Ministry of Higher Education and Scientific Research AL- Muthanna University College of Engineering Electronic and Communications Department Course "Engineering Mechanics" (Statics) Stage: First Year Lectures: MSC " Ali Nassir Hussain"

Course Number: PGE102: Engineering Mechanics (Statics)
Instructor: MSC " Ali Nassir Hussain
Credit hours: 3 Textbook: Engineering mechanics / J.L. Meriam, L.G. Kraige.-7th ed.:
References:
1.J. L. Meriam and L. G. Kraige 'Engineering Mechanics: 7th edition.

- Meriam, J. L. (James L.)

Engineering mechanics / J.L. Meriam, L.G. Kraige.-7th ed.

2. Chapter Two: Force vectors:

A scalar is any positive or negative physical quantity that can be completely specified by its magnitude. Examples of scalar quantities include length, mass, and time.
A vector is any physical quantity that requires both a magnitude and a direction for its complete description. Examples of vectors encountered in statics are force, position, and moment.

2.1.Vector Operations

Procedure for Analysis:

1. Redraw a half portion of the parallelogram to illustrate the triangular head-to-tail addition of the components.
2. From this triangle, the magnitude of the resultant force can be determined using the law of cosines, and its direction is determined from the law of sines. The magnitudes of two force components are determined from the law of sines. The formulas are:

Cosine law: $c=\sqrt{A^{2}+B^{2}-2 A B \cos (c)}$

Sine law: $\frac{A}{\sin a}+\frac{B}{\sin b}+\frac{C}{\sin c}$

Example /1: The screw eye in Figure below is subjected to two forces, F1 and F2.
Determine the magnitude and direction of the resultant force.

Solution:

The two unknowns are .The magnitude of \boldsymbol{F}_{R} and the angle θ (theta).

Using the law of cosines:

$$
\begin{aligned}
F_{R} & =\sqrt{(100)^{2}+(150)^{2}-2(100)(150) \cos 115^{0}} \\
F_{R} & =\sqrt{(1000)+(22500)-3000(-0.4226)}
\end{aligned}
$$

$$
F_{R}=212.6
$$

Applying the law of sines to determine $\boldsymbol{\theta}$:

$$
\begin{aligned}
& \frac{150}{\sin \theta}=\frac{212.6}{\sin 115^{0}} \\
& \sin \theta=\frac{150\left(\sin 115^{0}\right)}{212.6}
\end{aligned}
$$

$$
\theta=39.8^{0}
$$

Thus, the direction Φ (phi) of FR, measured from the horizontal, is:
$\theta=39.8^{0}+15^{0}=54.8^{0}$

Example(3) / Refer to the Fig. 2.24. The structure shown is subjected to

 force vectors P and T having magnitude 500 N and 200 N respectively. Combine P and T into a single force R.Solution Given $P=500 \mathrm{~N}$ ، $T=200 \mathrm{~N}$, Let the angle between P and T be a.So, P and T can be represented by two adjacent sides of the parallelogram and the resultant R can be represented by the diagonal.

From the given geometry,

$$
\tan \alpha=\frac{B D}{A D}=\frac{5 \sin 75^{\circ}}{3+5 \cos 75^{\circ}} \Rightarrow \alpha=48.4^{\circ}
$$

Using Law of cosines:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos \alpha \\
R^{2} & =200^{2}+500^{2}-2(200)(500) \cos \left(48.4^{\circ}\right) \\
R & =396.5 \mathrm{~N}
\end{aligned}
$$

Using Law of sines, we get $\frac{200}{\sin \theta}=\frac{396.5}{\sin 48.4^{\circ}}$

$$
\theta=22.2^{\circ}
$$

Thus the magnitude of R is $R=396.5 N$ and its inclination with P is 22.2°.
（H．W）．3：determine the magnitude of forces FA and FB acting on each chain In order to develop a resultant force of 600 N directed along the positive Y－axis．

2．2．Rectangular Components ：Two Dimensions：
Vectors Fx and Fy are rectangular components of F ．

The resultant force is determined from the algebraic sum of its components．

$$
\begin{aligned}
& \xrightarrow[\left(\mathbf{F}_{R}\right)_{x}]{ } \\
& \begin{array}{l}
\left(\boldsymbol{F}_{R}\right)_{x}=\Sigma \boldsymbol{F}_{x} \\
\left(\boldsymbol{F}_{\boldsymbol{R}}\right)_{y}=\Sigma \boldsymbol{F}_{y}
\end{array} \\
& F_{R}=\sqrt{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}} \\
& \theta=\tan ^{-1}\left|\frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}\right|
\end{aligned}
$$

Example：The end of the boom O in Figure（a）below is subjected to three concurrent and coplanar forces．Determine the magnitude and direction of the resultant force．

（a）

（b）

（c）

Solution：

Each force is resolved into its x and y components，Figure（b），Summing the x－components and
y－components

$$
\begin{aligned}
& +\left(F_{R}\right)_{x}=\Sigma F_{x} ; \quad\left(F_{R}\right)_{x}
\end{aligned}=-400 \mathrm{~N}+250 \sin 45^{\circ} \mathrm{N}-200\left(\frac{4}{5}\right) \mathrm{N}, ~ \begin{aligned}
& \\
&=-383.2 \mathrm{~N}=383.2 \mathrm{~N} \longleftarrow \\
&+\uparrow\left(F_{R}\right)_{y}=\Sigma F_{y} ; \quad\left(F_{R}\right)_{y}=250 \cos 45^{\circ} \mathrm{N}+200\left(\frac{3}{5}\right) \mathrm{N} \\
&=296.8 \mathrm{~N} \uparrow
\end{aligned}
$$

The resultant force，shown in Figure c，has a magnitude of：

$$
\begin{aligned}
F_{R} & =\sqrt{(-383.2 \mathrm{~N})^{2}+(296.8 \mathrm{~N})^{2}} \\
& =485 \mathrm{~N}
\end{aligned}
$$

The direction angle $\boldsymbol{\theta}$ is：

$$
\theta=\tan ^{-1}\left(\frac{296.8}{383.2}\right)=37.8^{\circ}
$$

Sample Problem

Forces F1 and F2 act on the bracket as shown. Determine the projection Fb of their resultant R onto the b-axis.

Solution.

The parallelogram addition of F1 and F2 is shown in the figure. Using the law of cosines gives us
$R^{2}=(80)^{2}+(100) 2-2(80)(100) \cos 130^{0} R=163.4 \mathrm{~N}$
The figure also shows the orthogonal projection Fb of R onto the b-axis. Its length is:

$$
F b=80+100 \cos 50^{\circ}=144.3 \mathrm{~N}
$$

H.W // Determine the X and Y components of the $\mathbf{8 0 0} \mathrm{-lb}$ force.

