrt{1-x} \quad$ domain $0 \leq x \leq 1$
g-f $=\sqrt{1-x}-\sqrt{x} \quad$ domain $0 \leq x \leq 1$
$f_{o} g=f(x) g(x)=f(g(x))=f(\sqrt{1-x})=\sqrt{\sqrt{1-x}}=4 \sqrt{1-x}$ domain ($-\infty, 1$] (why?)
$f / g=f(x) / g(x)=\sqrt{\frac{x}{1-x}} \quad$ domain $(-\infty, 1]$
$g / f=g(x) / f(x)=\sqrt{\frac{1-x}{x}}$
domain $(0,1]$

This chapter based on many reference [1][2][3]

reference :

[1] G. B. Thomas, calculus, Twelfth Ed. .
[2] "Chapter 1, calculus," Tikrit Univ. Coll. Eng. Civ. Eng. Dep., pp. 1-54, 2008.
[3] "University of Anbar College of Engineering Department(s): Dams \& Water Resources Eng. Electrical Eng .," pp. 1-113, 2018.

