Exp:-
Graph the fuction

$$J = x^2$$

 0 baravas
 $J = x^2$ $D \in \mathbb{R}$ $G = (-\infty, +\infty)$
 $G = x^2$ $J = x^2 - y \rightarrow x = 4$
 $J = 0$ $M = 0$
 $M = \frac{1}{2}$ $G = \frac{1}{2}$ $M = 0$
 $M = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{E_{YP}}{|Y| - |X| = 1}$$

$$\frac{SoL_{1}}{|Y| = 1 + |X|}$$

$$Under X = \int_{1-X}^{1+X} when X = 0$$

1.8.4 Trigonometric Functions

The six basic trigonometric functions are

Sinesin x = a/cCosinecos x = b/cTangenttan x = a/b = sin x/cos x

Cotangent $\cot x = b/a = \cos x/\sin x$ Secant $\sec x = c/b = 1/\cos x$ Cosecant $\csc x = c/a = 1/\sin x$

Trigonometric Identities – part 1 www.GIMath						
Reciprocal Identities		Half Angle Identities		Double Angle Identities	Pythagoras Identities	
$\sin\theta = \frac{1}{2}$	$\csc \theta = \frac{1}{2}$	(θ)	$1 - \cos \theta$	$\sin(2\theta)=2\sin\theta\cos\theta$	$sin^2\theta + cos^2\theta = 1$	
$\frac{1}{\cos\theta} = \frac{1}{\cos\theta} = \frac{1}{\sin\theta}$		$\sin\left(\frac{1}{2}\right) = \pm \sqrt{2}$		$\cos(2\theta)=\cos^2\theta-\sin^2\theta$	$1 + tan^2\theta = sec^2\theta$	
$\cos\theta = \frac{1}{\sec\theta} \qquad \sec\theta = \frac{1}{\cos\theta}$	$(\theta) = 1$	$1 + \cos \theta$	$=2\cos^2\theta$ -1	$1 + aat^2 \theta = aaa^2 \theta$		
	cos Ø	$\left(\frac{\cos\left(\overline{2}\right)}{2}\right) = \pm$	2	$= 1 - 2sin^2\theta$	$1 + coc^{-} \sigma = csc^{-} \sigma$	
		(0)			Even/Odd Identities	
$\tan\theta=\frac{1}{\cot\theta}$	$\cot\theta = \frac{1}{\tan\theta}$	$\tan\left(\frac{\theta}{2}\right) = \pm$	$= \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$	$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$	$\sin(-\theta)=-\sin\theta$	
Sum to Product Identities			Product to Sum Identities		$\cos(-\theta) = \cos\theta$	
$\sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$			$\sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)$		$\tan(-\theta) = -\tan\theta$	
$\sin\alpha - \sin\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$			$\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha-\beta) + \cos(\alpha+\beta)$		$\csc(-\theta) = -\csc\theta$	
$\cos \alpha + \cos \beta =$	$= 2\cos\left(\frac{\alpha+\beta}{2}\right)cc$	$ps\left(\frac{\alpha-\beta}{2}\right)$	$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$		$\sec(-\theta) = \sec\theta$	
$\cos \alpha - \cos \beta =$	$=-2sin\left(\frac{\alpha+\beta}{2}\right)$	$\sin\left(\frac{\alpha-\beta}{2}\right)$	$\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$		$\cot(-\theta) = -\cot\theta$	

***** Identifies

- The graphs of the sine, cosine and tangent functions are shown in Figure 1.20.

✤ Hyperbolic Functions

1.8.5 Exponential Functions

Exponential functions formula is

 $f(x) = a^x$, where a > 0 and $a \neq 1$, a = constant value- Domain $(-\infty, \infty)$ and range $(0, \infty)$.

- In fact, natural exponential function (e^x), where e is constant number, e = 2.71828
- An exponential function never assumes the value 0, as shown in Figure 1.21.

llustrative example: Graph the function $y = \frac{1}{2}e^{-x} - 1$ and state the domain and range.

Solution We start with the graph of $y = e^x$ from Figure below, and reflect about the y-axis to get the graph of $y = e^{-x}$ in Figure (b). (Notice that the graph crosses the y-axis with a slope of -1). Then we compress the graph vertically by a factor of 2 to obtain the graph of $y = \frac{1}{2}e^{-x}$ in Figure (c). Finally, we shift the graph downward one unit to get the desired graph in Figure (d). The domain is **R** and the range is $(-1, \infty)$.

Rules for Exponents

If a > 0 and b > 0, the following rules hold true for all real numbers x and y.

1.
$$a^{x} \cdot a^{y} = a^{x+y}$$

3. $(a^{x})^{y} = (a^{y})^{x} = a^{xy}$
5. $\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$
2. $\frac{a^{x}}{a^{y}} = a^{x-y}$
4. $a^{x} \cdot b^{x} = (ab)^{x}$

Example : We illustrate the flowing functions using the rules for exponents

1.
$$3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8}$$

2. $\frac{(\sqrt{10})^3}{\sqrt{10}} = (\sqrt{10})^{3-1} = (\sqrt{10})^2 = 10$
3. $(5^{\sqrt{2}})^{\sqrt{2}} = 5^{\sqrt{2} \cdot \sqrt{2}} = 5^2 = 25$
4. $7^{\pi} \cdot 8^{\pi} = (56)^{\pi}$
5. $\left(\frac{4}{9}\right)^{1/2} = \frac{4^{1/2}}{9^{1/2}} = \frac{2}{3}$

1.8.6 Logarithmic Functions

The functions describe as

 $f(x) = \log_a x$ where $a \neq 1$, is a positive constant

- It is the *inverse functions* of the exponential functions
- In each case the domain is $(0, \infty)$ and the range is $(-\infty, \infty)$. as shown in Figure 1.19.

***** NATURAL LOGARITHMS

The logarithm with base is called the **natural logarithm** and has a special notation:

$$\log_e x = \ln x$$
$$\ln e = 1$$

x	y = lnx
0	8
1	0
2	0.693
3	1.098
4	1.386
5	1.609
-1	8
0.9	-0.105
0.5	-0.693
0.2	-1.609
0.1	-2.302

Example: Classify the following functions as one of the types of functions that we have discussed.

(a) $f(x) = 5^x$ (b) $g(x) = x^5$ (c) $h(x) = \frac{1+x}{1-\sqrt{x}}$ (d) $u(t) = 1 - t + 5t^4$

(a) $f(x) = 5^x$ is an exponential function. (The *x* is the exponent.)

(b) $g(x) = x^5$ is a power function. (The x is the base.) We could also consider it to be a polynomial of degree 5.

(c)
$$h(x) = \frac{1+x}{1-\sqrt{x}}$$
 is an algebraic function.

(d) $u(t) = 1 - t + 5t^4$ is a polynomial of degree 4.

1.8.7 Algebra of functions

Let f is a function of x then we get f(x) and g is a function of x also we get g(x)

Df is the domain of f(x)Dg is the domain of g(x)Then: f+g = f(x) + g(x) and $Df \cap Dg$ f - g = f(x) - g(x) $f.g = f(x) \cdot g(x)$

and the domain is as same before

if f/g then Df \cap Dg but g(x) $\neq 0$ if g/f then Dg \cap Df but f(x) $\neq 0$ and $Df_0g = \{x: x \in Dg, g(x) \in Df\}$ $f_0g(x) = f(g(x))$ where also called the composition of f and g **Example**: Find f_0g and g_0f if $f(x) = \sqrt{1-x}$ and $g(x) = \sqrt{5+x}$ Solution:- $(f_0g)x = f(g(x)) = f(\sqrt{5+x}) = \sqrt{1-\sqrt{5+x}}$ (1-x) > 0 then x < 1 Df: x < 1 $5+x \ge 0$ then $x \ge -5$ Dg: $x \ge -5$ D f₀g = {x: $x \ge -5$, $\sqrt{5 + x} \le 1$ } = {x: $-5 \le x \le -4$ } Example: If $f_{(x)} = \sqrt{x}$ and $g_{(x)} = \sqrt{1-x}$ Find: f + g, f-g, g-f, $f_o g$, f/g, g/f then graph $f_o g$ and also f + g. Solution $f_{(x)} = \sqrt{x}$ domain $x \ge 0$ $g_{(x)} = \sqrt{1-x}$ domain $x \le 1$ $f + g = (f + g)x = \sqrt{x} + \sqrt{1 - x}$ domain $0 \le x \le 1$ or [0,1] f-g = $\sqrt{x} - \sqrt{1-x}$ domain $0 \le x \le 1$ $g-f = \sqrt{1-x} - \sqrt{x} \qquad \text{domain } 0 \le x \le 1$ $f_o g = f(x)g(x) = f(g(x)) = f(\sqrt{1-x}) = \sqrt{\sqrt{1-x}} = 4\sqrt{1-x} \quad \text{domain}$ g-f = $\sqrt{1-x} - \sqrt{x}$ $(-\infty, 1]$ (why?) $f/g = f(x)/g(x) = \sqrt{\frac{x}{1-x}}$ domain $(-\infty, 1]$ $g/f = g(x)/f(x) = \sqrt{\frac{1-x}{x}}$ domain (0,1]

This chapter based on many reference [1][2][3]

reference :

- [1] G. B. Thomas, calculus, Twelfth Ed. .
- [2] "Chapter 1, calculus," *Tikrit Univ. Coll. Eng. Civ. Eng. Dep.*, pp. 1–54, 2008.
- [3] "University of Anbar College of Engineering Department(s): Dams & Water Resources Eng. Electrical Eng .," pp. 1–113, 2018.